Universität Konstanz Fachbereich Mathematik und Statistik Prof. Dr. Salma Kuhlmann Mitarbeiter: Dr. Mickaël Matusinski Büroraum F 409 mickael.matusinski@uni-konstanz.de

Übungen zur Vorlesung Reelle algebraische Geometrie

Blatt 6

These exercises will be collected Tuesday 01 December in the mailbox number 15 of the Mathematics department.

1. Let (K, \leq) be an ordered field which verifies the intermediate value property (Zwischenwerteigenschaft):

 $\forall a < b \in K, f(a) < 0 < f(b) \implies \exists c \in]a, b[, f(c) = 0.$

(a) Show that any positive element of *K* is a square.

(b) Show that any polynomial of K[X] with odd degree has a root in K. Then conclude that K is **real closed**.

Definition 0.1 Let G := (G, .) be a group. A total ordering \leq of the set G is said to be a **group ordering** of G if for any $g_1, g_2, h \in G$, we have

 $g_1 \ge g_2 \implies g_1.h \ge g_2.h \text{ and } h.g_1 \ge h.g_2.$

Then one says that G is an ordered group.

2. Let (R, \leq) be a real closed field. Consider

$$Pos(R) := \{x \in R \mid 0 < x\}.$$

(a) Show that (Pos(R),.) is a totally ordered abelian subgroup of $(\mathbb{R}^*,.)$.

(b) Show that (Pos(R),.) is **divisible**, i.e. for any $a \in Pos(R)$, we have $\sqrt[n]{a} \in Pos(R)$ for any $n \in \mathbb{N}$.

3. We consider the Motzkin polynomial

 $m(X,Y) = 1 - 3X^2Y^2 + X^2Y^4 + X^4Y^2.$

(a) Show that $m(X,Y) \ge 0$ on \mathbb{R}^2 .

(*Hint*: use the following inequality between the arithmetical mean and the geometrical mean: $\forall a, b, c \ge 0$, $\frac{a+b+c}{3} \ge \sqrt[3]{abc}$.)

(b) Denote $\underline{X} = (X_1, \dots, X_n)$ for some $n \in \mathbb{N}^*$ and consider $f(\underline{X}) \in \mathbb{R}[\underline{X}]$. Show that, if $f = f_1^2 + \dots + f_k^2$ for some $f_i(\underline{X}) \in \mathbb{R}[\underline{X}]$ with $f_1 \neq 0$, then $f \neq 0$ and $\deg(f) = 2 \max\{\deg(f_i) \mid i = 1, \dots, k\}$.

(c) Suppose that the Motzkin polynomial $m = f_1^2 + \cdots + f_k^2$ for some $f_i(X,Y) \in \mathbb{R}[X,Y]$. Deduce that for any $i = 1, \dots, k$, $f_i(X,Y)$ is a polynomial of degree at most 3 and that it can contain none of the monomials X^3 , Y^3 , X^2 , Y^2 , X and Y.

(d) Conclude by contradiction that *m* cannot be a sum of squares in $\mathbb{R}[X,Y]$. (*Hint:* write $f_i(X,Y) = a_i + b_iXY + c_iX^2Y + d_iXY^2$ for any i = 1, ..., k.)

4. Denote $\underline{X} = (X_1, \dots, X_n)$ for some fixed $n \in \mathbb{N}^*$ and let $d \in \mathbb{N}$. Consider some non zero polynomial $f(X) \in \mathbb{R}[X]$ of total degree less than or equal to *d*.

(a) Show that

$$\overline{f}(X_0, X_1, \dots, X_n) = X_0^d f\left(\frac{X_1}{X_0}, \dots, \frac{X_n}{X_0}\right)$$

is a homogenous polynomial (or form) of degree d in the variables X_0, \ldots, X_n .

Definition 0.2 We call $\overline{f}(X_0, X_1, \ldots, X_n)$ the homogenization of f(X).

(b) Denote by $V_{d,n}$ the \mathbb{R} -vector space of all polynomials of degree $\leq d$ in $\mathbb{R}[X_1, \ldots, X_n]$, and by $F_{d,n+1}$ the \mathbb{R} -vector space of all homogenous polynomials of degree d in $\mathbb{R}[X_0, X_1, \ldots, X_n]$. Show that the homogenization map

 $f(X_1,\ldots,X_n)\mapsto \overline{f}(X_0,X_1,\ldots,X_n)$

is a vector space isomorphism between $V_{d,n}$ and $F_{d,n+1}$.

(c) From now on, we suppose that d is even. Show that $f \ge 0$ on \mathbb{R}^n if and only if $\overline{f} \ge 0$ on \mathbb{R}^{n+1} .

(d) Show that f is a sum of squares of polynomials if and only if \overline{f} is a sum of squares of homogenous polynomials of degree d/2.

(e) Denote $\tilde{P}_{d,n}$ the subset of polynomials in $\mathbb{R}[\underline{X}]$ of degree $\leq d$ and which are **positive semidefinite** (i.e $f \geq 0$), and $\tilde{\sum}_{d,n}$ its subset of polynomials which are sums of squares. Give a version of **Hilbert's Theorem on Positive Semidefinite** forms in this context.

(f) Show that the homogenous Motzkin polynomial

 $\overline{m}(X,Y,Z) = Z^6 + X^4 Y^2 + X^2 Y^4 - 3X^2 Y^2 Z^2$

is positive semi-definite on \mathbb{R}^3 but is not a sum of squares. (*Hint: use exercise* 3.)