Stochastic evolution equations with rough boundary noise

Tim Seitz

joint work with Alexandra Neamţu

SPDEvent Bielefeld University, 18. July 2023

General Setting

Let $\mathcal{O} \subset \mathbb{R}^d$ be a bounded domain with smooth boundary, and consider

$$y_t = Ay_t + f(y_t)$$
 in \mathcal{O} ,
 $Cy_t = F(y_t) \mathbf{X}_t$ on $\partial \mathcal{O}$.

 \mathcal{A} is a second order operator, \mathcal{C} is a Neumann type boundary condition and $A: D(A) \subset L^2(\mathcal{O}) \to L^2(\mathcal{O})$ its L^2 -realization.

General Setting

Let $\mathcal{O} \subset \mathbb{R}^d$ be a bounded domain with smooth boundary, and consider

$$y_t = Ay_t + f(y_t)$$
 in \mathcal{O} ,
 $Cy_t = F(y_t) \mathbf{X}_t$ on $\partial \mathcal{O}$.

 \mathcal{A} is a second order operator, \mathcal{C} is a Neumann type boundary condition and $A: D(A) \subset L^2(\mathcal{O}) \to L^2(\mathcal{O})$ its L^2 -realization. We expect a solution of the form

$$y_t = S_t y_0 + \int_0^t S_{t-r} f(y_r) dr + A \int_0^t S_{t-r} NF(y_r) d\mathbf{X}_r.$$

Where $N: L^2(\partial \mathcal{O}) \to H^{3/2}(\mathcal{O})$ is the solution operator to the elliptic boundary value problem $\mathcal{A}u = 0$, $\mathcal{C}u = g$.

General Setting

Let $\mathcal{O} \subset \mathbb{R}^d$ be a bounded domain with smooth boundary, and consider

$$y_t = Ay_t + f(y_t)$$
 in \mathcal{O} ,
 $Cy_t = F(y_t) \mathbf{X}_t$ on $\partial \mathcal{O}$.

 \mathcal{A} is a second order operator, \mathcal{C} is a Neumann type boundary condition and $A: D(A) \subset L^2(\mathcal{O}) \to L^2(\mathcal{O})$ its L^2 -realization. We expect a solution of the form

$$y_t = S_t y_0 + \int_0^t S_{t-r} f(y_r) dr + A \int_0^t S_{t-r} NF(y_r) d\mathbf{X}_r.$$

Where $N: L^2(\partial \mathcal{O}) \to H^{3/2}(\mathcal{O})$ is the solution operator to the elliptic boundary value problem $\mathcal{A}u = 0$, $\mathcal{C}u = g$.

→ We need to make sense of the rough convolution

Summary known results

- Da Prato and Zabczyk '93:
 - X is a Brownian motion, additive noise
 - Only Neumann conditions
- Duncan, Pasik-Duncan and Maslowski '02 & '06:
 - X is a fractional Brownian motion, additive noise
 - Neumann with Hurst index H > 1/4, for H > 3/4 even Dirichlet conditions
- Schnaubelt and Veraar '11:
 - X is a Brownian motion, multiplicative noise
 - Only Neumann Conditions, non-autonomous equation in Banach spaces,
- As far as we know, no work treated rough noise $\mathbf{X} = (X, \mathbb{X})$ on the boundary.

Stochastic evolution equations with rough boundary noise

Controlled rough path approach

Abbreviation: $C(\mathcal{B}) = C([0, T]; \mathcal{B})$ where \mathcal{B} is a Banach space

- $\mathbf{X} = (X, \mathbb{X})$ is a γ -Hölder rough path with $\gamma \in (1/3, 1/2]$
- $(\mathcal{B}_{\alpha})_{\alpha \in \mathbb{R}}$ monotone scale of function spaces for example $(H^{\alpha}(\mathcal{O}))_{\alpha \in \mathbb{R}}$
- $(y, y') \in C(\mathcal{B}_{\alpha}) \times ((C(\mathcal{B}_{\alpha-\gamma}) \cap C^{\gamma}(\mathcal{B}_{\alpha-2\gamma}))$ such that $R_{t,s}^{y} = y_{t,s} y_{s}' X_{t,s}$ belongs to $C^{\gamma}(\mathcal{B}_{\alpha-\gamma}) \cap C^{2\gamma}(\mathcal{B}_{\alpha-2\gamma})$
 - controlled rough path in the sense of [Gerasimovics, Hocquet,

Nilssen '21]. Notation: $(y, y') \in \mathcal{D}_{X,\alpha}^{2\gamma}$

Theorem (Gerasimovics, Hocquet, Nilssen '21)

Let $(y, y') \in \mathcal{D}_{X,\alpha}^{2\gamma}$. Then the integral map

$$(y,y')\mapsto (z,z'):=\left(\int_0^{\cdot}S_{\cdot-r}y_r\,\,\mathrm{d}\mathbf{X}_r,y_{\cdot}\right)$$

maps $\mathcal{D}_{X,\alpha}^{2\gamma}$ into $\mathcal{D}_{X,\alpha+\theta}^{2\gamma}$ for $\theta < \gamma$.

Difficulties

Goal: Make sense of the rough convolution

$$A \int_0^t S_{t-r} NF(y_r) d\mathbf{X}_r \tag{1}$$

in the controlled rough path setting.

Difficulties

Goal: Make sense of the rough convolution

$$A \int_0^t S_{t-r} NF(y_r) d\mathbf{X}_r \tag{1}$$

in the controlled rough path setting.

Problem: Expected Gubinelli derivative ANF(y) of (1) is not well-defined, since CNF(y) = F(y), so $NF(y) \notin D(A)$.

Difficulties

Goal: Make sense of the rough convolution

$$A \int_0^t S_{t-r} NF(y_r) d\mathbf{X}_r \tag{1}$$

in the controlled rough path setting.

Problem: Expected Gubinelli derivative ANF(y) of (1) is not well-defined, since CNF(y) = F(y), so $NF(y) \notin D(A)$.

Solution: Work with extensions (and restrictions) of the operator *A*.

Fractional power spaces and extrapolation operators

We introduce the function spaces

$$\mathcal{B}_{lpha} = egin{cases} D(A^{lpha}), & lpha \geq 0 \ \overline{L^{2}(\mathcal{O})}^{\parallel A^{lpha} \cdot \parallel}, & lpha < 0 \end{cases} \qquad ilde{\mathcal{B}}_{lpha} := H^{lpha - 3/2}(\partial \mathcal{O})$$

with $\|\cdot\|_{\alpha} := \|A^{\alpha}\cdot\|$.

Note: $N \in L(\mathcal{B}_{\alpha}, \mathcal{B}_{\varepsilon})$ if $\alpha > 3/2$, for any $2\varepsilon < 3/2$.

Fractional power spaces and extrapolation operators

We introduce the function spaces

$$\mathcal{B}_{lpha} = egin{cases} D(A^{lpha}), & lpha \geq 0 \ \overline{L^{2}(\mathcal{O})}^{\parallel A^{lpha} \cdot \parallel}, & lpha < 0 \end{cases} \qquad ilde{\mathcal{B}}_{lpha} := H^{lpha - 3/2}(\partial \mathcal{O})$$

with $\|\cdot\|_{\alpha} := \|A^{\alpha}\cdot\|$.

Note: $N \in L(\mathcal{B}_{\alpha}, \mathcal{B}_{\varepsilon})$ if $\alpha > 3/2$, for any $2\varepsilon < 3/2$.

$$A_{lpha} = egin{cases} \mathcal{B}_{lpha} ext{-realization of } A, & lpha \geq 0 \ ext{unique continuous extension of } A ext{ in } \mathcal{B}_{-1}, & lpha = -1 \ \mathcal{B}_{lpha} ext{-realization of } A_{-1}, & lpha \in (-1,0) \end{cases}$$

Properties (Amann '95)

- $A_{\alpha} \in L(\mathcal{B}_{1+lpha},\mathcal{B}_{lpha})$ and $A_{lpha} \subset A_{eta}$ for lpha > eta
- A_{-1} is called the extrapolated operator of A.
- Since $Ny_t \notin D(A)$ we need those extensions to define $A_{-\eta}Ny_t$ for $\eta := 1 \varepsilon$.

Extrapolation operators and CRP

Lemma (Neamţu, S. '22)

For $t \in [0, T]$ and $(y, y') \in \tilde{\mathcal{D}}_{X,\alpha}^{2\gamma}$ we have

$$\left(A\int_0^{\cdot}S_{\cdot-s}Ny_s\;\mathrm{d}\mathbf{X}_s,A_{-\eta}Ny\right)\in\mathcal{D}_{X,\alpha}^{2\gamma},$$

with $\eta := 1 - \varepsilon$ if $\varepsilon > 1 - \gamma$. Furthermore

$$\left(\int_0^{\cdot} S_{\cdot -s} A_{-\sigma} N y_s \, d\mathbf{X}_s, A_{-\sigma} N y\right) \in \mathcal{D}_{X,\alpha}^{2\gamma},$$

for $\sigma := \eta + \gamma$.

Extrapolation operators and CRP

Lemma (Neamțu, S. '22)

For $t \in [0, T]$ and $(y, y') \in \tilde{\mathcal{D}}_{X,\alpha}^{2\gamma}$ we have

$$\left(A\int_0^{\cdot}S_{\cdot-s}Ny_s\;\mathrm{d}\mathbf{X}_s,A_{-\eta}Ny\right)\in\mathcal{D}_{X,\alpha}^{2\gamma},$$

with $\eta := 1 - \varepsilon$ if $\varepsilon > 1 - \gamma$. Furthermore

$$\left(\int_0^{\cdot} S_{\cdot -s} A_{-\sigma} N y_s \, d\mathbf{X}_s, A_{-\sigma} N y\right) \in \mathcal{D}_{X,\alpha}^{2\gamma},$$

for $\sigma := \eta + \gamma$.

The original equation is now equivalent to one without boundary terms

$$dy_t = (Ay_t + f(y_t)) dt + A_{-\sigma}NF(y_t) dX_t, y(0) = y_0$$

Main Results

- (A1) There exists $\delta > \eta + 3/2$ such that for any $\vartheta \in \{0, \gamma, 2\gamma\}$ the diffusion term $F: \mathcal{B}_{-\eta-\vartheta} \to \mathcal{B}_{-\eta-\vartheta+\delta}$ is three times continuously differentiable with bounded derivatives.
- Assume further the boundedness of the derivative of

$$DF(\cdot) \circ (A_{-\sigma}NF(\cdot)) : \mathcal{B}_{-\eta-\gamma} \to \widetilde{\mathcal{B}}_{-\eta-\gamma+\delta}.$$

Theorem (Neamțu, S. '22)

- Assume (A1). Then there exists for every $y_0 \in \mathcal{B}_{-\eta}$ a time $T^* \leq T$ and a unique solution $(y, A_{-\sigma}NF(y)) \in \mathcal{D}_{X-n}^{2\gamma}([0, T^*))$.
- Assume (A1) and (A2). Then there exists for every initial condition $y_0 \in \mathcal{B}_{-\eta}$ a unique solution $(y, A_{-\sigma}NF(y)) \in \mathcal{D}_{X-\eta}^{2\gamma}([0, T])$.

Stochastic evolution equations with rough boundary noise

Some remarks

- If $\gamma > 1/2$, no rough path theory is needed since the integral is well-defined in the sense of Young. → Then even Dirichlet conditions are possible to treat, provided that $\gamma > 3/4$.
- An example for a possible nonlinearity is a modified version of $\Delta^{-\nu}$ for some $\nu > 0$.
- Due to pathwise solutions which are global-in-time we have also the existence of a random dynamical system.

Stochastic evolution equations with rough boundary noise

Outlook

Investigate more dynamical aspects (Existence of random attractors, stability etc.)

Tim Seitz

Outlook

- Investigate more dynamical aspects (Existence of random attractors, stability etc.)
- Primitive equations as a model for coupled atmosphere-ocean systems with wind driven boundary conditions [Binz, Hieber, Hussein, Saal '22]

$$\mathrm{d}V + \nabla_{x,y}V + w(V) \cdot \partial_z V - \Delta V + \nabla_{x,y}P_s\,\mathrm{d}t = H_f\,\mathrm{d}W$$
$$\mathrm{div}_{x,y}\bar{V} = 0, V(0) = 0$$
$$\partial_z V = 0 \text{ on } \Gamma_b, \partial_z V = h_b\partial_t w \text{ on } \Gamma_u$$
$$V \text{ and } P_s \text{ periodic on } \Gamma_l$$

Outlook

- Investigate more dynamical aspects (Existence of random attractors, stability etc.)
- Primitive equations as a model for coupled atmosphere-ocean systems with wind driven boundary conditions [Binz, Hieber, Hussein, Saal '22]

$$\mathrm{d}V + \nabla_{x,y}V + w(V) \cdot \partial_z V - \Delta V + \nabla_{x,y}P_s\,\mathrm{d}t = H_f\,\mathrm{d}W$$
$$\mathrm{div}_{x,y}\bar{V} = 0, V(0) = 0$$
$$\partial_z V = 0 \text{ on } \Gamma_b, \partial_z V = h_b\partial_t w \text{ on } \Gamma_u$$
$$V \text{ and } P_s \text{ periodic on } \Gamma_l$$

2D Navier-Stokes with boundary noise [Agresti, Luongo '23]

References

T. E. Duncan, B. Pasik-Duncan, and B. Maslowski.

Fractional Brownian motion and stochastic equations in Hilbert spaces.

Stoch. Dyn., 2(2):225-250, 2002.

A. Gerasimovičs, A. Hocquet, and T. Nilssen.

Non-autonomous rough semilinear PDEs and the multiplicative sewing lemma.

J. Funct. Anal., 281(10):Paper No. 109200, 65, 2021.

R. Hesse and A. Neamtu.

Global solutions for semilinear rough partial differential equations.

Stoch. Dyn., 22(2):Paper No. 2240011, 18, 2022.

B. Maslowski.

Stability of semilinear equations with boundary and pointwise noise.

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 22(1):55-93, 1995.

A. Neamţu and T. Seitz.

Stochastic evolution equations with rough boundary noise.

https://arxiv.org/pdf/2209.10348.pdf, 2022.

R. Schnaubelt and M. Veraar.

Stochastic equations with boundary noise.

In Parabolic problems, Progr. Nonlinear Differential Equations Appl. 80, pages 609–629. 2011.

Thank you for your attention!

More about global-in-time solutions

$$\mathrm{d}y_t = Ay_t \ \mathrm{d}t + G(y_t) \ \mathrm{d}\mathbf{X}_t$$

Problem: Even without boundary terms, bounds are harder to establish, since quadratic occur in estimating $(F(y), DF(y) \circ y')$.

- \rightarrow Use the structure of the expected solution (y, G(y)) to obtain better terms.
- Therefor stronger assumptions on G are needed, like $DG \circ G$ need a bounded derivative.
- Since here $G := A_{-\sigma}NF$, the assumption has to be adapted since $DG \circ G$ is not well-defined. That leads to the same condition for $DF \circ G$
- For problems without boundary terms, see [Hesse, Neamtu '20 & '21], G is allowed to lose spatial regularity.

Stochastic evolution equations with rough boundary noise

 \rightarrow Due to the Neumann map, now F has to lift regularity

Example of the diffusion coefficient

- We need an operator that lifts the spatial regularity \rightsquigarrow Something like Δ^{ν} .
- Construct an operator $F:H^{-4}(\mathcal{O}) o H^{\widetilde{\delta}}(\partial\mathcal{O})$ for a small $\widetilde{\delta}>0$.

$$F: H^{-4}(\mathcal{O}) \to H^{\tilde{\delta}}(\partial \mathcal{O}), f \mapsto \gamma_{\partial} r_{\mathcal{O}} \wedge^{\nu} e_{\mathcal{O}} f$$

- $\gamma_{\partial}: H^{\widetilde{\delta}+1/2}(\mathcal{O}) \to H^{\widetilde{\delta}}(\partial \mathcal{O})$ the trace operator.
- $\Lambda^{\nu}: H^{-4}(\mathbb{R}^d) \to H^{\tilde{\delta}+\frac{1}{2}}(\mathbb{R}^d), f \mapsto \mathcal{F}^{-1}(1+|\cdot|^2)^{\frac{\nu}{2}}\mathcal{F}f$ with $\nu:=-9/2-\tilde{\delta}$ to increase the spatial regularity on the full space.
- $r_{\mathcal{O}}$ retraction $e_{\mathcal{O}}$ coretraction to restrict \mathbb{R}^d to \mathcal{O} and extend this to \mathbb{R}^d , both linear and bounded.

Note
$$\mathcal{B}_{-\eta-2\gamma}\hookrightarrow\mathcal{B}_{-2}\hookrightarrow\mathcal{H}^{-4}(\mathcal{O})$$
 and $\mathcal{H}^{\tilde{\delta}}(\partial\mathcal{O})=\tilde{\mathcal{B}}_{\tilde{\delta}+3/2}$, so

$$F: \mathcal{B}_{-\eta-\vartheta} \to \mathcal{B}_{\delta+^{3/2}-\vartheta} \text{ for } \vartheta \in \{0, \gamma, 2\gamma\}.$$

 \sim Same construction holds in the Dirichlet case, with $\nu := -\frac{11}{2} - \tilde{\delta}$.