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General Setting

We consider a semilinear evolution equation, with boundary noise where
O c R? is a bounded domain with smooth boundary

ye=Aye +f(y) inO,
C)/t = F()/t) Xt on 80

With
d d
A= Z 8;(a;j8j) + ao C= Z vaa,-jy,-(’)j,
ij—1 ij=1

and A: D(A) C L?(O) — L?(0O) is the realization according to this
boundary value problem.
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General idea

For e.g. the heat equation and additive fractional Brownian motion with
H e (0,1)

Ye = Ay; in O,

. 1
Cy: = B on 00. )

@ The solution operator N of the elliptic boundary value problem
Au=0, Cu= g maps L?(00) into D(A%)
e with € < 3/4 for Neumann conditions,
e with € < /4 for Dirichlet conditions.

@ Define a solution y of (1) as

t
Ve = Styo+Ac/ S._,No dBF.
0
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Stochastic convolution for fBm

Theorem (Duncan, Pasik-Duncan, Maslowski '02 & '06)

If there is a constant ¢ > 0 and § € (0, H) such that ||G(r)||4s < cr™°
for all r € [0, t], then the stochastic integral fot G(r) dB! is well-defined.

In our case:
”ACSFN(D”HS = ||¢HH5 ”NHL(LQ(BO);D(AE)) HACsr”L(D(Ag);LZ(O))

<@l s 1Nl 2 00):0(a8)) el

In conclusion the convolution is well-defined if 1 — & < H, this means
e for any H > 1/4 in the Neumann case since £ < 3/s,
e for any H > 3/4 in the Dirichlet case since € < /4.
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Summary known results

ye = Ay
Cy: = F()/t) Xt-

@ Da Prato and Zabczyk (additive noise):

o X is a Brownian motion
e Only Neumann conditions

@ Duncan, Pasik-Duncan and Maslowski (additive noise):

e X is a fractional Brownian motion with Hurst index H > 1/4
o For H > 3/4 even Dirichlet conditions

@ Schnaubelt and Veraar (multiplicative noise):

e X is a Brownian motion
o Equation in Banach spaces

@ As far as we know, no work treated rough noise X = (X, X) on the
boundary.
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@ Transport models in chemical reactions [Wang, Zheng '05], [Brune,
Duan, SchmalfuB '09].

@ Primitive equations as a model for coupled atmosphere-ocean
systems with wind driven boundary conditions

AV +V,,V+w(V)-8,V — AV +V, P.dt = Hf dW
div,,V =0,V(0) =0
9,V=0o0nTp,0,V=h0:wonTl,

V and P; periodic on I,
~~ Variant of the 3D Navier-Stokes, where the vertical component is

averaged out [Lions, Temam, Wang '92 & '93], [Binz, Hieber,
Hussein, Saal '22].

8 /28



Preliminaries
000000

© Preliminaries

9/28



Preliminaries

0@0000

Controlled rough path

Abbreviation: C(B) = C([0, T]; B).

Definition (~-Hdlder rough path)

A pair X = (X, X) is called a y-Hdlder rough path for v € (1/3,1/2] if
X € C'(R),X € C*'(R) and Chen'’s relation holds

X1.‘,5 - Xu,s - Xt.“,u = Xu,s & Xt,u'

Definition (Gerasimovics, Hocquet, Nilssen '21)

We call a pair (y, y’) a controlled rough path according to a monotone
scale (Ba)acr, if (v, y') € C(Ba) % ((C(Ba—v) N C7(Ba—24)) and the
remainder R{S = Yr.s — ¥iXts belongs to CV(By—~) N C27(Ba_27). The
component y’ is referred to as Gubinelli derivative of y and we write
(v,y') € DX,
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Rough convolution

Theorem (Gerasimovics, Hocquet, Nilssen '21)

Let (y,y') € nga. Then the integral map

v,y = (z,7) (/ S—ryr dXp,y )

into Df(’t/a+0 for 6 < .

maps D

OL

Question: Can we extend this to treat boundary noise?
Goal: Make sense of the rough convolution

t
A/ Se_ NF(y,) dX,.
0

11 /28



Preliminaries
[e]e]e] lele]

Problems

Recall the convolution

A /0 Se NF(y,) dX,. ®)

@ Which is the right scale to work in? ~» Two scales are needed
o For the boundary data F(y:).
o For the solution y;.
e What is the right Gubinelli derivative of the rough convolution (2)?
o We expect ANF(y).
o But NF(y) satisfies CNF(y) = F(y), so NF(y) ¢ D(A).
Solution: Work in Banach scales, which are constructed by extensions
(and restrictions) of the operator A.
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Fractional power spaces

_ [D(A*), a>0 R
- A B, = H*~7*(90)

[2(0) a<0

with ||-||, := ||A%:||. For a second order differential operator with
boundary operator C, we get

{x € H>*(0) | Cu = 0}, 200> 3/2

H22(0), —1/2 < 2a < 3/2
(H~2(0))’, 32 <20 < —1)2"
{x € H2¥(O) | Cu=0}, 2a< —3/2

Bao =

Reminder: The Neumann map fulfills N € L(B., B.) for a > 3/2 and
€< 3a.
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Extrapolation operators

B,-Realization of A, a>0
As = ¢ Unique continuous extension of Ain B_;, a=-1
B.-Realization of A_q, a € (—1,0)

o Note that ||Ax||_; = [|x]| for x € D(A) so A_; is well-defined.
@ The construction can be extended to define A_», A_3 and so on.
@ Then for a > 3 we have A, € L(Bita,Ba) and A, C Ag.

This is a special case of the theory of Banach scales by [Amann '95].
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Back to the problem

e For «>3/2and (y,y') € ﬁi’ya we have (Ny, Ny’) € ngg.
Proof: Follows directly, since the Neumann-map satisfies
N e Mo L(Baiv B-—iv).

e Fora>3/2and (y,y’) € ZN)?’@ the integral Z; := fot Si_sNys dXq
belongs to D(A).
Proof: Take 6 :=1/34+ ¢ < with § > 0 small and £ :=3/4 — §, so
that we obtain € 4 6 = 12/11 > 1.

So fot Si—sNys dX; is well-defined in the sense of [Gerasimovics,
Hocquet, Nilssen '21] with values in D(A).

@ Crucial is that € can be chosen s.t. 1 — & < 7.
@ It can be shown that (AZ,A_, Ny) € Di’ya, forn:=1—e¢.
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Extrapolation operators and CRP

@ The structure of (AZ, A_, Ny) makes it difficult to get global
existence using the methods in [Hesse, Neamtu '22].

o Consider instead fot Se—sA_y,Nys dX.

@ Set —o := —n —, then Ny/ € Bi_, = B._, and A_;Ny] is
well-defined.

Lemma (Neamtu, Seitz '22)

For every (y,y’) € f)fg’a we have (A_,Ny,A_,Ny') € Df{’_n with
o=n+".

Proof:
o Ny; € Bi_y, <= Bi_, implies A_; Ny, = A_, Ny, € B_,,.
e Similarly Ny; € B._, = B1_, implies A_;Ny/ € B_, = B_,_,.
@ This leads to (A_,Ny,A_,Ny') € C(B_,) x C(B_;—).
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Extrapolation operators and CRP

Theorem (Neamtu, Seitz '22)

For every (y,y’) € 15?& we have (A_,Ny,A_,Ny') € ng_n with
o:=n+7.

Proof (continued): Now we need to control the Holder-seminorms.
@ For the Gubinelli derivative:

[A—UNy,]y,—nfzy = [A_’l_z"/Ny/]'y,—n—}y S [Ny/]'y7177]72'y
= A_ Ny € CV(B_—2y)

o For the remainder RtN;V € Bi_s with 8 € {v,2v}:
N _ N
[A*UR y]e,_n_g = [A*U*((’*“/)R y]@,—a—(@—'y)

S [RNy]m—a—(e—y) = [RNy]e,s—e

= A_,RM ¢ C"(B_,_,) N C*(B_,_2,)
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Summary

Lemma (Neamtu, Seitz '22)

Fort €[0,T] and (y,y’) € ﬁfga we have

(/ 5.—5A—0Ny5 dXS,A—o'Ny> € ’ng—ﬂ'
0

@ The original equation is now equivalent to one without boundary
terms

d}/t = A}/t dt + A_O-NF(_yt) dXt in O.

e For global existence ~~ investigate the nonlinearity A_,NF(-) to
apply the theory in [Hesse, Neamtu '22].
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Assumptions

(A1) There exists a § > 7 + 3/2 such that for any ¢ € {0,~,2v} the
diffusion term F : B_,_y — B_;_g+s is three times continuously
differentiable with bounded derivatives.

(A2) Assume further the boundedness of the derivative of

DF(-)o (A oNF(-)) : By y = By yys.

~~ F has to lift the spatial regularity, since we need that N maps to a
strong solution of the problem

A=0,Cu=g.
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Main Results

Conclusion. We obtain the semilinear PDE (without boundary noise)

dy: = Ayy dt + A_;NF(y;) dX,. (3)

Theorem (Neamtu, Seitz '22)

e Assume (Al). Then there exists for every initial condition y, € B_,
a time T* < T and a unique solution
(v, A—oNF(y)) € DY, ([0. T*)) to (3).

o Assume (A1) and (A2). Then there exists for every initial condition
Yo € B_y, a unique solution (y, A_,NF(y)) € D' _, ([0, T]) to (3).

The solution satisfies the mild formulation

t
Ve = Seyo + / Si_sA_,NF(ys) dX..
0
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The Young case and Dirichlet boundary noise

The Young case ¥ € (3/4,1):
@ The solution map ® for the abstract problem with Dirichlet
conditions Au = 0, u|so = g maps L2(90O) into D(A®) for ¢ < 1/a.
o Regarding the definition of the Young integral
F:B_,_9 = B_;—9+s has to satisfy similar assumptions as above.

Theorem (Neamtu, Seitz '22)

There exists for every initial condition yo € B_, a unique mild solution
y € C(B_,) N C'(B_,_5) that satisfies for all t € [0, T]

t
= G / St A_,DF(y,) dX,.
0

where the integral is understood in the sense of Young.
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Example of the diffusion coefficient

@ We need an operator that lifts the spatial regularity ~~ Something
like A”.
o Construct an operator F : H=4(0) — H°(90) for a small § > 0.

F: H(0) = H(00), f — voroN eof

® vy : HS+1/2(O) — HS(QO) the trace operator.
o AV H™*(RY) — H3(RY), f s FY(L+|*)% FF with
v := —9/2 — ¢ to increase the spatial regularity on the full space.

@ rp retraction ep coretraction to restrict R? to © and extend this to
R, both linear and bounded.

Note B_,,_2, <+ B_p =+ H=*(0) and H*(90) = B;, ,. so
F:B_,_y— g5+3/2_19 for ¥ € {0,7,27}.
~~ Same construction holds in the Dirichlet case, with v 1= —11/> — §.
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e Dynamical aspects, stabilization by boundary noise [Fellner, Sonner,
Tang, Thuan '18]
du+ (—Au+ ® — Bu) dt =0 in O x(0,T)
du+ (0, +Au) dt =au dW,  on 00 x (0, T)

@ The primitive equation with rough noise on the boundary

dV 4+ V,,V+w(V) -8,V - AV +V, P dt = Hr dW
div,,V =0,V(0) =0
9,V =00n T4 d,V =hyXonT,

V and P; periodic on [
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Some more details

More about global-in-time solutions

dy: = Ay dt + G(y:) dX;

Problem: Even without boundary terms, bounds are harder to establish,
since quadratic occur in estimating (F(y), DF(y) o y’).
@ ~~ Use the structure of the expected solution (y, G(y)) to obtain
better terms.

@ Therefor stronger assumptions on G are needed, like DG o G need a
bounded derivative.

@ Since here G := A_,NF, the assumption has to be adapted since
DF o F is not well-defined. That leads to the same condition for
DF o G.

@ For problems without boundary terms, see [Hesse, Neamtu '20 &
'21] G is allowed to lose spatial regularity. ~» Due to the Neumann
map, now F has to lift regularity
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