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Blatt 6 - Solution

1. (a) Consider an element α > 0 of K and the polynomial f (x) = x2 − α. Then for
instance f (0) = −α < 0 and f (1+α) = 1+α+α2 > 0. So there exists c ∈]0,1+α[
such that f (c) = c2 − α = 0. Thus c =

√
α ∈ K.

(b) Consider a polynomial f (x) = dnxn + dn−1xn−1 + · · · + d0 ∈ K[x] with n odd.
We suppose without loss of generality that dn > 0. For |x| > 1, we have

|dn−1xn−1 + · · · + d0| < (|dn−1| + · · · + |d0|)|x|n−1.

Then take b > 1 such that b >
|dn−1| + · · · + |d0|

dn
. We get that

dnbn > (|dn−1|+ · · ·+ |d0|)bn−1 > |dn−1bn−1 + · · ·+d1b+d0| ≥ −(dn−1bn−1 + · · ·+d0)
which means that f (b) > 0.
Moreover, we get that
dn(−b)n = −dnbn < −(|dn−1| + · · · + |d0|)bn−1 < −|dn−1bn−1| − · · · − |d1b| − |d0| ≤

−dn−1(−b)n−1 − · · · + d1b − d0

which means that f (−b) < 0.
So f (−b) < 0 < f (b), which implies that there exists c ∈] − b,b[ such that
f (c) = 0.
Then apply the second Corollary of Lecture of 03-11-09 to conclude that K is
real closed.

2. Let (R, ≥) be a real closed field. Consider
Pos(R) := {x ∈ R | x > 0}.

(a) We have:
- Pos(R) is stable by multiplication: g1 > 0, g2 > 0 ⇒ g1.g2 > 0;

- Pos(R) is stable by taking the inverse: g > 0 ⇒
1
g
> 0;

- Pos(R) is a subgroup of R;
- Pos(R) is an ordered set by retriction of the ordering on R;
- Pos(R) is an ordered subgroup of R: g1 ≥ g2 > 0 and h > 0 ⇒ g1.h = h.g1 ≥
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g2.h = h.g2 > 0.

(b) Take any element a > 0 of Pos(R). For any n ∈ N∗, the polynomial fn(x) =

xn − a is such that
f (0) = −a < 0 < f (1+a) = an+nan−1+· · ·+na+1−a = an+nan−1+· · ·+(n−1)a+1.
By the intermediate value theorem, there exists c ∈]0,1 + a[ such that f (c) = 0.
Thus c = n

√
a > 0 exists in R, which means that ∃ n

√
a ∈ Pos(R) for any n ∈ N.

3. We consider the Motzkin polynomial
m(X,Y) = 1 − 3X2Y2 + X2Y4 + X4Y2.

(a) Take a = 1, b = X2Y4 and c = X4Y2. We have a + b + c = 1 + X2Y4 + X4Y2 ≤

3 3√abc = 3
3√
X6Y6 = 3(XY)2. Thus
m(X,Y) = a + b + c − 3X2Y2 ≥ 3(XY)2 − 3(XY)2 = 0.

(b) We consider a polynomial f = f 2
1 + · · · + f 2

k for some fi(X) ∈ R[X] with
f1 , 0. Since f1 , 0, there exists (x) ∈ Rn such that f1(x) , 0. Equivalently
f1(x)2 > 0. But for any i, fi(x)2 ≥ 0. So

f (x) = f1(x)2 + · · · + fk(x)2 > 0,
which implies that f , 0.
Write d := max{deg( fi), i = 1, . . . ,k}, and fi0 ,. . . , fil all the polynomials that
have such degree d (note that l ≤ k). For any j = 1, . . . ,l, fi j = gi j + hi j where
gi j is non zero homogenous of degree d and hi j has degree < d. We get that
f 2
i j

= g2
i j

+2gi j hi j +h2
i j

where g2
i j

is > 0 homogenous of degree 2d, and 2gi j hi j +h2
i j

has degree < 2d. For the others polynomials fi, we note that f 2
i has degree < 2d.

So f = f 2
1 + · · · f 2

k can be written as f = g2
i0

+ · · · + g2
il

+ h with g2
i0

+ · · · + g2
il
> 0

homogenous of degree 2d and h of degree < 2d. Therefore f has degree 2d.

(c) We suppose that the Motzkin polynomial can be written m = f 2
1 + · · · f 2

k
for some fi(X,Y) ∈ R[X,Y]. Since deg(m) = 6, we must have max{deg( fi), i =

1, . . . ,k} = 3. A base of the vector space of polynomials of degree ≤ 3 is given
by

{1, X, Y, X2, XY, Y2, X3, X2Y, XY2, Y3}.
If X3, X2, X respectively, appears in some fi, then X6, X4, X2 respectively, would
appear in m with positive coefficient, which is not the case. So X3, X2, X do not
appear in m. With the same argument, Y3, Y2, Y do not appear either.

(d) We write fi(X,Y) = ai + biXY + ciX2Y + diXY2 for any i = 1, . . . ,k. Then we
would have fi(X,Y)2 = b2

i X2Y2 + other terms, which means that

f (X,Y) = (
∑

i = 1kb2
i )X2Y2 + other terms.

Identifying the terms with same degree, we would have
k∑

i=1

b2
i = −3
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which is clearly false in R. Contradiction.

4. Denote X = (X1, . . . ,Xn) for some fixed n ∈ N∗ and let d ∈ N. Consider some
non zero polynomial f (X) ∈ R[X] of total degree less than or equal to d.

(a) Consider an arbitrary monic monomial of f (X), say Xi = Xi1
1 · · · X

in
n for some

multi-index i = (i1, . . . ,in), such that its degree i1 + · · ·+ in ≤ d. Then substituting

the variables Xi by
Xi

X0
for all i = 1, . . . ,n (it is a well-defined change of variable,

we use same notations for simplificity), we get that

Xi ↔
Xi1

1 · · · X
in
n

Xi1+···+in
0

and so
Xd

0 Xi ↔ Xd−(i1+···+in)
0 Xi1

1 · · · X
in
n

This new monomial has degree d − (i1 + · · · + in) + i1 + · · · + in = d for all i. We
extend this procedure to all the monomials of f (x) since the change of variable
is done termwise and by distributivity of the multiplication by Xd

0 . We obtain a
homogenous polynomial f (X0,X1, . . . ,Xn) of degree d.

(b) Denote by h : Vd,n → Fd,n+1 the homogenization map

h : f (X) 7→ f (X0,X1, . . . ,Xn).
It is a linear map: for any α,β ∈ R, for any f (X),g(X) ∈ Vd,n, h(α f + βg) =

αh( f ) + βh(g) = α f (X0,X1, . . . ,Xn) + βg(X0,X1, . . . ,Xn) (follows again from the
fact that the change of variable is done termwise, concerning only the monic mo-
nomial regardless of the coefficient, and by distributivity of the multiplication by
Xd

0 ).

The compositional inverse h−1 of h is given by:
h : Vd,n → Fd,n+1

f (X0,X1, . . . ,Xn) 7→ h( f )(X) := f (1,X1, . . . ,Xn).
and is also clearly linear.
(c) Let d be an even number. We show that f ≥ 0 on Rn implies f ≥ 0 on Rn+1.
For any (x0,x1, . . . ,xn) ∈ Rn+1, note that by definition, if x0 , 0, f (x0,x1, . . . ,xn) =

xd
0 f

(
x1

x0
, . . . ,

xn

x0

)
. By hypothesis, f

(
x1

x0
, . . . ,

xn

x0

)
≥ 0 and, since d is even, xd

0 > 0.

If x0 = 0, since a polynomial is a continuous map, we have f (0,x1, . . . ,xn) =

lim
ε→0

f (ε,x1, . . . ,xn). But for any ε ∈ R∗, we just showed that f (ε,x1, . . . ,xn) ≥ 0.

So f (0,x1, . . . ,xn) ≥ 0.

To show that f ≥ 0 onRn+1 implies f ≥ 0 onRn, consider that for any (x1, . . . ,xn) ∈
Rn, we have

f (x1, . . . ,xn) = f (1,x1, . . . ,xn) ≥ 0
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by hypothesis.

(d) Suppose that f =

k∑
i=1

f 2
i for some non zero fi’s in R[X]. First, remark that

deg( fi) ≤ d/2 since deg( f ) ≤ d (see preceding exercise). We have f (X0,X1, . . . ,Xn) =
k∑

i=1

[
Xd/2

0 fi

(
X1

X0
, . . . ,

Xn

X0

)]2

. But this is a sum of squares of forms of degree d/2.

Suppose now that f (X0,X1, . . . ,Xn) =

k∑
i=1

gi(X0, . . . ,Xn)2. Then consider f (X) =

f (1,X1, . . . ,Xn) =

k∑
i=1

gi(1,X1, . . . ,Xn)2, and put fi(X) := gi(1,X1, . . . ,Xn).

(e)
Theorem 0.1 For d even, P̃d,n =

∑̃
d,n if and only if n = 1 (polynomials in one

variable of any degree), or d = 2 (polynomials in any number of variables of
degree 2), or (n = 2 and d = 2 or 4) (polynomials in 2 variables of degree 2 or
4).

(f) The polynomial m is the homogenization of m, the Motzkin polynomial of
exercise 3. For this one we proved in 3. that it is PSD but not sum of squares.
Then use the equivalences proved in 4.(c) and 4.(d) to show also that m is PSD
but not sum of squares.

4


