REAL ALGEBRAIC GEOMETRY II LECTURE NOTES (02: 16/04/15)

SALMA KUHLMANN

Contents

1.	Hahn valued modules
2.	Well-ordered sets

1

1

1. HAHN VALUED MODULES

The **Hahn sum** is the Z-submodule of $\prod_{\gamma \in \Gamma} B(\gamma)$ consisting of all elements with finite support. We denote it by

$$\bigsqcup_{\gamma \in \Gamma} B(\gamma) := \left\{ s \in \prod_{\gamma \in \Gamma} B(\gamma) : |\mathrm{supp}(s)| < \infty \right\}$$

We endow $\bigsqcup_{\gamma \in \Gamma} B(\gamma)$ with the valuation

$$v_{\min} \colon \bigsqcup_{\gamma \in \Gamma} B(\gamma) \longrightarrow \Gamma \cup \{\infty\}$$
$$v_{\min}(s) = \min \operatorname{support}(s).$$

(convention: $\min \emptyset = \infty$).

The **Hahn product** is the Z-submodule of $\prod_{\gamma \in \Gamma} B(\gamma)$ consisting of all elements with well-ordered support in Γ . We denote it by

$$\mathcal{H}_{\gamma \in \Gamma} B(\gamma) := \left\{ s \in \prod_{\gamma \in \Gamma} B(\gamma) : \mathrm{supp}(s) \text{ is a well-ordered subset of } \Gamma \right\}$$

We endow $H_{\gamma \in \Gamma} B(\gamma)$ with the valuation v_{\min} as well.

2. Well-ordered sets

We recall that a totally ordered set Γ is **well-ordered** if every non-empty subset of Γ has a least element, or equivalently if every strictly descending sequence of elements from Γ is finite.

Example 2.1.

(1) $Z = \mathbb{Z}$, assume $\Gamma = \{1, \ldots, n\}, B(\gamma) = \mathbb{Z}$. Then

$$\bigsqcup_{\gamma=1,\dots,n} B(\gamma) = \mathcal{H}_{\gamma=1,\dots,n} \, B(\gamma)$$

(2) $Z = \mathbb{Q}$, assume $\Gamma = \mathbb{N}$ (with natural order). order type \mathbb{N} = the first infinite ordinal number ω .

Let
$$B(\gamma) := \begin{cases} \mathbb{Q} & \text{if } \gamma \text{ is odd} \\ \mathbb{R} & \text{if } \gamma \text{ is even} \end{cases}$$

Then

$$\operatorname{H}_{\gamma \in \mathbb{N}} B(\gamma) = \prod_{\gamma \in \mathbb{N}} B(\gamma).$$

More generally this holds whenever Γ is a well-ordered set, i.e. whenever Γ is an ordinal.

(3) $\Gamma = -\mathbb{N}$ with natural order.

$$\bigsqcup_{\gamma \in -\mathbb{N}} B(\gamma) = \mathrm{H}_{\gamma \in -\mathbb{N}} B(\gamma)$$

More generally this holds whenever Γ is an anti well-ordered set, i.e. well-ordered under the order relation

$$\gamma_1 \leqslant^* \gamma_2 \Leftrightarrow \gamma_2 \leqslant \gamma_1.$$

(4) $\Gamma = \mathbb{Q}$. Then

$$\bigsqcup_{\gamma \in \mathbb{Q}} B(\gamma) \subsetneq \operatorname{H}_{\gamma \in \mathbb{Q}} B(\gamma) \subsetneq \prod_{\gamma \in \mathbb{Q}} B(\gamma).$$

Note that every countable ordinal is the order type of a wellordered subset of \mathbb{Q} .

Theorem 2.2. (Cantor)

Every countable dense linear order without endpoints is isomorphic to \mathbb{Q} .

Definition 2.3.

(i) A linear order Q is **dense** if

 $\forall q_1 < q_2 \in Q \ \exists q_3 \in Q \text{ such that } q_1 < q_3 < q_2.$

(*ii*) A linear order has **no endpoints** if it has no least element and no last element.

Example 2.4.

- (i) \mathbb{Q} is dense because for $q_1 < q_2$ define $q_3 := \frac{q_1 + q_2}{2}$. \mathbb{R} is dense.
- (*ii*) \mathbb{Q} and \mathbb{R} have no endpoints.

 $\mathbf{2}$

3

Example 2.5.

(5) $\bigsqcup_{\gamma \in \mathbb{Q}^{<0}} B(\gamma) \quad \operatorname{H}_{\gamma \in \mathbb{Q}^{<0}} B(\gamma)$

 $q\mapsto -q$ $q\mapsto \frac{1}{-q}(q\neq 0)$ $0\mapsto 0$. Note that $\mathbb{Q}^{<0}:=\{q\in\mathbb{Q}:q<0\}$ has no endpoints.

$$\bigsqcup_{\gamma \in \mathbb{Q}^{<0}} B(\gamma) \cong \bigsqcup_{\gamma \in \mathbb{Q}} B(\gamma) \cong \bigsqcup_{\gamma \in \mathbb{Q}^{>0}} B(\gamma).$$

More generally let us now take $\Gamma = (q_1, q_2)$, the open intervall in \mathbb{Q} determined by $q_1 < q_2$. Note that $(q_1, q_2) \cong \mathbb{Q}$.

(6) $\Gamma = \mathbb{R}$. Then

$$\bigsqcup_{\gamma \in \mathbb{R}} B(\gamma) \subsetneq \operatorname{H}_{\gamma \in \mathbb{R}} B(\gamma) \subsetneq \prod_{\gamma \in \mathbb{R}} B(\gamma).$$

What are the well-ordered subsets of \mathbb{R} ?

- (i) all well-ordered subsets of $\mathbb{Q}!$
- (*ii*) all countable ordinals are the order type of some well-ordered subset of \mathbb{R} .

Now: Are the more?

Discussion: What is the cardinality of \mathbb{R} ?

$$|\mathbb{R}| = \left| \{0,1\}^{\mathbb{N}} \right| = |\{0,1\}|^{\mathbb{N}} = 2^{\aleph_0} = c := \text{ the continuum}$$

Therefore

$$c = |\mathfrak{P}(\mathbb{N})| > |\mathbb{N}| = \aleph_0.$$

More precisely: are there uncountable well-ordered subsets of \mathbb{R} ?