Universität Konstanz Fachbereich Mathematik und Statistik Prof. Dr. Salma Kuhlmann Mitarbeiter: Dr. Mickaël Matusinski Büroraum F 409 mickael.matusinski@uni-konstanz.de

Übungen zur Vorlesung Reelle algebraische Geometrie

Blatt 15

1. **Definition 0.1** *Let* $(G, +, \leq)$ *be an ordered abelian group. For any* $x \in G$ *,* $x \neq 0$ *, we define*

 $C_x := \bigcap \{C \text{ convex subgroup of } G, x \in C\}.$

This is the smallest convex subgroup of G which contains x. We also denote

 $D_x := \bigcup \{C \text{ convex subgroup of } G, x \notin C\}.$

Proposition 0.2 *(a) D^x is the biggest convex subgroup of G which does not contain x.*

(b) The extension from D_x to C_x is a **jump** (= **Sprung**), i.e. for any $D_x \subseteq C \subseteq C_x$ *with C convex, then* $C = D_x$ *or* $C = C_x$ *. We write* $D_x \prec C_x$ *.*

(c) Consequently, the ordered abelian group $B_x := C_x/D_x$ has no proper non *trivial convex subgroup.*

Proof.

(a) D_x is non empty since it contains {0}. Consider $a, b \in D_x$, there exist convex subgroups *A* and *B* of *G* which do not contain *x* and such that $a \in A$ and $b \in B$. Since convex subgroups are totally ordered by inclusion (see ÜA Blatt 14), we have either $A \subseteq B$ or $B \subseteq A$. Suppose for instance that $B \subseteq A$. Then $b \in A$, and so $a + b \in A \subseteq D_x$. Thus D_x is a subgroup of *G*. Moreover, since $x \in C_x$ but $x \notin D_x$, we have $D_x \subsetneq C_x$. Therefore D_x is a proper convex subgroup of C_x . Moreover, D_x is the biggest convex subgroup which do not contain x (if not, this would contradict the fact that D_x is the union of all the convex subgroups which do not contain *x*).

(b) Consider a convex subgroup *C* of *G* such that $D_x \subseteq C \subseteq C_x$. Then there are two cases. Either $x \in C$, which implies that $C_x \subseteq C$ and so $C_x = C$. Or $x \notin C$, which implies that $C \subseteq D_x$ and so $C = D_x$.

(c) The existence of a proper non trivial subgroup of B_x would imply the existence of a convex subgroup *C* of C_x such that $D_x \subsetneq C \subsetneq C_x$, which is impossible by the preceding question.

2. **Definition 0.3** An ordered abelian group $(A, +, \leq)$ is said to be **archimedian** if *for any* $a_1, a_2 \in A$ *with* $a_1 \neq 0$ *and* $a_2 \neq 0$ *, there exists* $n \in \mathbb{N}$ *such that* $n|a_1| \geq |a_2|$ *and* $n|a_2|$ ≥ $|a_1|$ *(where* $|a|$:= max{*a*; −*a*}*)*.

Proposition 0.4 An ordered abelian group $(A, +, \leq)$ is archimedian if and only *if it has no non trivial proper convex subgroup.*

Proof.

Consider an ordered abelian group $(A, +, \leq)$ and suppose that it has a proper non trivial convex subgroup $\{0\} \subsetneq C \subsetneq A$. Then take $x \in C$ and $y \in G \setminus C$: *x* and *y* would not be archimedean equivalents. Indeed, if they were equivalents, we would have some $n \in \mathbb{N}$ such that $n|x| \ge |y|$ which would imply that $y \in C$ by convexity.

Conversely, suppose that *A* is non archimedean. This means that there exist *x* and *y* which are not archimedean equivalents, i.e. such that for instance $x \ll^+ y$.
Then we claim that the corresponding convex subgroups $C \cdot D$ and C are such Then we claim that the corresponding convex subgroups C_x , D_y and C_y are such that $\{0\} \subsetneq C_x \subseteq D_y \subsetneq C_y$. Indeed, it suffices to notice that the set $\{z \in G \mid \exists n \in D_y \subseteq C_y\}$. $\mathbb{N}, n|z| \ge |x|$ is a convex subgroup of *G* which contains *x* without containing *y*.

3. **Definition 0.5** • *Given an ordered abelian group* $(G, +, \leq)$ *, two nonzero elements* $x, y \in G$ *are said to be archimedian equivalent, denoted by* $x \sim^+ y$ *, if there exists* $n \in \mathbb{N}$ *such that* $n|x| \ge |y|$ *and* $n|y| \ge |x|$ *exists* $n \in \mathbb{N}$ *such that* $n|x| \ge |y|$ *and* $n|y| \ge |x|$ *.*

• *Otherwise, given two nonzero elements* $x, y \in G$ *, if we have n|x|* < |*y| for any* $n \in \mathbb{N}$, then we denote $x \ll^+ y$.

Proposition 0.6 *The relation* \sim ^{*+*} *is compatible with the relation* $<<$ ^{*+} in the fol-*
lowing sense: for any ponzero x y z ∈ G</sup> *lowing sense: for any nonzero* $x, y, z \in G$,

> *if* $x \ll x^+$ *y* and $z \sim^+ x$, then $z \ll^+ y$;
if $x \ll x^+$ *y* and $z \sim^+ y$, then $x \ll^+ z$ *if* $x \ll^+ y$ and $z \sim^+ y$, then $x \ll^+ z$.

Proof.

Consider *x*,*y*,*z* ∈ *G* such that *x* <<⁺ *y* and *z* ∼⁺ *x*. This means that for all *m* ∈ N, *m*|*x*| < |*x*| and that there exists *n* ∈ N such that *n*|*x*| > |*z*| So for any *k* ∈ N $m|x| < |y|$, and that there exists $n \in \mathbb{N}$ such that $n|x| \ge |z|$. So for any $k \in \mathbb{N}$, $k|z| \le kn|x| < |y|$. Thus $z \lt t^+ y$.
Consider now $x, y, z \in G$ such t

Consider now *x*,*y*,*z* ∈ *G* such that *x* <<⁺ *y* and *z* ∼⁺ *y*. This means that for all $m \in \mathbb{N}$ m/x/ < |v| and that there exists $n \in \mathbb{N}$ such that $n|x| > |y|$ So for any *m* ∈ N, *m*|*x*| < |*y*|, and that there exists *n* ∈ N such that *n*|*z*| ≥ |*y*|. So for any $k \in \mathbb{N}$, $kn|x| < |y| \le n|z|$, which implies that $k|x| < |z|$. Thus $x \ll z$.

4. Given an ordered abelian group $(G, +, \leq)$, we consider the set $\Gamma := G \setminus \{0\} / \sim^+$ of its archimedian equivalence classes. We define a relation on Γ by for any of its archimedian equivalence classes. We define a relation on Γ by, for any nonzero $x, y \in G$,

$$
[y] <_{\Gamma} [x] \Leftrightarrow x < <^+ y.
$$

Proposition 0.7 *(a)* The relation \leq_{Γ} *is a total ordering on* Γ *. The ordered set* $(\Gamma := G \setminus \{0\}) \sim^+$, \leq_{Γ} *is called the rank of G, denoted by* $Rank(G)$ *Rank*(*G*)*.*

(b) For any nonzero $x \in G$ *, denote its archimedian equivalence class* $[x] := v(x)$ *, and denote* $[0] := \infty$ *. The map*

$$
\begin{array}{rcl}\nv : & G & \to & \Gamma \cup \{\infty\} \\
x & \mapsto & v(x)\n\end{array}
$$

is a valuation, which is called the natural valuation of G.

Definition 0.8 Let (Γ , \leq) *be an ordered set and* { B_{γ} , $\gamma \in \Gamma$ } *be a family of archimedean abelian groups (consequently* $B_\gamma \hookrightarrow (\mathbb{R}, +, \leq)$ *by Hölder's theorem).*

 T *The* **ordered Hahn sum** is defined to be the Hahn sum $G = \prod_{i=1}^{n}$ γ∈Γ*B*γ *(i.e. the direct sum from the B*γ*'s) endowed with the lexicographic ordering. Similarly, we define the ordered Hahn product* $\overrightarrow{\bm{H}}_{\gamma\in\Gamma}B_{\gamma}$.

(c) Given $x \in G$ *,* $x \neq 0$ *, we put* $v(x) := \gamma \in \Gamma$ *. Then we have*

$$
G^{\gamma} := \{ a \in G \mid v(a) \ge \gamma \} = C_x; G_{\gamma} := \{ a \in G \mid v(a) > \gamma \} = D_x.
$$

and consequently

$$
G^{\gamma}/G_{\gamma}=:B(\gamma)=B_{x}:=C_{x}/D_{x}
$$

which is an archimedean group.

(Hint: prove that for any nonzero *x*,*y* \in *G*, we have $x \sim^+ y \Leftrightarrow C_x = C_y$ and $D_x = D_y$ *Dy*.)

Proof.

(a) We consider two nonzero elements $x, y \in G$ such that $x \ll y$. Then applying the preceding proposition for any $a \in [x]$ and $b \in [y]$ we obtain that $a \ll y$. the preceding proposition, for any $a \in [x]$ and $b \in [y]$, we obtain that $a \ll x$ *y* y and $y \ll x$ *b* which implies that $a \ll x$ *b*. Thus $\leq p$ is well-defined. Moreover and $x \ll t$ *b*, which implies that $a \ll t$ *b*. Thus \leq_Γ is well-defined. Moreover, for any nonzero elements $x, y \in G$, we have a trichotomy: either $x \ll^+ y$, or $y \ll^+ y$ or $y \ll^+ y$ which are pairwise exclusive. This means that the relation $x \sim^+ y$, or *y* <<⁺ *x*, which are pairwise exclusive. This means that the relation \leq is total on Γ $≤_Γ$ is total on Γ.

Furthermore, the relation \leq_{Γ} is clearly reflexive. Consider now $[x]$, $[y] \in \Gamma$ such that $[x] \leq_{\Gamma} [y]$ and $[y] \leq_{\Gamma} [x]$. This means that we have $(x \leq^{+} y \text{ or } x \sim^{+} y)$
and $(y \leq^{+} x \text{ or } x \sim^{+} y)$. By exclusivity of the 3 cases it implies that $x \sim^{+} y \Leftrightarrow$ and $(y \ll x^+ x$ or $x \sim^+ y$). By exclusivity of the 3 cases, it implies that $x \sim^+ y \Leftrightarrow$
 $[x] = [y]$ the relation $\leq x$ is anti-symetric. Now the transitivity of $\leq x$ follows [*x*] = [*y*]: the relation \leq_Γ is anti-symetric. Now the transitivity of \leq_Γ follows directly from the transitivity of $<<$ ⁺ and \sim ⁺, and from their compatibility (see the preceding proposition) the preceding proposition).

Thus \leq_{Γ} is a total ordering on Γ .

(b) Firstly, it is clear by definition of *v* that $v(x) := [x] \neq \infty \Leftrightarrow x \neq 0$.

Secondly, consider $n \in \mathbb{Z}$ and $x \in G$. We have $v(nx) = [nx] = [x] = v(x)$ (indeed, by definition of the archimedean equivalence relation, we have $x \sim^+ n x$ for any $n \in \mathbb{Z}$).

Thirdly, consider $x, y \in G$. We have $v(y - x) = [y - x]$. Suppose that $x \leq y \Leftrightarrow v(y) \leq v(x)$. Without loss of generality, suppose that $y > 0$ and $x > 0$. So we have $v(y) < v(x)$. Without loss of generality, suppose that $y > 0$ and $x > 0$. So we have $y - x < y$, but $2(y - x) > y$ since $y - 2x > 0$. This means that $y - x \sim^+ y$, and so $y(y - x) = y(y) - \min\{y(x) \}$. Suppose now that $x \sim y \Leftrightarrow y(x) = y(y)$. If $x = y$ *v*(*y*−*x*) = *v*(*y*) = min{*v*(*x*),*v*(*y*)}. Suppose now that $x \sim y \Leftrightarrow v(x) = v(y)$. If $x = y$, we trivially have $v(y - x) = \infty$ > min{ $v(x)$, $v(y)$ }. If not, we may assume without loss of generality that $x < y < nx$ for some $n \in \mathbb{N}$. Then $0 < y - x < (n - 1)x$, which implies that $y - x \ll^+ x$ or $y - x \sim^+ x$. Equivalently, we have $v(y - x) \leq_\Gamma v(x) - \min\{v(y) \} v(x)$ $v(x) = \min\{v(y), v(x)\}.$

So *v* is a valuation on *G*.

(c) Fix $x \in G$, $x \neq 0$. First, we notice that the set $\{y \in G \mid \exists n \in \mathbb{N}, n|x| \ge |y|\}$ is a convex subgroup of *G* which contains *x*. This implies that for any nonzero *y* ∈ *G*, if there exists *n* ∈ $\mathbb N$ such that $|y| \le n|x|$, then $y \in C_x$. Similarly, the set $\{y \in G \mid \forall n \in \mathbb{N}, n|y| < |x|\}$ is a convex subgroup of *G*, which does not contain *x*. This implies that for any nonzero $y \in G$, if for any $n \in \mathbb{N}$, we have $n|y| < |x|$, then $y \in D_x$. By interchanging the role of x and y, we obtain that *x* ∼⁺ *y* ⇔ $C_x = C_y$ and $D_x = D_y$.

Moreover, for any *y* \in *G*, we have *v*(*y*) \geq *v*(*x*) if and only if *y* < \lt ⁺ *x* or *y* ∼⁺ *x*.
This means that there exists $n \in \mathbb{N}$ such that $0 \lt \text{ |y|} \lt n|x|$. Thus $y \in C$ This means that there exists $n \in \mathbb{N}$ such that $0 \le |y| < n|x|$. Thus $y \in C_x$, and so $G^{\gamma} \subseteq C_{\chi}$. To obtain the converse, it suffices to note that in fact the set $G^{\gamma} = \{ y \in G \mid \exists n \in \mathbb{N}, n|x| \ge |y| \}$, which is a convex subgroup of *G*, which contains *x*. So it must contain *C*. Therefore $G^{\gamma} = C$ contains *x*. So it must contain C_x . Therefore, $G^{\gamma} = C_x$.

Similarly, we have $v(y) > v(x)$ if and only if $y \ll x + x$. This means that for any $n \in \mathbb{N}$, we have $0 \leq n |y| \leq |x|$. Thus $y \in D$, and so $D \subseteq G$. But we have *n* ∈ N, we have $0 \le n|y| < |x|$. Thus $y \in D_x$, and so $D_x \subseteq G_y$. But, we have $G_{\gamma} = \{y \in G \mid \forall n \in \mathbb{N}, n|y| < |x|\}$ is a convex subgroup of *G*, which does not contain *x*. Therefore, we have $G_\gamma \subseteq D_\chi$, and so $G_\gamma = D_\chi$.

Now applying Proposition [0.2](#page-0-0) and [0.4,](#page-1-0) we obtain that

$$
G^{\gamma}/G_{\gamma}=:B(\gamma)=B_{x}:=C_{x}/D_{x}
$$

is an archimedian group.