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General Setting

Let O ⊂ Rd be a bounded domain with smooth boundary, and consider

ẏt = Ayt + f (yt) in O,

Cyt = F (yt) Ẋt on ∂O.

A is a second order operator, C is a Neumann type boundary condition
and A : D(A) ⊂ L2(O) → L2(O) its L2-realization.

We expect a solution of the form

yt = Sty0 +

∫ t

0

St−r f (yr ) dr + A

∫ t

0

St−rNF (yr ) dXr .

N : L2(∂O) → H 3/2(O) is the solution operator to the elliptic boundary
value problem Au = 0, Cu = g .

⇝ We need to make sense of the rough convolution
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Summary known results

Da Prato and Zabczyk ’93:

X is a Brownian motion, additive noise
Only Neumann conditions

Duncan, Pasik-Duncan and Maslowski ’02 & ’06:

X is a fractional Brownian motion, additive noise
Neumann with Hurst index H > 1/4, for H > 3/4 even Dirichlet
conditions

Schnaubelt and Veraar ’11:

X is a Brownian motion, multiplicative noise
Only Neumann Conditions, non-autonomous equation in Banach
spaces,

As far as we know, no work treated rough noise X = (X ,X) on the
boundary.
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Controlled rough path approach

Abbreviation: C (B) = C ([0,T ];B) where B is a Banach space

X = (X ,X) is a γ-Hölder rough path with γ ∈ (1/3, 1/2]

(Bα)α∈R monotone scale of function spaces for example
(Hα(O))α∈R
(y , y ′) ∈ C (Bα)× ((C (Bα−γ) ∩ Cγ(Bα−2γ)) such that
Ry
t,s = yt,s − y ′

sXt,s belongs to Cγ(Bα−γ) ∩ C 2γ(Bα−2γ)
⇝ controlled rough path in the sense of [Gerasimovics, Hocquet,
Nilssen ’21]. Notation: (y , y ′) ∈ D2γ

X ,α

Theorem (Gerasimovics, Hocquet, Nilssen ’21)

Let (y , y ′) ∈ D2γ
X ,α. Then the integral map

(y , y ′) 7→ (z , z ′) :=

(∫ ·

0

S·−ryr dXr , y·

)
maps D2γ

X ,α into D2γ
X ,α+θ for θ < γ.
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Difficulties

Goal: Make sense of the rough convolution

A

∫ t

0

St−rNF (yr ) dXr . (1)

in the controlled rough path setting.

Problems: Expected Gubinelli derivative ANF (y) of (1) is not
well-defined, since CNF (y) = F (y), so NF (y) /∈ D(A).

Solution: Work with extensions (and restrictions) of the operator A.
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Fractional power spaces and extrapolation operators

We introduce the function spaces

Bα =

{
D(Aα), α ≥ 0

L2(O)
∥Aα·∥

, α < 0
B̃α := Hα−3/2(∂O)

with ∥·∥α := ∥Aα·∥.
Note: N ∈ L(B̃α,Bε) if α > 3/2, for any 2ε < 3/2.

Aα =


Bα-realization of A, α ≥ 0

unique continuous extension of A in B−1, α = −1

Bα-realization of A−1, α ∈ (−1, 0)

Properties (Amann ’95)

Aα ∈ L(B1+α,Bα) and Aα ⊂ Aβ for α > β

A−1 is called the extrapolated operator of A.

Since Nyt /∈ D(A) we need those extensions to define A−ηNyt for
η := 1− ε.
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Extrapolation operators and CRP

Lemma (Neamţu, S. ’22)

For t ∈ [0,T ] and (y , y ′) ∈ D̃2γ
X ,α we have(

A

∫ ·

0

S·−sNys dXs ,A−ηNy

)
∈ D2γ

X ,α,

with η := 1− ε if ε > 1− γ. Furthermore(∫ ·

0

S·−sA−σNys dXs ,A−σNy

)
∈ D2γ

X ,α,

for σ := η + γ.

The original equation is now equivalent to one without boundary terms

dyt = (Ayt + f (yt)) dt + A−σNF (yt) dXt , y(0) = y0
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Main Results

(A1) There exists δ > η + 3/2 such that for any ϑ ∈ {0, γ, 2γ} the

diffusion term F : B−η−ϑ → B̃−η−ϑ+δ is three times continuously
differentiable with bounded derivatives.

(A2) Assume further the boundedness of the derivative of

DF (·) ◦ (A−σNF (·)) : B−η−γ → B̃−η−γ+δ.

Theorem (Neamţu, S. ’22)

Assume (A1). Then there exists for every y0 ∈ B−η a time T ∗ ≤ T

and a unique solution (y ,A−σNF (y)) ∈ D2γ
X ,−η ([0,T

∗)).

Assume (A1) and (A2). Then there exists for every initial condition
y0 ∈ B−η a unique solution (y ,A−σNF (y)) ∈ D2γ

X ,−η ([0,T ]).
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Closing remarks

If γ > 1/2, no rough path theory is needed since the integral is
well-defined in the sense of Young.
⇝ Then even Dirichlet conditions are possible to treat, provided
that γ > 3/4.

An example for a possible nonlinearity is a modified version of ∆−ν

for some ν > 0.

Due to pathwise solutions which are global-in-time we have also the
existence of a random dynamical system.
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More about global-in-time solutions

dyt = Ayt dt + G (yt) dXt

Problem: Even without boundary terms, bounds are harder to establish,
since quadratic occur in estimating (F (y),DF (y) ◦ y ′).

⇝ Use the structure of the expected solution (y ,G (y)) to obtain
better terms.

Therefor stronger assumptions on G are needed, like DG ◦ G need a
bounded derivative.

Since here G := A−σNF , the assumption has to be adapted since
DG ◦ G is not well-defined. That leads to the same condition for
DF ◦ G .

For problems without boundary terms, see [Hesse, Neamţu ’20 &
’21], G is allowed to lose spatial regularity.
⇝ Due to the Neumann map, now F has to lift regularity
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Example of the diffusion coefficient

We need an operator that lifts the spatial regularity ⇝ Something
like ∆ν .

Construct an operator F : H−4(O) → H δ̃(∂O) for a small δ̃ > 0.

F : H−4(O) → H δ̃(∂O), f 7→ γ∂rOΛ
νeOf

γ∂ : H δ̃+1/2(O) → H δ̃(∂O) the trace operator.

Λν : H−4(Rd) → H δ̃+ 1
2 (Rd), f 7→ F−1(1 + |·|2) ν

2 F f with
ν := −9/2 − δ̃ to increase the spatial regularity on the full space.

rO retraction eO coretraction to restrict Rd to O and extend this to
Rd , both linear and bounded.

Note B−η−2γ ↪→ B−2 ↪→ H−4(O) and H δ̃(∂O) = B̃δ̃+3/2, so

F : B−η−ϑ → B̃δ+3/2−ϑ for ϑ ∈ {0, γ, 2γ}.
⇝ Same construction holds in the Dirichlet case, with ν := −11/2 − δ̃.
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Motivation for noise on the boundary

Transport models in chemical reactions [Wang, Zheng ’05], [Brune,
Duan, Schmalfuß ’09].

Primitive equations as a model for coupled atmosphere-ocean
systems with wind driven boundary conditions

dV +∇x,yV + w(V ) · ∂zV −∆V +∇x,yPs dt = Hf dW

div x,y V̄ = 0,V (0) = 0

∂zV = 0 on Γb, ∂zV = hb∂tw on Γu

V and Ps periodic on Γl

⇝ Variant of the 3D Navier-Stokes, where the vertical component is
averaged out [Lions, Temam, Wang ’92 & ’93], [Binz, Hieber,
Hussein, Saal ’22].
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