REAL ALGEBRAIC GEOMETRY LECTURE NOTES $(16: 11/06/15)$

SALMA KUHLMANN

CONTENTS

1. Real closed fields of power series

Notation 1.1. For $\mathbb{K} = k((G))$ let $k(G)$ denote the subfield of \mathbb{K} generated by $k \cup \{t^g : g \in G\}.$

Theorem 1.2. Let K be a real closed field, v its natural valuation, $G =$ $v(K^*)$ its value group, \overline{K} its residue field. Then K is order isomorphic to a subfield $i(K)$ such that

$$
\overline{K}(G)^{\rm rc} \subseteq i(K) \subseteq \overline{K}((G)).
$$

Remark 1.3. We denote by $k(G)$ ^{rc} the relative algebraic closure of $k(G)$ in K. Note that if K is real closed, then $k(G)^{rc}$ is (isomorphic to) the real closure of $k(G)$ (i.e. K is "sandwiched" between two real closed fields of power series).

Remark 1.4. Note about $k(G)$:

 (i) Consider all series in K which have finite support and denote it by $k[G] := \{ s \in \mathbb{K} : \text{support}(s) \text{ is finite} \}.$

 $UB: k[G]$ is a subring of K, so it is a domain, called the group ring over k and the group G .

Excurs about $k[G]$: Let $s \in k[G]$, support $(s) = \{g_1, \ldots, g_r\}, r \in \mathbb{N}$, i.e. there are coefficients $c_1, \ldots, c_r \in k$ such that $s = c_1 t^{g_1} + \ldots + c_r t^{g_r}$, so the group ring $k[G]$ can be viewed as the ring of "polynomials" with coefficients in k and variables in $\{t^g : g \in G\}.$

Example: If $G = \mathbb{Z}$, say $k = \mathbb{R}$ or $k = \mathbb{C}$, then $k[G]$ is called the ring of Laurent polynomials.

(*ii*)
$$
k(G) = \text{ff}(k[G]) = k(t^g : g \in G).
$$

2 SALMA KUHLMANN

2. Embedding of the value group

The aim of this section is to prove that the value group of a real closed field K under its natural valuation can be embedded into the multiplicative subgroup $(K^{>0}, \cdot, 1, <)$.

Proposition 2.1. Let K be an ordered field and $G = v(K^*)$, where v denotes the natural valuation.

(i) the map

$$
\nu : (K^{>0}, \cdot, 1, <) \to G, \, a \mapsto -v(a) = v(a^{-1})
$$

is a surjective homomorphism of ordered groups with kernel

$$
U_v^{>0} = \{ a \in K_v : a > 0, v(a) = 0 \}.
$$

So $U_v^{>0}$ is a convex subgroup of $(K^{>0}, \cdot, 1, <)$ and $K^{>0}/U_v^{>0} \cong G$.

(ii) if moreover $K^{>0}$ is divisible (in particular this is the case if K is real closed), then $(K^{>0}, \cdot, 1, <) = B \cdot U_v^{>0}$, where B is a multiplicative subgroup of $(K^{>0}, \cdot, 1)$ and is isomorphic to G. (Note that $U_v^{>0}$ is also divisible)

Remark 2.2. Here we are considering $(K^{>0}, \cdot, 1, <)$ as a Q-vector space as follows:

- (*i*) $(K^{>0}, \cdot, 1, <)$ is an abelian group.
- (*ii*) Define the scalar map $\mathbb{Q} \times K^{>0} \to K^{>0}$, $(q, a) \mapsto a^q$. Use the Theorem from LA1 about existence and uniqueness up to isomorphism of a complement to a subspace in a vector space.
- Proof. (of the proposition)
	- (i) Note that

$$
\nu(ab) = -v(ab) = -v(a) - v(b) = \nu(a) + \nu(b).
$$

To show surjectivity let $g \in G$. For $g = 0$ set $a = 1$. Otherwise let $a > 0$, $a \in K$ such that $-v(a) = g$ (then $v(a) = g$).

Order-preserving: Let $a \ge 1$. Show $\nu(a) \ge 0$, i.e. $-\nu(a) \ge 0$ or $\nu(a) \leq \nu(1)$ (via Archimedean equivalence classes). Compute kernel:

$$
a \in \text{ker } \nu \Leftrightarrow \nu(a) = 0 \Leftrightarrow -\nu(a) = 0 \Leftrightarrow \nu(a) = 0 \Leftrightarrow a \in U_v^{>0},
$$

since
$$
a \in K^{>0}
$$
.

 \Box

Corollary 2.3. If K is a totally ordered field such that $(K^{>0}, \cdot, 1)$ is divisible (in particular if K is real closed), then there exists an order preserving embedding of $v(K^*)$ into $(K^{>0}, \cdot, 1, <)$.

3. Embedding of the residue field

In this section we prove that the residue field of a real closed field K , with respect to the natural valuation, embedds in K.

Proposition 3.1. Let K be a real closed field. Then there exists a subfield of K which is isomorphic to the residue field \overline{K} of K with respect to the natural valuation (i.e. the residue field embedds in K).

Proof. We want to apply Zorn's lemma to the collection Θ of all Archimedean subfields of K , which is partially ordered under inclusion. Note that $\mathbb Q$ is Archimedean, i.e. Θ is non-empty. Now let $\mathcal{C} \subseteq \Theta$ be a totally ordered subset. We need to find an upper bound in Θ . Set $\mathcal{S} = \bigcup \mathcal{C}$ and verify that this is indeed an upper bound.

Let $k \subseteq K$ be a maximal Archimedean subfield. We will show $k \cong \overline{K}$. Note that $k^* \subset U_v$. Consider the residue map $k \to \overline{K}$, $x \mapsto \overline{x}$. This is an injective homomorphism. We claim that it is also surjective.

First of all note that k is real closed. This is because the real closure of an Archimedean field is Archimedean. Moreover the real closure of a subfield of K_v is a subfield of K_v . Indeed $v(z) = 0$ for any z in the relative algebraic closure of k, beause $v(z)$ is in the divisible hull $v(k) = \{0\}$ of $v(k)$. So the relative algebraic closure of k , if a proper extension, would contradict the maximal choice of k.

Now assume the residue map is not surjective, i.e. $\exists \overline{y} \in \overline{K} \backslash \overline{k}$. Let $y \in U_v$ denote a preimage of \overline{y} . We claim that $k(y) \subseteq U_y$ is Archimedean. Note that y is transcendental, so $k(y) = ff(k[y])$. Consider $a_n y^n + \ldots + a_0 \in k[y]$. Then

$$
\overline{a_n y^n + \ldots + a_0} = \overline{a_n} \, \overline{y}^n + \ldots + \overline{a_0} = 0,
$$

i.e. \bar{y} weould be algebraic.

So any $z \in k(y)$ has $\overline{z} \neq 0$, so $k(y) \subset U_y$ and is Archimedean (because $\forall z \in k(y) : v(z) = 0$, so $z \sim^{+} 1$, contradicting the maximality of k.

 \Box