REAL ALGEBRAIC GEOMETRY LECTURE NOTES (07: 30/04/15 - CORRECTED ON 13/05/2019)

SALMA KUHLMANN

Contents

1. Pseudo-completeness

1. Pseudo-completeness

Let (V, v) be a valued Q-vector space. We recall that

- (V, v) is **maximally valued** if (V, v) admits no proper immediate extension.
- (V, v) is **pseudo-complete** if every pseudo-convergent sequence in V has a pseudo-limit in V.

Theorem 1.1. (V, v) is maximally valued if and only if (V, v) is pseudocomplete.

Today we will prove the implication:

(V, v) pseudo-complete $\Rightarrow (V, v)$ maximally valued.

It follows from the following proposition:

Proposition 1.2. Let (V, v) be an immediate extension of (V_0, v) . Then any element in V which is not in V_0 is a pseudo-limit of a pseudo-Cauchy sequence of elements of V_0 , without a pseudo-limit in V_0 .

Note that once the proposition is established we have pseudo complete \Rightarrow maximally valued. If not, assume that (V, v) is not maximally valued. Then there is a proper immediate extension (V', v') of (V, v). Let $y \in V' \setminus V$. By the proposition y is a pseudo-limit of a pseudo-Cauchy sequence in V without pseudo-limit in (V, v), a contradiction.

Proof. (of the proposition) Let $z \in V \setminus V_0$. Consider the set

$$X = \{v(z - a) : a \in V_0\} \subset \Gamma.$$

Since $z \notin V_0$, $\infty \notin X$. We show that X can not have a maximal element. Otherwise, let $a_0 \in V_0$ be such that $v(z - a_0)$ is maximal in X. By

1

the characterization of immediate extensions (Lecture 3, Lemma 2.2), there exists some $a_1 \in V_0$ such that $v((z-a_0)-a_1) > v(z-a_0)$. So $a_0+a_1 \in V_0$ and $v(z-(a_0+a_1)) > v(z-a_0)$, a contradiction. Thus, X has no greatest element.

Select from X a well-ordered cofinal subset $\{\alpha_{\rho}\}_{{\rho}\in\lambda}$. Note that $\{\alpha_{\rho}\}_{{\rho}\in\lambda}$ has no last element, as λ is a limit ordinal.

For every $\rho \in \lambda$ choose an element $a_{\rho} \in V_0$ with

$$v(z - a_{\rho}) = \alpha_{\rho}.$$

The identity

$$a_{\sigma} - a_{\rho} = (z - a_{\rho}) - (z - a_{\sigma})$$

and the inequality

$$v(z - a_{\rho}) < v(z - a_{\sigma})$$
 $(\forall \rho < \sigma \in \lambda)$

imply

$$(*) v(a_{\sigma} - a_{\varrho}) = v(z - a_{\varrho}).$$

Thus, $\{a_{\rho}\}_{{\rho}\in\lambda}$ is pseudo-convergent with z as a pseudo-limit. Finally suppose that $\{a_{\rho}\}_{{\rho}\in\lambda}$ has a further limit $z_1\in V_0$. By a result from the last lecture we have

$$v(z-z_1) > v(a_{\sigma}-a_{\rho}).$$

Combining this with (*) we get

$$v(z-z_1) > v(z-a_0) = \alpha_0 \quad \forall \rho \in \lambda$$

and this is a contradiction, since $\{\alpha_{\rho}\}_{{\rho}\in\lambda}$ is cofinal in X.

Theorem 1.3. Suppose that

(i) V_i and V'_i are Q-valued vector spaces and V'_i is an immediate extension of V_i for i = 1, 2.

- (ii) $h: V_1 \to V_2$ is an isomorphism of valued vector spaces.
- (iii) V_2' is pseudo-complete.

Then there exists an embedding $h': V'_1 \to V'_2$ such that h' extends h. Moreover h' is an isomorphism of valued vector spaces if and only if V'_1 is pseudo-complete.

Proof. The picture is the following:

$$V_{1}' \xrightarrow{h'} V_{2}'$$
immediate | | immediate |
$$V_{1} \xrightarrow{h} V_{2}$$

Consider the collection of triples (M_1, M_2, g) , where

$$V_1 \subseteq M_1 \subseteq V_1',$$

 $V_2 \subseteq M_2 \subseteq V_2',$

and g a valuation preserving isomorphism of M_1 onto M_2 extending h.

This collection is non-empty, because (V_1, V_2, h) belongs to it. Moreover, one can show that every chain has an upper bound ($\ddot{\mathbf{U}}\mathbf{A}$). Therefore the conditions of Zorn's lemma are satisfied, i.e. there exists a maximal such triple (M_1, M_2, g) . We claim that $M_1 = V_1'$. Assume for a contradiction there exists some $y_1 \in V_1' \setminus M_1$.

(Note: If $V_0 \subset V_1 \subset V_2$ are extensions of valued vector spaces and $V_2|V_0$ is immediate, then $V_2|V_1$ and $V_1|V_0$ are immediate)

Since V_1' is an immediate extension of M_1 , there exists a pseudo-convergent sequence $S = \{a_\rho\}_{\rho \in \lambda}$ of M_1 without a pseudo-limit in M_1 , but with a pseudo-limit $y_1 \in V_1'$. Consider $g(S) = \{g(a_\rho)\}_{\rho \in \lambda}$.

(Facts/ÜA:

- (i) the image of a pseudo-convergent sequence under a valuation preserving isomorphism is pseudo-convergent.
- (ii) the image of a pseudo-limit of a pseudo-convergent sequence under a valuation preserving isomorphism is a pseudo-limit of the image of the pseudo-convergent sequence.
- (iii) the image of a pseudo-complete vector space under a valuation preserving isomorphism is pseudo-complete.)

Since g is a valuation preserving isomorphism, g(S) is a pseudo-convergent sequence of M_2 without a pseudo-limit in M_2 but with a pseudo-limit $y_2 \in V_2'$, because V_2' is pseudo-complete.

Let $M'_i = \langle M_i, y_i \rangle_Q$ for i = 1, 2, and denote by g' the unique Q-vector space isomorphism of the linear space M'_1 onto the linear space M'_2 extending g such that $g'(y_1) = y_2$.

We show that g' is valuation preserving: let

$$y = x + qy_1$$
 $x \in M_1$ $(q \in Q \setminus \{0\})$

be an arbitrary element of $M'_1 \setminus M$. The sequence

$$S(y) = \{x + qa_{\rho}\}_{{\rho} \in \lambda}$$

is pseudo-convergent in M_1 with pseudo-limit $y \in M'_1$ and 0 is not a pseudo-limit (otherwise $-x/q \in M_1$ would be a pseudo-limit of S).

It follows that (since $y = x + qy_1$ is a pseudo-limit for the sequence $x + qa_\rho$ which does not have 0 as a pseudo-limit)

$$v(y) = \text{Ult } S(y)$$

and similarly

$$v(q'(y)) = \text{Ult } S(q'(y)),$$

where

$$S(g'(y)) = \{g'(x) + qg'(a_{\rho})\}_{\rho \in \lambda}$$

is a pseudo-convergent sequence of M_2 with pseudo-limit $g'(y) \in M'_2$. Now $g'_{|M_1} = g$ is valuation preserving from M_1 to M_2 . So we have

$$Ult(S(y)) = Ult(S(g'(y))),$$

hence

$$v(y) = v(g'(y))$$

as required.

Now if h' is onto, then V_1' is pseudo-complete. Conversely, if V_1' is pseudo-complete, then $h'(V_1')$ is also pseudo-complete and hence maximally valued. So the immediate extension $V_2'|h'(V_1')$ cannot be proper, i.e. $h'(V_1')=V_2'$. Thus, h' is onto as claimed.