REAL ALGEBRAIC GEOMETRY LECTURE NOTES $(17: 15/06/15)$

SALMA KUHLMANN

CONTENTS

1. Kaplansky's Embedding Theorem

In the last lecture we showed that

- (i) the value group of a real closed field K is isomorphic (as an ordered group) to a subgroup of $(K^{>0}, \cdot, 1, <)$.
- (ii) if K is a real closed field, then every maximal Archimedean subfield of K is isomorphic to \overline{K} (with respect to the natural valuation), and there exist such Archimedean subfields (lemma of Zorn). Therefore the residue field \overline{K} is isomorphic to some subfield of K.
- (*iii*) If $k[G]$ is a group ring, then $\operatorname{ff}(k[G]) = k(G) = k(t^g : g \in G)$ is the smallest subfield of $k((G))$ generated by $k \cup \{t^g : g \in G\}.$

Theorem 1.1. (Kaplansky's "sandwiching" or embedding theorem for ref) Let K be a real closed field, G its value group and k its residue field. Then there exists a subfield of K isomorphic to $k(G)^{rc}$.

Moreover, every such isomorphism extends to an embedding of K into $k((G))$,

$$
K \xrightarrow{\mu} k((G))
$$

\n
$$
\downarrow \qquad \qquad |
$$

\n
$$
l(\mathbb{B})^{\text{rc}} \xrightarrow{\mu_0} k(G)^{\text{rc}}
$$

i.e. K is isomorphic to a subfield $\mu(K)$ such that $k(G)^{rc} \subseteq \mu(K) \subseteq k((G))$.

Proof. Let $l \subset K$ be a subfield isomorphic to k and let \mathbb{B} be a subgroup isomorphic to G. More precisely, $\mathbb B$ is a multiplicative subgroup of $(K^{>0}, \cdot, 1, <)$ isomorphic to the multiplicative subgroup $\{t^g : g \in G\}$ of monomials in $k((G))$. Consider the subfield of K generated by $l \cup \mathbb{B}$, i.e. the subfield $l(\mathbb{B})$ and we take its relative algebraic closure in K. It is clear that \exists isomorphism $\mu: l(\mathbb{B})^{\text{rc}} \to k(G)^{\text{rc}}$.

2 SALMA KUHLMANN

Claim 1: the extension $l(\mathbb{B})^{\text{rc}} \subseteq K$ is immediate.

This is because the residue field of a real closure equals the real closure of the residue field equals the residue field of K . So the value group of the real closure is the divisible hull of the value group $=G$. So the extension is value group preserving and residue field preserving. Therefore the extension is immediate.

Now consider the collection of all pairs (M, μ) where M is a real closed subfield of K containing $l(\mathbb{B})^{\text{rc}}$ and $\mu: M \hookrightarrow k((G))$ is an embedding of M extending μ_0 . We partially order this collection the obvious way, i.e.

$$
(M_1, \mu_1) \leqslant (M_2, \mu_2) :\Leftrightarrow M_1 \subseteq M_2, \mu_2_{|\mu_1} = \mu_1.
$$

It is clear that every chain $\mathcal C$ in this collection has an upper bound in it, namely $\bigcup \mathcal{C}$. So the hypothesis of Zorn's lemma is verified. Therefore, we find some maximal element (M, μ) .

Claim 2: $M = K$.

We argue by contradiction. If this is not the case, let $y \in K \backslash M$. Note that y is transcendental over M. Also since $K \supseteq M$ is immediate, y is a pseudolimit of a pseudo-Cauchy sequence $\{y_\alpha\}_{\alpha \in S} \subset M$ without a limit in M. Set $z_{\alpha} := \mu(y_{\alpha})$, so $\{z_{\alpha}\}_{{\alpha} \in S} \subset k((G))$ is a pseudo-Cauchy sequence and $k((G))$ is pseudo-complete, so choose $z \in k((G))$ a pseudo-limit of $\{z_\alpha\}_{\alpha \in S}$.

Claim 3: z is transcendental over $\mu(M)$.

This is because $z \notin \mu(M)$. Otherwise $\mu^{-1}(z) \in M$ would be a pseudo-limit of $\{y_{\alpha}\}_{{\alpha}\in S} = {\mu}^{-1}(z_{\alpha})\}_{{\alpha}\in S}$ in M, a contradiction.

Therefore $M(y) \cong \mu(M)(z)$ as fields and $M(y)$ ^{rc} $\cong \mu(M)(z)$ ^{rc}, contradicting the maximality of (M, μ) .

Chapter III: Convex valuations on ordered fields:

2. Convex valuations

Let K be a non-Archimedean ordered field. Let v be its non-trivial natural valuation with valuation ring K_v and valuation ideal I_v .

Definition 2.1. Let w be a valuation on K . We say that w is compatible with the order (or convex) if $\forall a, b \in K$

$$
0 < a \leqslant b \Rightarrow w(a) \geqslant w(b).
$$

Example 2.2. We have seen that the natural valuation is compatible with the order. Moreover, K_v is convex.

Proposition 2.3. (Characterization of compatible valuations). The following are equivalent:

- (1) w is compatible with the order of K .
- (2) K_w is convex.
- (3) I_w is convex.
- (4) $I_w < 1$.
- (5) $1 + I_w \subseteq K^{>0}$.
- (6) The residue map

 $K_w \rightarrow Kw, a \mapsto a + I_w$

induces an ordering on Kw given by

$$
a + I_w \geq 0 \iff a \geq 0.
$$

(7) The group

$$
\mathcal{U}_{w}^{>0} := \{ a \in K : w(a) = 0 \ \land \ a > 0 \}
$$

of positive units is a convex subgroup of $(K^{>0}, \cdot, 1, <)$.

Proof. (1) \Rightarrow (2). $0 < a \leq b \in K_w \Rightarrow w(a) \geq w(b) \geq 0 \Rightarrow a \in K_w$.

 $(2) \Rightarrow (3)$. Let $a, b \in K$ with $0 < a < b \in I_w$. Since $w(b) > 0$, it follows that $w(b^{-1}) = -w(b) < 0$ and then $b^{-1} \notin K_w$.

Therefore also $a^{-1} \notin K_w$, because $0 < b^{-1} < a^{-1}$ and K_w is convex by assumption. Hence $w(a) > 0$ and $a \in I_w$.

 $(3) \Rightarrow (4)$. Otherwise $1 \in I_w$ but $w(1) = 0$, contradiction.

 $(4) \Rightarrow (5)$. Clear.