REAL ALGEBRAIC GEOMETRY LECTURE NOTES (04: 20/04/15 - CORRECTED ON 02/05/2019)

SALMA KUHLMANN

$\operatorname{Contents}$

1.	Preliminaries	1
2.	Ordinals	2
3.	Arithmetic of ordinals	4

Additional lecture on Ordinals

1. Preliminaries

Theorem 1.1. (transfinite induction) If (A, <) is a well-ordered set and P(x) a property such that

 $\forall a \in A(\forall b < a \ P(b) \Rightarrow P(a)),$

then P(a) holds for all $a \in A$.

Proof. Consider the set

 $B := \{ b \in A : P(b) \text{ is false} \}.$

If $B \neq \emptyset$, let $b = \min B$. Then $\forall c < b \ P(c)$ is true but P(b) is false, a contradiction.

Definition 1.2. Let A be a well-ordered set. An initial segment of A is a set of the form $A_a := \{b \in A : b \leq a\}.$

Proposition 1.3. No proper initial segment of a well-ordered set (A, \leq) is $\cong A$.

Proof. Assume $f: A \to A_a$ is an isomorphism of ordered sets. Prove by induction

$$\forall x \in A : f(x) \ge x.$$

Since $A_a \subsetneq A$ we find some $b \in A \setminus A_a$, i.e. b > a. Therefore

$$f(b) \geqslant b > a,$$

contradicting $f(b) \in A_a$.

Definition 1.4. A set A is **transitive**, if $\forall a \in A \ \forall b \in a : b \in A$ (or equivalently $\forall a \in A : a \subseteq A$).

Lemma 1.5. Let A be a transitive set. Then \in is transitive on A if and only if a is transitive for all $a \in A$.

Lemma 1.6. A union of transitive sets is transitive.

2. Ordinals

Definition 2.1. A set α is an ordinal if

- (i) α is transitive,
- (*ii*) (α, \in) is a well-ordered set.

Notation 2.2. $Ord = \{ ordinals \}$

Remark 2.3. \in is an order on $\alpha \Rightarrow \in$ is transitive, i.e. $\forall a \in \alpha : a$ is transitive.

Proposition 2.4. \in *is a strict order on* Ord.

Proof. If $\alpha \in \beta \in \gamma$, then $\alpha \in \gamma$ by transitivity of γ . Therefore \in is transitive on Ord. Now let $\alpha \in \beta$. We claim $\beta \notin \alpha$. Otherwise $\alpha \in \beta \in \alpha$ and therefore $\alpha, \beta \in \alpha, \alpha \in \beta, \beta \in \alpha$, a contradiction.

We write $\alpha < \beta$ instead of $\alpha \in \beta$.

Example 2.5. Each $n \in \mathbb{N} = \{0, 1, \ldots\}$ is an ordinal

 $0 = \emptyset,$ $1 = \{0\},$ $2 = \{0, 1\},$ $3 = \{0, 1, 2\},$ \vdots $n = \{0, 1, \dots, n - 1\}.$

Moreover, $\mathbb{N} =: \omega$ is an ordinal.

Proposition 2.6. $\forall \alpha \in \text{Ord} : \alpha = \{\beta \in \text{Ord} : \beta < \alpha\}.$

Proof. Let $\beta \in \alpha$. Then β is transitive. Thus $\beta \subseteq \alpha$ and $(\beta, \epsilon) = (\alpha, \epsilon)_{\beta}$. \Box

Lemma 2.7. Let $\alpha, \beta \in \text{Ord such that } \alpha \subsetneq \beta$. Then $\min(\beta \setminus \alpha)$ exists and is $= \alpha$, so $\alpha \in \beta$.

Proof. Since $\beta \setminus \alpha \neq \emptyset$, $\gamma := \min(\beta \setminus \alpha)$ exists. To show: $\gamma = \alpha$. First let $\delta \in \gamma$, i.e. $\delta < \gamma$. Then $\delta \notin \beta \setminus \alpha$. Since $\delta \in \gamma \in \beta$, we have $\delta \in \beta$. Hence $\delta \in \alpha$.

Now let $\delta \in \alpha$. If $\delta > \gamma$, then $\alpha > \gamma$, i.e. $\gamma \in \alpha$, a contradiction. Therefore $\delta < \gamma$, i.e. $\delta \in \gamma$.

Lemma 2.8. $\alpha \leq \beta \Leftrightarrow \alpha \subseteq \beta$.

Proof.

 $\Rightarrow \text{ Clear if } \alpha = \beta. \text{ Otherwise } \alpha < \beta, \text{ i.e. } \alpha \in \beta \text{ and therefore } \alpha \subseteq \beta \text{ by transitivity.}$ $\leftarrow \alpha \subsetneq \beta \Rightarrow \alpha \in \beta \Rightarrow \alpha < \beta.$

Proposition 2.9. < (which is \in) is a total order on Ord.

Proof. Assume $\alpha \notin \beta$. Then $\alpha \not\subseteq \beta$. Hence $\beta \in \alpha$, i.e. $\beta < \alpha$.

Proposition 2.10. If $\alpha \neq \beta$, then $\alpha \ncong \beta$.

Proof. Without loss of generality $\alpha < \beta$, so α is an initial segment of β . \Box

Proposition 2.11. (Ord, <) is well-ordered.

Proof. Assume $\alpha_0 > \alpha_1 > \alpha_2 > \ldots$ then $(\alpha_0, <)$ is not well-ordered, a contradiction.

Proposition 2.12.

- (i) If $\alpha \in \text{Ord}$, then $\alpha \cup \{\alpha\} \in \text{Ord}$. $(\alpha + 1 := \alpha \cup \{\alpha\} \text{ is called the successor of } \alpha.)$
- (ii) If A is a set of ordinals, then $\bigcup A \in \text{Ord.}$ (sup $A := \bigcup A$ is the supremum of A.)

Remark 2.13.

- (i) $n+1 = \{0, \dots, n\} = \{0, \dots, n-1\} \cup \{n\}.$
- (ii) sup A is not always a max, e.g. $A = \{2n : n \in \omega\}$. Then sup $A = \omega$, but A has no max.
- (*iii*) If $\alpha \in \text{Ord}$, then $\sup \alpha = \alpha$.

Definition 2.14. An ordinal, which is not a successor, is called a **limit** ordinal.

Proposition 2.15. If $\alpha \in \text{Ord}$ and P(x) is a property such that

- (1) P(0) is true,
- (2) $\forall \beta \in \alpha(P(\beta) \Rightarrow P(\beta+1)),$
- (3) if $\beta \in \alpha$ is a limit ordinal, then $\forall \gamma < \beta \ P(\gamma) \Rightarrow P(\beta)$,

Then $P(\beta)$ holds for all $\beta \in \alpha$.

Theorem 2.16. If (A, <) is a well-ordered set, $\exists! \alpha \in \operatorname{Ord}, \exists! \pi : A \to \alpha$ an isomorphism.

Definition 2.17. This unique ordinal α is called the order type of A, written $\alpha = \operatorname{ot}(A)$.

Lemma 2.18. If $\exists \alpha \in Ord \ such \ that \ A \hookrightarrow \alpha$, then the theorem holds.

Proof. Let $\alpha = \min\{\beta \in \text{Ord} : A \hookrightarrow \beta\}.$

- (1) $\pi(0) = \min A$.
- (2) If $\pi(\beta)$ has been defined, either $\beta + 1 = \alpha$ (and we are done) or $\beta + 1 < \alpha$ and $A_{\pi(\beta)} \subseteq A$. Set $\pi(\beta + 1) = \min(A \setminus A_{\pi(\beta)})$.
- (3) If β is a limit ordinal and if $\pi(\gamma)$ has already been defined for all $\gamma < \beta$, we distinguish two cases:

If
$$\beta = \alpha$$
 we are done

If
$$\beta < \alpha$$
, set $B = \{\pi(\gamma) : \gamma < \beta\}$ and set $\pi(\beta) = \min(A \setminus B)$.

3. ARITHMETIC OF ORDINALS

Definition 3.1. We define the **ordinal sum** $\alpha + \beta$ by induction on β :

- $(i) \ \alpha + 0 = \alpha,$
- (*ii*) $\alpha + (\beta + 1) = (\alpha + \beta) + 1$,

(*iii*) if β is a limit ordinal, then $\alpha + \beta = \sup_{\gamma < \beta} (\alpha + \gamma)$.

Proposition 3.2.

_

- (i) $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$
- (ii) If $\beta < \gamma$, then $\alpha + \beta < \alpha + \gamma$.

Proof. We prove (i) by induction on γ .

- $\alpha + (\beta + 0) = \alpha + \beta = (\alpha + \beta) + 0$

$$\alpha + (\beta + (\gamma + 1)) = \alpha + ((\beta + \gamma) + 1)$$
$$= (\alpha + (\beta + \gamma)) + 1$$
$$= ((\alpha + \beta) + \gamma) + 1$$
$$= (\alpha + \beta) + (\gamma + 1).$$

$$\alpha + (\beta + \gamma) = \alpha + \sup_{\delta < \gamma} (\beta + \delta)$$
$$= \sup_{\delta < \gamma} (\alpha + (\beta + \delta))$$
$$= \sup_{\delta < \gamma} ((\alpha + \beta) + \delta)$$
$$= (\alpha + \beta) + \gamma.$$

REAL ALGEBRAIC GEOMETRY LECTURE NOTES(04: 20/04/15 - CORRECTED ON 02/05/2019)

Remark 3.3. + is not commutative, e.g. $1 + \omega \neq \omega + 1$.

Definition 3.4. We define the **ordinal product** $\alpha \cdot \beta$ by induction on β :

- $(i) \ \alpha \cdot 0 = 0,$
- (*ii*) $\alpha \cdot (\beta + 1) = (\alpha \cdot \beta) + \alpha$,
- (*iii*) if β is a limit ordinal, then $\alpha \cdot \beta = \sup_{\gamma < \beta} (\alpha \cdot \gamma)$.

Definition 3.5. We define the **ordinal exponentiation** α^{β} by induction on β :

- $(i) \ \alpha^0 = 1,$
- (*ii*) $\alpha^{\beta+1} = \alpha^{\beta} \cdot \alpha$,
- (*iii*) if β is a limit ordinal, then $\alpha^{\beta} = \sup_{\gamma < \beta} \alpha^{\gamma}$.

Proposition 3.6. Let F be the set of functions $\beta \to \alpha$ with finite support. Define

 $\begin{aligned} f < g :\Leftrightarrow f(\gamma) < g(\gamma), \\ where \ \gamma = \max\{\delta: f(\delta) \neq g(\delta)\}. \ Then \ \mathrm{ot}((F,<)) = \alpha^{\beta}. \end{aligned}$

Proposition 3.7.

- (i) $\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$,
- $(ii) \ \alpha^{\beta+\gamma} = \alpha^{\beta} \cdot \alpha^{\gamma},$
- (*iii*) $(\alpha^{\beta})^{\gamma} = \alpha^{\beta \cdot \gamma}$.

Remark 3.8.

- (i) $(\omega + 1) \cdot 2 \neq \omega \cdot 2 + 1 \cdot 2$,
- (*ii*) $(\omega \cdot 2)^2 \neq \omega^2 \cdot 2^2$.