21. Script zur Vorlesung: Lineare Algebra II

Prof. Dr. Salma Kuhlmann, Lothar Sebastian Krapp, Gabriel Lehéricy SS 2016: 28. Juni 2016

§ 16 Beziehung zum Bidual

Proposition 1 24. Vorlesung am 27. Januar 2012: **Erinnerung**

$$y_0 \in V \longmapsto L_{y_0} \in V^{**}; L_{y_0}(f) \coloneqq f(y_0) \text{ für alle } f \in V^*$$

und

Satz 1 24. Vorlesung am 27. Januar 2012:

$$\lambda: V \longrightarrow V^{**}$$
 $y_0 \longmapsto L_{y_0}$

ist ein (kanonischer) Isomorphismus.

Vergleiche mit

$$\delta: V \longrightarrow V^* \text{ und } \gamma: V^* \longrightarrow V^{**}$$

 $y_0 \longmapsto y_0^* \longrightarrow y_0^* \longmapsto y_0^{**}$

 $y_0^*(x) := (x \mid y_0)$ für alle $x \in V$ und $y_0^{**}(y^*) = (y^* \mid y_0^*)$ für alle $y^* \in V^*$

Also

$$\begin{array}{cccc} \lambda & & & & & & & \\ \lambda & & V & \longrightarrow & V^{**} \\ & y_0 & \longmapsto & L_{y_0} \end{array}$$

mit $L_{y_0}(y^*) \coloneqq y^*(y_0)$ für $y^* \in V^*$ (*)

einerseits und

$$V \xrightarrow{\delta} V^* \xrightarrow{\gamma} V^{**}, \quad \gamma \circ \delta : y_0 \longmapsto y_0^{**}$$

anderserseits.

Behauptung
$$L_{y_0} = y_0^{**}$$
, i.e. $\lambda = \gamma \circ \delta$.

Beweis

Es genügt, zu zeigen, dass $y_0^{**}(*)$ erfüllt.

Wir berechnen
$$y_0^{**}(y^*) = (y^* \mid y_0^*) = (y_0 \mid y) = y^*(y_0)$$

§ 17 Hermite'sche Operatoren

Definition

- (i) $T \in \mathcal{L}(V, V)$ ist Hermite'sch (oder selbstadjungiert), falls $T = T^*$, i.e. $(Tx \mid y) = (x \mid Ty)$ für alle $x, y \in V$.
- (ii) $K = \mathbb{R}$; $T = T^*$; T heißt auch reell symmetrisch.
- (iii) $K = \mathbb{C}; T = T^*$ heißt auch komplex Hermite'sch.

Matrizendarstellungen von Hermite'schen Operatoren

Sei \mathcal{X} eine orthonormale Basis. Also ist $\mathcal{J} = \mathcal{X}$ (\mathcal{X} ist Selbstdual, siehe Übungsblatt Nr. 12). Also impliziert $T = T^*$, dass A Hermite'sch ist, wobei

$$A \coloneqq [T]_{\mathcal{X}} = [T^*]_{\mathcal{Y}} = [T^*]_{\mathcal{X}} = \overline{A^t} \coloneqq A^*.$$

Das heißt $a_{ij} = \overline{a_{ji}}$ (A ist komplex Hermite'sch), und im reellen Fall $a_{ij} = a_{ji}$, i.e. $A = A^t$ (A ist symmetrisch).

Bemerkungen Übungsaufgabe: Weitere Eigenschaften von Hermite'schen Opteratoren.

- (i) Umgekehrt sei A Hermite'sch und \mathcal{X} eine orthonormale Basis für V mit $\mathcal{X} = \{x_1, \dots, x_n\}$.

 Definiere $T(\sum_{i=1}^n \varepsilon_i x_i) \coloneqq A\begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix}$. Dann ist T Hermite'sch.
- (ii) T_1, T_2 sind Hermite'sch $\Rightarrow T_1 + T_2$ ist Hermite'sch.
- (iii) $T \neq 0$ ist Hermite'sch, $\alpha \in K, \alpha \neq 0$, dann ist αT Hermite'sch genau dann, wenn $\alpha \in \mathbb{R}$.
- (iv) T ist invertierbar und Hermite'sch genau dann, wenn T^{-1} Hermite'sch ist.
- Satz 1 Seien T_1, T_2 Hermite'sch. Es gilt: T_1T_2 ist Hermite'sch genau dann, wenn $T_1T_2 = T_2T_1$.

Beweis
$$(T_1T_2)^* = T_1T_2 \Leftrightarrow T_2^*T_1^* = T_1T_2 \Leftrightarrow T_2T_1 = T_1T_2$$

Satz 2 (i) Sei T_1 Hermite'sch, dann ist $T_2^*T_1T_2$ Hermite'sch.

(ii) Umgekehrt ist $T_2^*T_1T_2$ Hermite'sch und T_2 invertierbar, dann ist T_1 Hermite'sch.

Beweis

- (i) $(T_2^*T_1T_2)^* = T_2^*T_1^*T_2^{**} = T_2^*T_1T_2$
- (ii) $T_2^*T_1T_2 = (T_2^*T_1T_2)^* = T_2^*T_1^*T_2$, multipliziert links mit $(T_2^*)^{-1}$ und rechts mit T_2^{-1} ergibt $T_1 = T_1^*$.

Definition $T \in \mathcal{L}(V, V)$ ist *schief Hermite'sch*, falls $T^* = -T$. (Wenn $K = \mathbb{C}$, heißt es "komplex schief Hermite'sch" und wenn $K = \mathbb{R}$, heißt es "schief symmetrisch".)

§ 18 Cartesische Zerlegung eines Operators

Sei $T \in \mathcal{L}(V, V)$, schreibe $T = T_1 + T_2$, wobei

$$T_1 \coloneqq \frac{T + T^*}{2}$$
 und $T_2 \coloneqq \frac{T - T^*}{2}$

Berechne:

$$T_1^* = T_1$$
 und $T_2^* = -T_2$.

Also ist T_1 Hermite'sch und T_2 ist schief Hermite'sch.

Ferner T_2 ist schief Hermite'sch und $K = \mathbb{C} \Leftrightarrow T_2 = iT_3$ mit T_3 komplex Hermite'sch. Also $T = T_1 + iT_3$.