Universität Konstanz Fachbereich Mathematik und Statistik Prof. Dr. Salma Kuhlmann Mitarbeiter: Dr. Mickaël Matusinski Büroraum F 409 mickael.matusinski@uni-konstanz.de

Übungen zur Vorlesung Reelle algebraische Geometrie

Blatt 15

1. **Definition 0.1** Let $(G, +, \leq)$ be an ordered abelian group. For any $x \in G$, $x \neq 0$, we define

 $C_x := \bigcap \{C \text{ convex subgroup of } G, x \in C\}.$

This is the smallest convex subgroup of G which contains x. We also denote

 $D_x := \bigcup \{C \text{ convex subgroup of } G, x \notin C \}.$

Proposition 0.2 (a) D_x is the biggest convex subgroup of G which does not contain x.

(b) The extension from D_x to C_x is a **jump** (= **Sprung**), i.e. for any $D_x \subseteq C \subseteq C_x$ with C convex, then $C = D_x$ or $C = C_x$. We write $D_x \prec C_x$.

(c) Consequently, the ordered abelian group $B_x := C_x/D_x$ has no proper non trivial convex subgroup.

Proof.

(a) D_x is non empty since it contains {0}. Consider $a, b \in D_x$, there exist convex subgroups *A* and *B* of *G* which do not contain *x* and such that $a \in A$ and $b \in B$. Since convex subgroups are totally ordered by inclusion (see ÜA Blatt 14), we have either $A \subseteq B$ or $B \subseteq A$. Suppose for instance that $B \subseteq A$. Then $b \in A$, and so $a + b \in A \subseteq D_x$. Thus D_x is a subgroup of *G*. Moreover, since $x \in C_x$ but $x \notin D_x$, we have $D_x \subsetneq C_x$. Therefore D_x is a proper convex subgroup of C_x . Moreover, D_x is the biggest convex subgroup which do not contain *x* (if not, this would contradict the fact that D_x is the union of all the convex subgroups which do not contain *x*).

(b) Consider a convex subgroup *C* of *G* such that $D_x \subseteq C \subseteq C_x$. Then there are two cases. Either $x \in C$, which implies that $C_x \subseteq C$ and so $C_x = C$. Or $x \notin C$, which implies that $C \subseteq D_x$ and so $C = D_x$.

(c) The existence of a proper non trivial subgroup of B_x would imply the existence of a convex subgroup *C* of C_x such that $D_x \subsetneq C \subsetneq C_x$, which is impossible by the preceding question.

2. **Definition 0.3** An ordered abelian group $(A, +, \leq)$ is said to be **archimedian** if for any $a_1, a_2 \in A$ with $a_1 \neq 0$ and $a_2 \neq 0$, there exists $n \in \mathbb{N}$ such that $n|a_1| \geq |a_2|$ and $n|a_2| \geq |a_1|$ (where $|a| := \max\{a; -a\}$).

Proposition 0.4 An ordered abelian group $(A, +, \leq)$ is archimedian if and only *if it has no non trivial proper convex subgroup.*

Proof.

Consider an ordered abelian group $(A, +, \leq)$ and suppose that it has a proper non trivial convex subgroup $\{0\} \subseteq C \subseteq A$. Then take $x \in C$ and $y \in G \setminus C$: xand y would not be archimedean equivalents. Indeed, if they were equivalents, we would have some $n \in \mathbb{N}$ such that $n|x| \geq |y|$ which would imply that $y \in C$ by convexity.

Conversely, suppose that *A* is non archimedean. This means that there exist *x* and *y* which are not archimedean equivalents, i.e. such that for instance $x \ll y$. Then we claim that the corresponding convex subgroups C_x , D_y and C_y are such that $\{0\} \subseteq C_x \subseteq D_y \subseteq C_y$. Indeed, it suffices to notice that the set $\{z \in G \mid \exists n \in \mathbb{N}, n|z| \ge |x|\}$ is a convex subgroup of *G* which contains *x* without containing *y*.

3. **Definition 0.5** • *Given an ordered abelian group* $(G, +, \leq)$ *, two nonzero elements* $x, y \in G$ *are said to be* **archimedian equivalent***, denoted by* $x \sim^+ y$ *, if there exists* $n \in \mathbb{N}$ *such that* $n|x| \geq |y|$ *and* $n|y| \geq |x|$ *.*

• Otherwise, given two nonzero elements $x, y \in G$, if we have n|x| < |y| for any $n \in \mathbb{N}$, then we denote $x \ll^+ y$.

Proposition 0.6 The relation \sim^+ is compatible with the relation $<<^+$ in the following sense: for any nonzero $x, y, z \in G$,

if
$$x <<^+ y$$
 and $z \sim^+ x$, *then* $z <<^+ y$;
if $x <<^+ y$ *and* $z \sim^+ y$, *then* $x <<^+ z$.

Proof.

Consider $x, y, z \in G$ such that $x \ll y$ and $z \sim x$. This means that for all $m \in \mathbb{N}$, m|x| < |y|, and that there exists $n \in \mathbb{N}$ such that $n|x| \ge |z|$. So for any $k \in \mathbb{N}$, $k|z| \le kn|x| < |y|$. Thus $z \ll y$.

Consider now $x,y,z \in G$ such that $x \ll y$ and $z \sim y$. This means that for all $m \in \mathbb{N}$, m|x| < |y|, and that there exists $n \in \mathbb{N}$ such that $n|z| \ge |y|$. So for any $k \in \mathbb{N}$, $kn|x| < |y| \le n|z|$, which implies that k|x| < |z|. Thus $x \ll z$.

4. Given an ordered abelian group $(G, +, \leq)$, we consider the set $\Gamma := G \setminus \{0\}/ \sim^+$ of its archimedian equivalence classes. We define a relation on Γ by, for any nonzero $x, y \in G$,

$$[y] <_{\Gamma} [x] \Leftrightarrow x <<^{+} y.$$

Proposition 0.7 (a) The relation \leq_{Γ} is a total ordering on Γ . The ordered set ($\Gamma := G \setminus \{0\}/\sim^+, \leq_{\Gamma}$) is called the **rank** of G, denoted by *Rank*(G).

(b) For any nonzero $x \in G$, denote its archimedian equivalence class [x] := v(x), and denote $[0] := \infty$. The map

$$v: G \to \Gamma \cup \{\infty\}$$
$$x \mapsto v(x)$$

is a valuation, which is called the natural valuation of G.

Definition 0.8 Let (Γ, \leq) be an ordered set and $\{B_{\gamma}, \gamma \in \Gamma\}$ be a family of archimedean abelian groups (consequently $B_{\gamma} \hookrightarrow (\mathbb{R}, +, \leq)$ by Hölder's theorem).

The ordered Hahn sum is defined to be the Hahn sum $G = \prod_{\gamma \in \Gamma} B_{\gamma}$ (i.e. the direct sum from the B_{γ} 's) endowed with the lexicographic ordering. Similarly, we define the ordered Hahn product $\vec{H}_{\gamma \in \Gamma} B_{\gamma}$.

(c) Given $x \in G$, $x \neq 0$, we put $v(x) := \gamma \in \Gamma$. Then we have

$$\begin{aligned} G^{\gamma} &:= \{ a \in G \mid v(a) \geq \gamma \} &= C_x; \\ G_{\gamma} &:= \{ a \in G \mid v(a) > \gamma \} &= D_x. \end{aligned}$$

and consequently

$$G^{\gamma}/G_{\gamma} =: B(\gamma) = B_x := C_x/D_x$$

which is an archimedean group.

(Hint: prove that for any nonzero $x, y \in G$, we have $x \sim^+ y \Leftrightarrow C_x = C_y$ and $D_x = D_y$.)

Proof.

(a) We consider two nonzero elements $x, y \in G$ such that $x <<^+ y$. Then applying the preceding proposition, for any $a \in [x]$ and $b \in [y]$, we obtain that $a <<^+ y$ and $x <<^+ b$, which implies that $a <<^+ b$. Thus \leq_{Γ} is well-defined. Moreover, for any nonzero elements $x, y \in G$, we have a trichotomy: either $x <<^+ y$, or $x \sim^+ y$, or $y <<^+ x$, which are pairwise exclusive. This means that the relation \leq_{Γ} is total on Γ .

Furthermore, the relation \leq_{Γ} is clearly reflexive. Consider now $[x], [y] \in \Gamma$ such that $[x] \leq_{\Gamma} [y]$ and $[y] \leq_{\Gamma} [x]$. This means that we have $(x <<^+ y \text{ or } x \sim^+ y)$ and $(y <<^+ x \text{ or } x \sim^+ y)$. By exclusivity of the 3 cases, it implies that $x \sim^+ y \Leftrightarrow [x] = [y]$: the relation \leq_{Γ} is anti-symmetric. Now the transitivity of \leq_{Γ} follows directly from the transitivity of $<<^+$ and \sim^+ , and from their compatibility (see the preceding proposition).

Thus \leq_{Γ} is a total ordering on Γ .

(b) Firstly, it is clear by definition of *v* that $v(x) := [x] \neq \infty \Leftrightarrow x \neq 0$.

Secondly, consider $n \in \mathbb{Z}$ and $x \in G$. We have v(nx) = [nx] = [x] = v(x) (indeed, by definition of the archimedean equivalence relation, we have $x \sim^+ nx$ for any $n \in \mathbb{Z}$).

Thirdly, consider $x, y \in G$. We have v(y - x) = [y - x]. Suppose that $x \ll y \Leftrightarrow v(y) < v(x)$. Without loss of generality, suppose that y > 0 and x > 0. So we have y - x < y, but 2(y - x) > y since y - 2x > 0. This means that $y - x \sim^+ y$, and so $v(y - x) = v(y) = \min\{v(x), v(y)\}$. Suppose now that $x \sim y \Leftrightarrow v(x) = v(y)$. If x = y, we trivially have $v(y - x) = \infty > \min\{v(x), v(y)\}$. If not, we may assume without loss of generality that x < y < nx for some $n \in \mathbb{N}$. Then 0 < y - x < (n - 1)x, which implies that $y - x \ll^+ x$ or $y - x \sim^+ x$. Equivalently, we have $v(y - x) \le_{\Gamma} v(x) = \min\{v(y), v(x)\}$.

So *v* is a valuation on *G*.

(c) Fix $x \in G$, $x \neq 0$. First, we notice that the set $\{y \in G \mid \exists n \in \mathbb{N}, n|x| \geq |y|\}$ is a convex subgroup of *G* which contains *x*. This implies that for any nonzero $y \in G$, if there exists $n \in \mathbb{N}$ such that $|y| \leq n|x|$, then $y \in C_x$. Similarly, the set $\{y \in G \mid \forall n \in \mathbb{N}, n|y| < |x|\}$ is a convex subgroup of *G*, which does not contain *x*. This implies that for any nonzero $y \in G$, if for any $n \in \mathbb{N}$, we have n|y| < |x|, then $y \in D_x$. By interchanging the role of *x* and *y*, we obtain that $x \sim^+ y \Leftrightarrow C_x = C_y$ and $D_x = D_y$.

Moreover, for any $y \in G$, we have $v(y) \ge v(x)$ if and only if $y \ll x$ or $y \sim^+ x$. This means that there exists $n \in \mathbb{N}$ such that $0 \le |y| < n|x|$. Thus $y \in C_x$, and so $G^{\gamma} \subseteq C_x$. To obtain the converse, it suffices to note that in fact the set $G^{\gamma} = \{y \in G \mid \exists n \in \mathbb{N}, n|x| \ge |y|\}$, which is a convex subgroup of *G*, which contains *x*. So it must contain C_x . Therefore, $G^{\gamma} = C_x$.

Similarly, we have v(y) > v(x) if and only if $y <<^+ x$. This means that for any $n \in \mathbb{N}$, we have $0 \le n|y| < |x|$. Thus $y \in D_x$, and so $D_x \subseteq G_\gamma$. But, we have $G_\gamma = \{y \in G \mid \forall n \in \mathbb{N}, n|y| < |x|\}$ is a convex subgroup of *G*, which does not contain *x*. Therefore, we have $G_\gamma \subseteq D_x$, and so $G_\gamma = D_x$.

Now applying Proposition 0.2 and 0.4, we obtain that

$$G^{\gamma}/G_{\gamma} =: B(\gamma) = B_x := C_x/D_x$$

is an archimedian group.