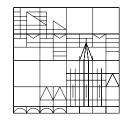
Universität Konstanz Fachbereich Mathematik und Statistik

Prof. Dr. Salma Kuhlmann Dr. Lorna Gregory Katharina Dupont



Algebra Übungsblatt 11

Aufgabe 11.1

(a) Seien G eine Gruppe der Ordnung 77, X eine Menge mit 41 Elementen und $\phi:G\times X\to X$ eine Aktion von G auf X. Zeigen Sie, dass die Aktion ϕ einen Fixpunkt hat. Ein Punkt $x\in X$ heißt Fixpunkt, falls für alle $g\in G$

$$\phi(g, x) = x$$

gilt.

(b) Seien G eine Gruppe der Ordnung 55, X eine Menge mit 19 Elementen und $\phi:G\times X\to X$ eine Aktion von G auf X. Zeigen Sie, dass die Aktion ϕ mindestens drei Fixpunkte hat.

Aufgabe 11.2

Sei G eine endliche Gruppe die auf einer endlichen Menge X operiert. Für $g \in G$ sei

$$\operatorname{Fix}(g) := \{x \in M \mid gx = x\}.$$

Zeigen Sie, dass die Anzahl der G-Bahnen

$$\frac{1}{|G|} \sum_{g \in G} |\mathsf{Fix}(g)|$$

ist.

Aufgabe 11.3

Seien p eine Primzahl und $k \in \mathbb{N}$. Sei G eine Gruppe mit $|G| = p^k$. Zeigen Sie, dass das Zentrum von G nicht trivial ist.

Aufgabe 11.4

Zeigen Sie, dass es keine einfache Gruppe mit 200 Elementen gibt. Zeigen Sie, dass es keine einfache Gruppe mit 56 Elementen gibt.

Aufgabe 11.5 Zusatzaufgabe für Interessierte (10 bonus Punkte!) Für $n \in \mathbb{N}$ sei

$$G_n:=\{\sigma:\mathbb{N}\to\mathbb{N}\mid\sigma\text{ bijektiv und }\sigma(j)=j\text{ für alle }j\in\mathbb{N}\text{ j>n}\}.$$

Ferner, sei $G = \bigcup_{n=1}^{\infty} G_n$.

- (a) Eklären Sie, warum $G_n \cong S_n$.
- (b) Für $n \geq 2$ sei H_n die eindeutig bestimmte Untergruppe von G_n vom Index 2. Eklären Sie, warum eine Untergruppe vom Index 2 existiert, warum sie eindeutig bestimmt ist und warum, $H_n \cong A_n$.
- (c) Sei $H=\cup_{n=2}^{\infty}H_n$. Zeigen Sie, dass $H\lhd G$ und, dass H einfach ist.

Abgabe Montag, 04.02.2013 bis 12.00 Uhr in die Briefkästen bei F 411.