REAL ALGEBRAIC GEOMETRY LECTURE NOTES $(12: 21/05/15)$

SALMA KUHLMANN

CONTENTS

1. Proof of Neumann's lemma

The first aim of today's lecture is to prove Neumann's lemma. By what was shown last time, we then obtain that $k((G))$ is indeed a field.

Proposition 1.1. Set $S_n := \text{support } \varepsilon^n$ and $S := \bigcup_{n \in \mathbb{N}} S_n$. Then S is a well-ordered set.

Remark 1.2. Note that support $\varepsilon^n \subseteq \text{support } \varepsilon \oplus \ldots \oplus \text{support } \varepsilon$ (n-times). Thus S_n is well-ordered for any $n \in \mathbb{N}$.

Proof. (of the proposition)

We argue by contradiction. Let $\{u_i : i \in \mathbb{N}\}\subseteq S$ be an infinite strictly decreasing sequence. We write

$$
u_i = a_{i_1} + \ldots + a_{i_{u_i}},
$$

where $a_{i_j} \in S_1 \subset G^{>0}$ $\forall j = 1, \ldots, u_i$. Let v_G denote the natural valuation on G.

UB: sign
$$
(g_1)
$$
 = sign (g_2) \Rightarrow $v_G(g_1 + g_2)$ = min $\{v_G(g_1), v_G(g_2)\}.$

Note that $v_G(u_i) = \min\{v_G(a_{i_j})\}$ $\widetilde{\mathrm{wlog}}$ $v_G(a_{i_1})$. Thus $v_G(S_u) = v_G(S_1)$.

Now recall that

$$
0 < g_1 < g_2 \Rightarrow v_G(g_1) \geq v_G(g_2).
$$

Since $v_G(S_1)$ is anti well-ordered and since $\{v_G(u_i) : i \in \mathbb{N}\}\subset v_G(S_1)$ is an increasing sequence, it must stabilize after finitely many terms. We assume without loss of generality that it is constant and denote this constant by $U \in v_G(G \setminus \{0\})$, without loss of generality U is as large as possible. So for every $i \in \mathbb{N}$ consider $v_G(u_i) = U = v_G(a_{i_1})$. Let a^* be the smallest element in S_1 for which $v_G(a^*) = U$.

We have that $v_G(u_1) = U = v_G(a^*)$, so $0 < u_1 \leqslant ra^*$ for some $r \in \mathbb{N}$. Fix r. Then $u_i \leqslant ra^*$ $\forall i \in \mathbb{N}$. Since S_1 is well-ordered, it does not contain any

2 SALMA KUHLMANN

infinite decreasing sequence, so without loss of generality we may assume $n_i > 1 \ \forall i \in \mathbb{N}$. So write $u_i = a_{i_1} + v_i$, where $v_i \in S_{n_i-1}$ and $v_i \neq 0 \ \forall i$.

Claim: There is a subsequence $\{v_{i_k}\}\$ of $\{v_i\}$ which is strictly decreasing.

Let us construct this subsequence. Note that the set $\{u_i - v_i : i \in \mathbb{N}\}\$ is well-ordered. Proceed as follows:

Let $u_{i_1} - v_{i_1}$, let $u_{i_2} - v_{i_2}$ be the smallest element of $\{u_i - v_i : i > i_1\}$ etc., so $\{u_{i_k} - v_{i_k}\}_k$ is an increasing sequence, i.e. $u_{i_{k+1}} - v_{i_{k+1}} \geq u_{i_k} - v_{i_k}$, so

$$
v_{i_{k+1}} - v_{i_k} \leqslant u_{i_{k+1}} - u_{i_k}
$$

.

Therefore ${v_{i_k}}$ is strictly decreasing in S, and this proves the claim.

Now note that $0 < v_i < u_i$ $\forall i$. Therefore $v_G(v_i) \geq v_G(u_i) = U$, i.e. $v_G(v_{i_k}) = U \ \forall k.$

But now $a^* \leq a_{i_1}$ and $u_i \leqslant ra^*$. Hence

 $v_i = (u_i - a_{i_1}) \leqslant (r - 1)a^* \; \forall i,$

in particular for all i_k , so $v_{i_k} \leqslant (r-1)a^*$ $\forall k$ and $\{v_{i_k}\}\$ is strictly decreasing with $v_G(v_{i_k}) = U \ \forall k$.

Repeat the argument with the sequence ${v_{i_k}} \subset S \subset G^{>0}$ to eventually get a sequence $\leq (r - l)a^* < 0$, the desired contradiction.

Proposition 1.3. $\forall q \in G : |\{n \in \mathbb{N} : q \in S_n\}| < \infty$.

Proof. Assume $\exists a \in G$ such that $|\{n \in \mathbb{N} : a \in S_n\}| = \infty$. Note that $a \in S$ and since S is well-ordered we may choose a to be the smallest such element of S. Write

$$
a = a_{i_1} + \ldots + a_{i_{n_i}} \quad (*)
$$

where n_i is strictly increasing in N and $a_{i_j} \in S_1$. So $\{a_{i_1} : i \in \mathbb{N}\}\subseteq S_1$ is well-ordered. Thus this set has an infinite increasing sequence, assume without loss of generality that ${a_{i_1} | i \in \mathbb{N}}$ is increasing.

Denote by $a'_i := a_{i_2} + \ldots + a_{i_{n_i}} \in S_{n_i-1}$, so $a'_i < a \ \forall i \in \mathbb{N}$. Since $(*)$ is constant and $\{a_{i_1}|i \in \mathbb{N}\}\$ is increasing, we obtain that $\{a'_i : i \in \mathbb{N}\}\$ is decreasing and contained in S. Therefore it stabilizes, i.e. becomes ultimately constant. Denote this constant by $a'_i := a' \forall i >> N$. So $a' \in S_{n_i-1}$, so

$$
|\{n \in \mathbb{N} : a' \in S_n\}| = \infty \ \forall i >> N
$$

and $a' < a$ because $a' = a'_i < a \forall i >> N$, contradicting the minimality of a. \Box

The two propositions finish the proof of Neumann's lemma.

 \Box

2. Real closed exponential fields

Definition 2.1. Let K be a real closed field and

 $\exp : (K, +, 0, <) \to (K^{>0}, \cdot, 1, <)$

such that exp is an order preserving isomorphism of ordered groups, i.e.

(i) $x < y \Rightarrow \exp(x) < \exp(y)$,

(ii) $\exp(x+y) = \exp(x)\exp(y)$.

Then $(K, +, 0, 1, <, exp)$ is called a real closed exponential field.

Question: Is the theory $T_{\text{exp}} = \text{Th}(\mathbb{R}, +, \cdot, 0, 1, <, \text{exp})$ decideable?

- Osgood proved that T_{exp} does not admit quantifier-elimination.
- \sim 1991 A. Wilkie showed that $T_{\rm exp}$ is o-minimal.
- In 1994 A. Wilkie and A. Macintyre showed that T_{exp} is decideable if Schanuel's conjecture is true. In fact they showed that $T_{\rm exp}$ is decideable, if and only if "a weak form of Schanuel's conjecture" is true.