REAL ALGEBRAIC GEOMETRY II LECTURE NOTES (01: 13/04/15)

SALMA KUHLMANN

Contents

1.	Valued modules	1
2.	Hahn valued modules	3

Chapter I: Valued vector spaces

1. VALUED MODULES

All modules M considered are left Z-modules for a fixed ring Z with 1 (we are mainly interested in $Z = \mathbb{Z}$, i.e. in valued abelian groups).

Definition 1.1. Let Γ be a totally ordered set and ∞ an element greater than each element of Γ (Notation: $\infty > \Gamma$). A surjective map

$$v: M \longrightarrow \Gamma \cup \{\infty\}$$

is a valuation on M (and (M, v) is a valued module) if $\forall x, y \in M$ and $\forall r \in Z$:

- (i) $v(x) = \infty \iff x = 0$,
- (*ii*) v(rx) = v(x), if $r \neq 0$ (value preserving scalar multiplication),
- (*iii*) $v(x-y) \ge \min\{v(x), v(y)\}$ (ultrametric Δ -inequality).

Remark 1.2. $(i) + (ii) \Rightarrow M$ is torsion-free.

Remark 1.3. Consequences of the ultrametric Δ -inequality:

- (i) $v(x) \neq v(y) \Rightarrow v(x+y) = \min\{v(x), v(y)\},\$
- (ii) $v(x+y) > v(x) \Rightarrow v(x) = v(y)$.

Definition 1.4. $v(M) := \Gamma = \{v(x) : 0 \neq x \in M\}$ is called the value set of M.

SALMA KUHLMANN

Definition 1.5.

(i) Let (M_1, v_1) , (M_2, v_2) be valued Z-modules with value sets Γ_1 and Γ_2 respectively. Let

 $h: M_1 \longrightarrow M_2$

be an isomorphism of Z-modules. We say that h preserves the valuation if there is an isomorphism of ordered sets

 $\varphi \colon \Gamma_1 \longrightarrow \Gamma_2$

such that $\forall x \in M_1$: $\varphi(v_1(x)) = v_2(h(x))$.

(*ii*) Two valuations v_1 and v_2 on M are **equivalent** if the identity map on M preserves the valuation.

Definition 1.6.

(1) An ordered system of Z-modules is a pair

$$[\Gamma, \{B(\gamma) : \gamma \in \Gamma\}],\$$

where $\{B(\gamma) : \gamma \in \Gamma\}$ is a family of Z-modules indexed by a totally ordered set Γ .

(2) Two ordered systems

$$S_i = [\Gamma_i, \{B_i(\gamma) : \gamma \in \Gamma_i\}]$$
 $i = 1, 2$

are **isomorphic** (we write $S_1 \cong S_2$) if and only if there is an isomorphism

$$\varphi \colon \Gamma_1 \longrightarrow \Gamma_2$$

of totally ordered sets, and $\forall \gamma \in \Gamma_1$ an isomorphism of Z-modules

$$\varphi_{\gamma} \colon B_1(\gamma) \longrightarrow B_2(\varphi(\gamma)).$$

(3) Let (M, v) be a valued Z-module, $\Gamma := v(M)$. For $\gamma \in \Gamma$ set

$$M^{\gamma} := \{ x \in M : v(x) \ge \gamma \}$$
$$M_{\gamma} := \{ x \in M : v(x) > \gamma \}.$$

Then $M_{\gamma} \subsetneq M^{\gamma} \subsetneq M$. Set

$$B(M,\gamma) := M^{\gamma}/M_{\gamma}.$$

 $B(M, \gamma)$ is called **the (homogeneous) component correspond**ing to γ . The skeleton (*das Skelett*) of the valued module (M, v) is the ordered system

$$S(M) := [v(M), \{B(M, \gamma) : \gamma \in v(M)\}].$$

We write $B(\gamma)$ for $B(M, \gamma)$ if the context is clear.

 $\mathbf{2}$

(4) For every $\gamma \in \Gamma$, the **coefficient map** (*Koeffizient Abbildung*)

$$\pi^{M}(\gamma, -) \colon M^{\gamma} \longrightarrow B(\gamma)$$
$$x \mapsto x + M_{\gamma}$$

is the canonical projection.

We write $\pi(\gamma, -)$ instead of $\pi^M(\gamma, -)$ if the context is clear.

Lemma 1.7. The skeleton is an isomorphism invariant, i.e.

if
$$(M_1, v_1) \cong (M_2, v_2),$$

then $S(M_1) \cong S(M_2).$

 $\mathit{Proof.}$ Let $h\colon M_1\to M_2$ be an isomorphism which preserves the valuation. Then

$$\tilde{h}: v(M_1) \longrightarrow v(M_2)$$

defined by

$$h(v_1(x)) := v_2(h(x))$$

is a well-defined map and an isomorphism of totally ordered sets. For each $\gamma \in v(M_1)$, the map

$$h_{\gamma} \colon B_1(\gamma) \longrightarrow B_2(h(\gamma))$$

defined by

$$\pi^{M_1}(\gamma, x) \mapsto \pi^{M_2}(\tilde{h}(\gamma), h(x))$$

is well-defined and an isomorphism of modules.

2. HAHN VALUED MODULES

A system $[\Gamma, \{B(\gamma) : \gamma \in \Gamma\}]$ of torsion-free modules can be realized as the skeleton of a valued module through the following canonical construction:

Consider $\prod_{\gamma \in \Gamma} B(\gamma)$ the product module. For $s \in \prod_{\gamma \in \Gamma} B(\gamma)$ define

$$support(s) = \{ \gamma \in \Gamma : s(\gamma) \neq 0 \}.$$

3