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1. Definition 0.1 Let (G,+ , ≤) be an ordered abelian group. For any x ∈ G, x , 0,
we define

Cx :=
⋂
{C convex subgroup of G, x ∈ C}.

This is the smallest convex subgroup of G which contains x.
We also denote

Dx :=
⋃
{C convex subgroup of G, x < C}.

Proposition 0.2 (a) Dx is the biggest convex subgroup of G which does not
contain x.
(b) The extension from Dx to Cx is a jump (= Sprung), i.e. for any Dx ⊆ C ⊆ Cx

with C convex, then C = Dx or C = Cx. We write Dx � Cx.
(c) Consequently, the ordered abelian group Bx := Cx/Dx has no proper non
trivial convex subgroup.

Proof.
(a) Dx is non empty since it contains {0}. Consider a,b ∈ Dx, there exist convex
subgroups A and B of G which do not contain x and such that a ∈ A and b ∈ B.
Since convex subgroups are totally ordered by inclusion (see ÜA Blatt 14), we
have either A ⊆ B or B ⊆ A. Suppose for instance that B ⊆ A. Then b ∈ A, and
so a + b ∈ A ⊆ Dx. Thus Dx is a subgroup of G. Moreover, since x ∈ Cx but
x < Dx, we have Dx ( Cx. Therefore Dx is a proper convex subgroup of Cx.
Moreover, Dx is the biggest convex subgroup which do not contain x (if not, this
would contradict the fact that Dx is the union of all the convex subgroups which
do not contain x).

(b) Consider a convex subgroup C of G such that Dx ⊆ C ⊆ Cx. Then there are
two cases. Either x ∈ C, which implies that Cx ⊆ C and so Cx = C. Or x < C,
which implies that C ⊆ Dx and so C = Dx.
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(c) The existence of a proper non trivial subgroup of Bx would imply the exis-
tence of a convex subgroup C of Cx such that Dx ( C ( Cx, which is impossible
by the preceding question.

2. Definition 0.3 An ordered abelian group (A, + , ≤) is said to be archimedian if
for any a1,a2 ∈ A with a1 , 0 and a2 , 0, there exists n ∈ N such that n|a1| ≥ |a2|

and n|a2| ≥ |a1| (where |a| := max{a;−a}).

Proposition 0.4 An ordered abelian group (A, + , ≤) is archimedian if and only
if it has no non trivial proper convex subgroup.

Proof.
Consider an ordered abelian group (A, + , ≤) and suppose that it has a proper
non trivial convex subgroup {0} ( C ( A. Then take x ∈ C and y ∈ G \ C: x
and y would not be archimedean equivalents. Indeed, if they were equivalents,
we would have some n ∈ N such that n|x| ≥ |y| which would imply that y ∈ C by
convexity.
Conversely, suppose that A is non archimedean. This means that there exist x
and y which are not archimedean equivalents, i.e. such that for instance x <<+ y.
Then we claim that the corresponding convex subgroups Cx, Dy and Cy are such
that {0} ( Cx ⊆ Dy ( Cy. Indeed, it suffices to notice that the set {z ∈ G | ∃n ∈
N, n|z| ≥ |x|} is a convex subgroup of G which contains x without containing y.

3. Definition 0.5 • Given an ordered abelian group (G, + , ≤), two nonzero ele-
ments x,y ∈ G are said to be archimedian equivalent, denoted by x ∼+ y, if there
exists n ∈ N such that n|x| ≥ |y| and n|y| ≥ |x|.
• Otherwise, given two nonzero elements x,y ∈ G, if we have n|x| < |y| for any
n ∈ N, then we denote x <<+ y.

Proposition 0.6 The relation ∼+ is compatible with the relation <<+ in the fol-
lowing sense: for any nonzero x,y,z ∈ G,

if x <<+ y and z ∼+ x, then z <<+ y;
if x <<+ y and z ∼+ y, then x <<+ z.

Proof.
Consider x,y,z ∈ G such that x <<+ y and z ∼+ x. This means that for all m ∈ N,
m|x| < |y|, and that there exists n ∈ N such that n|x| ≥ |z|. So for any k ∈ N,
k|z| ≤ kn|x| < |y|. Thus z <<+ y.
Consider now x,y,z ∈ G such that x <<+ y and z ∼+ y. This means that for all
m ∈ N, m|x| < |y|, and that there exists n ∈ N such that n|z| ≥ |y|. So for any
k ∈ N, kn|x| < |y| ≤ n|z|, which implies that k|x| < |z|. Thus x <<+ z.
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4. Given an ordered abelian group (G, + , ≤), we consider the set Γ := G \ {0}/ ∼+

of its archimedian equivalence classes. We define a relation on Γ by, for any
nonzero x,y ∈ G,

[y] <Γ [x]⇔ x <<+ y.

Proposition 0.7 (a) The relation ≤Γ is a total ordering on Γ.
The ordered set (Γ := G \ {0}/ ∼+ , ≤Γ) is called the rank of G, denoted by
Rank(G).

(b) For any nonzero x ∈ G, denote its archimedian equivalence class [x] := v(x),
and denote [0] := ∞. The map

v : G → Γ ∪ {∞}

x 7→ v(x)
is a valuation, which is called the natural valuation of G.

Definition 0.8 Let (Γ, ≤) be an ordered set and {Bγ,γ ∈ Γ} be a family of archi-
medean abelian groups (consequently Bγ ↪→ (R, + , ≤) by Hölder’s theorem).

The ordered Hahn sum is defined to be the Hahn sum G =
−−→∐

γ∈ΓBγ (i.e. the
direct sum from the Bγ’s) endowed with the lexicographic ordering. Similarly,

we define the ordered Hahn product
−→
Hγ∈ΓBγ.

(c) Given x ∈ G, x , 0, we put v(x) := γ ∈ Γ. Then we have
Gγ := {a ∈ G | v(a) ≥ γ} = Cx;
Gγ := {a ∈ G | v(a) > γ} = Dx.

and consequently
Gγ/Gγ =: B(γ) = Bx := Cx/Dx

which is an archimedean group.

(Hint: prove that for any nonzero x,y ∈ G, we have x ∼+ y⇔ Cx = Cy and Dx =

Dy.)
Proof.
(a) We consider two nonzero elements x,y ∈ G such that x <<+ y. Then applying
the preceding proposition, for any a ∈ [x] and b ∈ [y], we obtain that a <<+ y
and x <<+ b, which implies that a <<+ b. Thus ≤Γ is well-defined. Moreover,
for any nonzero elements x,y ∈ G, we have a trichotomy: either x <<+ y, or
x ∼+ y, or y <<+ x, which are pairwise exclusive. This means that the relation
≤Γ is total on Γ.
Furthermore, the relation ≤Γ is clearly reflexive. Consider now [x],[y] ∈ Γ such
that [x] ≤Γ [y] and [y] ≤Γ [x]. This means that we have (x <<+ y or x ∼+ y)
and (y <<+ x or x ∼+ y). By exclusivity of the 3 cases, it implies that x ∼+ y ⇔
[x] = [y]: the relation ≤Γ is anti-symetric. Now the transitivity of ≤Γ follows
directly from the transitivity of <<+ and ∼+, and from their compatibility (see
the preceding proposition).
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Thus ≤Γ is a total ordering on Γ.

(b) Firstly, it is clear by definition of v that v(x) := [x] , ∞ ⇔ x , 0.
Secondly, consider n ∈ Z and x ∈ G. We have v(nx) = [nx] = [x] = v(x) (indeed,
by definition of the archimedean equivalence relation, we have x ∼+ nx for any
n ∈ Z).
Thirdly, consider x,y ∈ G. We have v(y − x) = [y − x]. Suppose that x <<+ y ⇔
v(y) < v(x). Without loss of generality, suppose that y > 0 and x > 0. So we have
y − x < y, but 2(y − x) > y since y − 2x > 0. This means that y − x ∼+ y, and so
v(y− x) = v(y) = min{v(x),v(y)}. Suppose now that x ∼ y⇔ v(x) = v(y). If x = y,
we trivially have v(y − x) = ∞ > min{v(x),v(y)}. If not, we may assume without
loss of generality that x < y < nx for some n ∈ N. Then 0 < y − x < (n − 1)x,
which implies that y − x <<+ x or y − x ∼+ x. Equivalently, we have v(y − x) ≤Γ

v(x) = min{v(y),v(x)}.
So v is a valuation on G.

(c) Fix x ∈ G, x , 0. First, we notice that the set {y ∈ G | ∃n ∈ N, n|x| ≥ |y|}
is a convex subgroup of G which contains x. This implies that for any nonzero
y ∈ G, if there exists n ∈ N such that |y| ≤ n|x|, then y ∈ Cx. Similarly, the
set {y ∈ G | ∀n ∈ N, n|y| < |x|} is a convex subgroup of G, which does not
contain x. This implies that for any nonzero y ∈ G, if for any n ∈ N, we have
n|y| < |x|, then y ∈ Dx. By interchanging the role of x and y, we obtain that
x ∼+ y⇔ Cx = Cy and Dx = Dy.
Moreover, for any y ∈ G, we have v(y) ≥ v(x) if and only if y <<+ x or y ∼+ x.
This means that there exists n ∈ N such that 0 ≤ |y| < n|x|. Thus y ∈ Cx,
and so Gγ ⊆ Cx. To obtain the converse, it suffices to note that in fact the set
Gγ = {y ∈ G | ∃n ∈ N, n|x| ≥ |y|}, which is a convex subgroup of G, which
contains x. So it must contain Cx. Therefore, Gγ = Cx.
Similarly, we have v(y) > v(x) if and only if y <<+ x. This means that for any
n ∈ N, we have 0 ≤ n|y| < |x|. Thus y ∈ Dx, and so Dx ⊆ Gγ. But, we have
Gγ = {y ∈ G | ∀n ∈ N, n|y| < |x|} is a convex subgroup of G, which does not
contain x. Therefore, we have Gγ ⊆ Dx, and so Gγ = Dx.
Now applying Proposition 0.2 and 0.4, we obtain that

Gγ/Gγ =: B(γ) = Bx := Cx/Dx

is an archimedian group.
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