REAL ALGEBRAIC GEOMETRY LECTURE NOTES (24: 09/07/15)

SALMA KUHLMANN

Contents

1.	Preliminaries]
2.	Baer-Krull Representation Theorem	6

The aim of this lecture is to give a proof of the so called Baer-Krull Representation Theorem. Moreover, we prove one of its consequences.

1. Preliminaries

Recall 1.1. Let K be a field. A subset $P \subseteq K$ is said to be a **positive** cone of K, if and only if

- (i) $P + P \subseteq P$,
- (ii) $P \cdot P \subseteq P$,
- (iii) $-1 \notin P$,
- (iv) $P \cup -P = K$.

Recall 1.2. If P is a positive cone, we can define an ordering \leq_P on K by

$$\forall x, y \in K : x \leq_P y : \Leftrightarrow y - x \in P.$$

Conversely, if \leq is an ordering on K, then $P_{\leq} := K^{\geq 0}$ is a positive cone.

Notation 1.3. Let (K, v) be a valued field. Let Γ be the value group of v. The quotient group $\overline{\Gamma} = \Gamma/2\Gamma$ becomes in a canonical way an \mathbb{F}_2 -vector space. We denote by $\overline{\gamma} = \gamma + 2\Gamma$ the residue class of $\gamma \in \Gamma$.

Let $\{\pi_i : i \in I\} \subseteq K^*$ such that $\{\overline{v(\pi_i)} : i \in I\}$ is an \mathbb{F}_2 -basis of $\overline{\Gamma}$. Then $\{\pi_i : i \in I\}$ is called a **quadratic system of representatives** of K with respect to v.

Moreover, we say a valuation ring is P-convex, iff it is \leq_{P} -convex.

2. Baer-Krull Representation Theorem

Theorem 2.1. (Baer-Krull Representation Theorem)

Let (K, v) be a valued field. Let $\mathcal{X}(K)$ and $\mathcal{X}(Kv)$ denote the set of all orderings (respectively positive cones) of K and Kv, respectively. Fix some quadratic system $\{\pi_i : i \in I\}$ of representatives of K with respect to v. Then there is a bijective correspondence

$$\{P \in \mathcal{X}(K) : K_v \text{ is } P\text{-convex}\} \longleftrightarrow \{-1,1\}^I \times \mathcal{X}(Kv)$$

described as follows: Given a positive cone P on K such that K_v is P-convex, let $\eta_P: I \to \{-1, 1\}$, where $\eta_P(i) = 1 \Leftrightarrow \pi_i \in P$. Then the map

$$P \mapsto (\eta_P, \overline{P})$$

is the above bijective correspondence.

Proof. Given a mapping $\eta: I \to \{-1,1\}$ and a positive cone Q on Kv, we will define a positive cone $P(\eta,Q)$ of K, such that K_v is $P(\eta,Q)$ -convex and $P(\eta,Q)$ is mapped to (η,Q) by the (bijective) correspondence above. Let $a \in K^*$. As $\{\overline{v(\pi_i)}: i \in I\}$ is a basis of $\Gamma/2\Gamma$, there exist uniquely determined indices i_1, \ldots, i_r such that

$$\overline{v(a)} = \overline{v(\pi_{i_1})} + \ldots + \overline{v(\pi_{i_r})}.$$

Thus, for some $b \in K$, one has

$$v(a) = v(\pi_{i_1}) + \ldots + v(\pi_{i_r}) + 2v(b).$$

Hence, we find some $u \in U_v$ such that

$$a = u\pi_{i_1}\cdots\pi_{i_r}b^2.$$

Note that since b is determined up to a unit, u is determined up to a unit square. Let $\eta: I \to \{-1, 1\}$ be a mapping and $Q \in \mathcal{X}(Kv)$ a positive cone on Kv. We define $P(\eta, Q) \subset K$ by $0 \in P(\eta, Q)$ and for each $a \in K^*$ with $a = u\pi_{i_1} \cdot \ldots \cdot \pi_{i_r}b^2$ as above,

$$a \in P(\eta, Q) : \Leftrightarrow \eta(i_1) \cdots \eta(i_r) \overline{u} \in Q.$$

Note that $P(\eta, Q)$ is well-defined as u and hence \overline{u} is determined up to a unit square and i_1, \ldots, i_r are completely determined. We have to show that $P(\eta, Q)$ is a positive cone and that K_v is $P(\eta, Q)$ -convex.

Let $a, a' \in P(\eta, Q)$ with $a, a' \neq 0$. Moreover, let $u, u' \in U_v$, $b, b' \in K$ and $i_1, \ldots, i_r, j_1, \ldots, j_s \in I$ such that

$$a = u\pi_{i_1} \cdots \pi_{i_r} b^2,$$

$$a' = u'\pi_{j_1} \cdots \pi_{j_s} (b')^2.$$

If $v(a) \neq v(a')$, say v(a) < v(a'), then v(a+a') = v(a). Hence, a+a' = ca for some $c \in U_v$. Note that $\frac{a'}{a} \in I_v$. Thus, from $1 + \frac{a'}{a} = c$ follows $\overline{c} = \overline{1}$. We obtain $a + a' = cu\pi_{i_1} \cdots \pi_{i_r} b^2$.

As $a \in P(\eta, Q)$ we have

$$Q \ni \eta(i_1) \cdots \eta(i_r) \overline{u} = \eta(i_1) \cdots \eta(i_r) \overline{1} \overline{u}$$
$$= \eta(i_1) \cdots \eta(i_r) \overline{c} \overline{u}.$$

Hence $a + a' \in P(\eta, Q)$.

If v(a) = v(a'), then $\{i_1, \ldots, i_r\} = \{j_1, \ldots, j_s\}$. Further b' = bu'' for some $u'' \in U_v$. Hence

$$a + a' = (u + u'(u'')^2)b^2\pi_{i_1}\cdots\pi_{i_r}.$$

If $\eta(\pi_{i_1})\cdots\eta(\pi_{i_r})=1$, then $\overline{u},\overline{u'}\in Q$ and hence

$$\overline{u + u' + (u'')^2} = \eta(\pi_{i_1}) \cdots \eta(\pi_{i_r}) \overline{u + u' + (u'')^2} \in Q,$$

i.e. $a + a' \in P(\eta, Q)$.

If $\eta(\pi_{i_1})\cdots\eta(\pi_{i_r})=-1$, then $-\overline{u},-\overline{u'}\in Q$. Hence

$$-\overline{u+u'(u'')^2} = \eta(\pi_{i_1})\cdots\eta(\pi_{i_r})\overline{u+u'(u'')^2} \in Q,$$

and therefore $a + a' \in P(\eta, Q)$.

In order to prove that $P(\eta, Q)$ is closed under multiplication, we extend η to an \mathbb{F}_2 -linear map from $\overline{\Gamma}$ to $\{-1, 1\}$. We define $\eta(\overline{v(\pi_i)}) = \eta(i)$, which determines the map completely. By composing

$$K^* \xrightarrow{v} \Gamma \to \overline{\Gamma} \xrightarrow{\eta} \{-1, 1\}$$

we obtain a group homomorphism $K^* \to \{-1,1\}$, which we also denote by η . We have $a \in P(\eta,Q)$ if and only if $\eta(a)\overline{u} \in Q$ for all $a \in K^*$. From this it follows at once that $aa' \in P(\eta,Q)$ for $a,a' \in P(\eta,Q)$.

As $Q \cup -Q = Kv$, it is clear from the definition that

$$P(\eta, Q) \cup -P(\eta, Q) = K$$

and as $-1 \notin Q$, it is clear that $-1 \notin P(\eta, Q)$.

Further note that $1 + I_v \subseteq P(\eta, Q)$. Thus, K_v is $P(\eta, Q)$ -convex. This shows that $P(\eta, Q)$ is a positive cone of K and that K_v is $P(\eta, Q)$ -convex.

Let $\underline{u} \in U_v \cap P(\eta, Q)$. Then it follows from the definition that $\overline{u} \in Q$. Hence $\overline{P(\eta, Q)} \subseteq Q$. As $\overline{P(\eta, Q)}$ and Q are both positive cones, $\overline{P(\eta, Q)} = Q$. Moreover, $\pi_i \in P(\eta, Q) \Leftrightarrow \eta(\pi_i) = 1$ is clear from the definition. This proves surjectivity of the map described in the claim.

Injectivity: Assume P is mapped to (η, Q) . It is clear from the definition that $P(\eta, Q) \subseteq P$ and hence P and $P(\eta, Q)$ are both positive cones, i.e. $P(\eta, Q) = P$.

Remark 2.2. $\Theta(\leqslant) := \{x \in K : x, -x \leqslant a \text{ for some } a \in \mathbb{Z}\}$, called the \leqslant -convex hull of \mathbb{Z} , defines a valuation ring on K which is non-trivial iff \leqslant is non-Archimedean.

Corollary 2.3. The field K admits a non-trivial ordering iff K carries a non-trivial valuation with real residue field.

Proof. Assume that \leq is a non-Archimedean ordering on K. Then $\Theta(\leq)$ is non-trivial and \leq -convex. By Baer-Krull, P_{\leq} corresponds to $(\eta_{P_{\leq}}, \overline{P_{\leq}})$. In particular, \overline{P}_{\leq} is a positive cone on Kv, i.e. Kv is real.

Conversely, let $\Theta = \Theta_v$ be a non-trivial valuation ring on K. Let Q be an ordering on its residue field Kv. Choose $\eta = 1$ the constant map. Then there exists an ordering P of K for which Θ is P-convex and $\eta = \eta_P$ and $Q = \overline{P}$. Note that $\Theta(\leqslant) \subseteq \Theta$, hence $\Theta(\leqslant) \neq K$, and therefore the ordering is non-Archimedean.