REAL ALGEBRAIC GEOMETRY LECTURE NOTES (13: 28/05/15)

SALMA KUHLMANN

Contents

The field of generalized power series
Hardy fields

1. The field of generalized power series

In order to prove that k((G)) is a field, we have seen that it suffices to find a multiplicative inverse for $f \in k((G))$ of the form f = 1 + s, where v(s) > 0, i.e. support $s \subset G^{>0}$. We already constructed $(1 + s)^{-1}$ via the expansion which gives a summable series by Neumann's lemma.

Today we give an alternative proof by S. Prieß-Crampe, which capitalizes on the fact that k(G) is pseudo-complete.

Proof. Let $v := v_{\min}$ be the canonical valuation on the Hahn product k((G)); that is $v(f) = \min \text{ support } f \text{ for } f \neq 0, \ f \in k((G))$. It is enough, as noted, to find an inverse for $f = 1 + s, \ s \neq 0$ with v(s) > 0. Note that v(f) = 0 and f(0) = 1. Denote $\mathbb{K} := k((G))$ and consider the set

$$\Sigma := \{ v(1 - fy) : y \in \mathbb{K} \text{ and } 1 - fy \neq 0 \}.$$

Note that $\Sigma \neq \emptyset$.

Case 1: Σ has a largest element α . Let $\tilde{y} \in \mathbb{K}$ be such that $v(1 - f\tilde{y}) = \alpha$. Set $z := 1 - f\tilde{y}$ and $\hat{y} := \tilde{y} + z(\alpha)t^{\alpha}$. Compute

$$v(1 - f\hat{y}) = v(1 - f\tilde{y} - fz(\alpha)t^{\alpha})$$

$$\geqslant \min\{v(1 - f\tilde{y}), v(fz(\alpha)t^{\alpha})\} = \alpha.$$

On the other hand

$$(1 - f\hat{y})(\alpha) = (1 - f\tilde{y})(\alpha) - (fz(\alpha)t^{\alpha})(\alpha)$$
$$= z(\alpha) - z(\alpha)$$
$$= 0.$$

Thus $v(1 - f\hat{y}) > \alpha$, a contradiction to the maximal choice of α , unless $1 - f\hat{y} = 0$, so $1 = f\hat{y}$ and therefore $\hat{y} = f^{-1}$.

(**Recall:** In chapter 1 we have shown that \mathbb{K} is pseudo-complete, or equivalently, maximally valued).

Case 2: Σ has no largest element. Thus, there is a strictly increasing sequence $\{\pi_{\rho}\}_{\rho<\sigma}$ of Σ where σ is a limit ordinal and $\{\pi_{\rho}\}_{\rho<\sigma}$ is cofinal in Σ .

For every $\rho < \sigma$ choose $y_{\rho} \in \mathbb{K}$ such that $v(1 - fy_{\rho}) = \pi_{\rho}$. Now for $\mu < \nu < \sigma$ we have $\pi_{\mu} < \pi_{\nu}$. We claim that $\{y_{\rho}\}_{\rho < \sigma}$ is pseudo-Cauchy. Indeed

$$v(y_{\mu} - y_{\nu}) = v(1 - fy_{\mu} + 1 - fy_{\nu})$$

= \text{min}\{\pi_{\mu}, \pi_{\nu}\} = \pi_{\nu}.

So the sequence is indeed pseudo-Cauchy. Now since \mathbb{K} is pseudo-complete let y^* be a pseudo-limit of $\{y_\rho\}_{\rho<\sigma}$, i.e. $v(y^*-y_\rho)=\pi_\rho$ for all $\rho<\sigma$. Assume that $1-fy^*\neq 0$. Then $\tau:=v(1-fy^*)\in\Sigma$. By cofinality of $\{\pi_\rho\}_{\rho<\sigma}$ there is a ρ large enough such that $\tau<\pi_\rho$. On the other hand

$$\tau = v(1 - fy^*) = v(1 - fy_{\rho} + fy_{\rho} - fy^*)$$

 $\geqslant \min\{v(1 - fy_{\rho}), v(fy_{\rho} - fy^*)\}$
 $\geqslant \pi_{\rho},$

a contradiction.

Remark 1.1.

(i) We have used the fact that for $0 \neq s, r \in \mathbb{K}$, we have

$$v_{\min}(sr) = v_{\min}(s) + v_{\min}(r).$$

This follows immediately from the definition of multiplication of series in the convolution product.

(ii) Note that here the pseudo-limit y^* turns out to be unique. We can conclude that the breadth of $\{\pi_\rho\}_{\rho<\sigma}$ is $\{0\}$.

In conclusion, for $k \subseteq \mathbb{R}$ an Archimedean field and G any non-trivial ordered abelian group, the field $\mathbb{K} = k((G))$ endowed with $<_{\text{lex}}$ is a totally ordered non-Archimedean field. Its natural valuation is v_{\min} , its value group is G and its residue field k. Note that in general k((G)) needs not to be a real closed field.

In the next chapter we will give necessary and sufficient conditions on k and G such that $\mathbb{K} = k(G)$ is a real closed field.

2. Hardy fields

Definition 2.1. Consider the set of all real valued functions defined on positive real half lines:

$$\mathcal{F} := \{ f \mid f : [a, \infty) \to \mathbb{R} \text{ or } f : (a, \infty) \to \mathbb{R}, a \in \mathbb{R} \} \cup \{-\infty\}.$$

П

Define an equivalence relation on \mathcal{F} by

$$f \sim g \iff \exists N \in \mathbb{N} \text{ s.t. } f(x) = g(x) \ \forall x \geqslant N.$$

Let [f] denote the equivalence class of f, also called the "germ of f at ∞ ". We identify $f \in \mathcal{F}$ with its germ [f].

We denote by $\mathcal{G} := \mathcal{F}/\sim$ the set of all germs. Note that \mathcal{G} is a commutative ring with 1 by defining

$$[f] + [g] := [f + g]$$
$$[f] \cdot [g] := [f \cdot g]$$

Note that \mathcal{G} is not a field. For example $[\sin x]$ is not invertible.

Definition 2.2. A subring H of \mathcal{G} is a **Hardy field** if it is a field with respect to the operations above and if it is closed under differentiation of germs, i.e. $\forall f \in H : f' \in H$ exists and is well-defined ultimately (i.e. for all $x > N \in \mathbb{N}$).

Remark 2.3. (defining a total order on a Hardy field).

Let H be a Hardy field and $f \in H$, $f \neq 0$. Since $1/f \in H$, $f(x) \neq 0$ ultimately. Moreover since $f' \in H$, f is ultimately differentiable and thus ultimately continuous. Therefore, by the Intermediate Value Theorem, the sign of f is ultimately constant and non-zero (i.e. f is strictly positive on some interval (N, ∞) or f is strictly negative on some interval (N, ∞)). Thus we can define

$$f > 0$$
 if ult sign $f = 1$,

respectively

$$f < 0$$
 if ult sign $f = -1$.

Verify that (H, <) is a totally ordered field.