SKETCH SOLUTIONS TO EXERCISE SHEET 12

Solution 12.1:
(a) The volume of Y'(s,0,7) is

/ dxldxg...dxs .
Y (s,0,7)

/ d.’El = / dl‘l =
Y (s,0,7) 0

Suppose the volume of Y'(s',0,7) is T " for all /< s.

Using Fubini we get that
T _ s—1
/ dridxs...dxs / wdazs .
Y (s,0,7) o (s—=1)!
—(1—z5)%|"
S (S - 1)' zs=0

So the volume of Y (s,0,7) is
(b) The volume of Y (s,t+1,7) is

Base case:

.
1

Induction step:

sl

/ dxldajg...dxsdaldbl...dat+1dbt+1 .
Y (s,t+1,7)

is

Using Fubini we get that ’fy(s t+1,7) dxidxs...dxsdaydb;...dags1dby

dagy1dbiiq| .

/ (m/2)' (T — 2(af, + b%+1)1/2)s+2t
2la2, \+b2, 1 |1/2<r (s +2t)!

Using the change of variables a;+1 = rcos(0), b1 = rsin(0) we get that
the volume of Y (s,t +1,7) is

T/2 27 _ s+2t
/ / (m/2)(r —20)" "%l
r= 60— S + Qt)

(b)Fix s € Ny. We show by induction on ¢ the volume of Y(s,t,7) is
(ﬂ/2)th+2t
(s+2t)!
Base case: If s > 1 then part (a) is the base case.
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The volume of Y (0,1, 7) is

/ dapdby| = / daidby
Y (0,1,7) la2+b2|1/2< /2

. This is just the area of a circle of radius 7/2, so the volume of Y(0, 1, 7) is
ar®  (n/2)7?

4 2

Induction step:
Suppose the volume of Y (s,t,7) is

(W/Z)th—th
(s +2t)!
By part (b) the volume of Y(s,t 4+ 1,7) is

T/2 2 s+2t
/ / (m/2)"(7 — 2r) rdrdf| .
r 6= 8 + Qt)

This is equal to

21 -

. (ﬂ-/z)t /7'/2(7_ _ 27")8+2t7"d7”
(8 + 2t>' r=0 ‘
A quick calculation gives us that for any n € Ny
1 d (1 — 2r)nt2
) —— C((r—2r)ntly -
=2 = s D ar <(T T S Ty
So the volume of Y (s,t+ 1,7) is
T/2
t 5+4+2t)+2
(m/2) ] 1 (r — 2T)(s+2t)+1,r _ (T — 27’)( )

(s+2t)! —2((s+2t)+1)

—-2-((s+2t)+2) -
This is
(77/2) 1 (7_)(5+2t)+2
(s+20)! —2((s+20)+1) —2-((s+2t)+2)|
So the volume of Y (s,t+1,7) is

(7r/2)t+17_s+2(t+1)
(s+2(t+ 1))!
Thus, by induction on ¢ we have that the volume of Y (s,¢,7) is
(W/Q)th—l-Qt
(s +2t)!
(d) The volume of X(s,t,7) is 2° times the volume of Y (s,t¢,7) since
X(s,t,7) is symmetric about the z;-axis for 1 <i <s.




Solution 12.2:
Let K = Q(v/d). The Minkowski bound cg is

1/4\'

— (=1 V|D

2 <7T> D]
where t is the number of pairs of complex embeddings of K in C and Dg is
the discriminant of K.

d 1] -3 7 | 2[3]6] 13 17
dmod 4| 3 1 1 2 | 3| 2 1 1
Dkl 4 8 | 1224 | 13 17

3 7
CK 4/m 2\/3/77 2\ﬁ/7r V2 V3| V6 \/E/Q \/ﬁ/Z

If cxg < 2 then all ideal classes of Ok contain an ideal of norm 1.
Thus all ideal classes of Ok contain a principal ideal. So Ok is a prin-
cipal ideal domain. The table above shows that cx is smaller than 2 for
d=-1,-3,-7,2,3 and 13. Thus, for these values of d, the ring of integers
Ok is a principal ideal domain.

For d = 6, cxk < 3. Thus every ideal class of O contains an ideal of
norm 1 or 2. So every ideal class contains a product of prime ideals which
either divide (2) or are principal.

Since —2 =22 — 612,

(2) = (2 —V6)(2 + V6).

Since
N(2—+6) = N2+ V6) = —2,
the ideals (2 — v/6) and (2 + v/6) are prime. Thus all ideal classes of O
contain a principal ideal. Therefore Ok is a principal ideal domain.

For d = 17, cx < 3. Thus every ideal class of O = Z[H'T\/ﬁ] contains
and ideal of norm 1 or 2. So every ideal class contains a product of prime
ideals which either divide (2) or are principal.

The ideals (1+ H%E> and (2 — (%)) both have norm 2. So they are

prime. Since
2) = (1

all ideal classes of Ok contain a principal ideal. Thus O is a principal
ideal domain.

1+2ﬁ><2_ <1+\/ﬁ>>’



Solution 2.3: Let K = Q(v/=5). Then Dx = —20 and cx = 2/20/7 <
3. So every ideal class of Ok contains an ideal of norm 1 or 2. If I <« Ok
and N(I) = 2 then [ is a prime ideal occurring in the factorisation of (2)
into prime ideals.

From Aufgabe 1.4 we have that

(2) = (2,1 4+ vV=5)(2,1 —/=5)
and that
(2,14 +v/=5) and (2,1 —v/—=5)

are prime.

The equation a? + 5b?> = 42 has no solution mod 5. Thus Z[v/—5] has no
elements with norm +2.

Let a,b € Z. We have that a + by/—5 € (2,1 ++/=5) if and only if a = b
mod 2. So N((2,1++/=5)) = 2.

Thus (2, 1+ +/=5) is not principal. So the class number of O is at least
2.

Thus the class group of Ok has two elements the ideal class of O and
the ideal class of (2,1 + v/—2).

Let K = Q(+/10). Then Dg = 40 and cx = v/40/2 = /10 < 4. In order
to calculate the class group we need need to find the prime factorisations of
(2) and (3).

Let a,b € Z. We have that a 4+ by/10 € (2,/10) if and only if @ is even.
Thus |Ox/(2,+/10)| = 2. So (2,/10) is prime and contains 2. Since

(2,V10)* = (4,2V10,10) = (2,2v10) = (2),

the ideal (2,+/10) is the only prime ideal dividing 2.

Suppose, for a contradiction, that (2,+/10) is principal with generator
a + byv/10. Then |N(a + byv/10)| = N((2,4/10)) = 2. So a? — 10b*> = £2. So
a? = 42 mod 5. But 2 and —2 are not squares mod 5. Thus (2,/10) is not
principal.

Let a,b € Z. We have that a 4 by/10 € (3,1 — 1/10) if and only if a = —b
mod 3. Thus |0k /(3,1 —+/10)| = 3. So (3,1 — /10) is prime.

Let a,b € Z. We have that a + bv/10 € (3,1 ++/10) if and only if a = b
mod 3. Thus |Ox /(3,1 ++/10)| = 3. So (3,1 4+ +/10) is prime.

Suppose, for a contradiction, that (3, 14-v/10) (respectively (3,1—+/10)) is
principal with generator a+bv/10. Then |N(a+bv/10)| = N((3,1++/10)) =
N((3,1 —+/10)) = 3. So a? — 10b®> = +3. So a®> = +3 mod 5. But 3 and
—3 are not a squares mod 5. Thus neither (3,1 + +/10) nor (3,1 ++/10) are
principal.

Since

(3,14+v10)(3,1 —V10) = (3),
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the ideals
(3,1 +v/10) and (3,1 — v10) =
are the only prime ideals dividing (3).
We now know that our class group contains at least 2 elements since
Z[/10] is not a principal ideal domain and at most 4 elements. Thus the

ideal class group of Ok is isomorphic to Zs, Zo X Zo or Z4.
Since —2 + /10 € (3,14 v/10) and —2 + /10 € (2,1/10), we know that

1(3,1+v10)(2,V10) = (=2 + V10

for some I < Ok.
Thus

N(I)-3-2= N(I)N({3,1 4+ V10)N((2,V/10)) = |[N(~2 4+ V10)| = 6.
So N(I) =1. Thus I = Ok. Thus
(3,14 v10)(2,V10) = (=2 +/10).

So our ideal class group has 2 elements: the ideal class of Ok and the
ideal class of (2,/10).



Solution 12.4:

(a) Let K = Q(v/d). Then Ox = Z[Vd]. Let 2,y € Z. The element
z + yvd € Ok has norm 1 if and only if 22 — dy? = 1. So it is enough
to show that there are infinitely many elements of Ok with norm 1. An
element a of Ok has norm =+1 if and only if a is a unit. The field K has 2
real embeddings into C. So by the Dirichlet unit theorem Oj; has free rank
1. Thus Oj contains an element u of infinite order. Since u is a unit, it
has norm +1. Thus, since the norm is multiplicative, w = «? has norm 1
and w™ has norm 1 for all n € N. Since u is of infinite order, so is w. Thus
w™ = w" implies n = m for all m,n € N. Thus Ok contains infinitely many
elements of norm 1.

(b) Let K = Q(vd). Then O = Z[X4]. Suppose that a,b € Z and

a+ bHT\/E has norm 1. Then
1—d
a’+ab+——b =1
4
So
4 = 4a® + 4ab + (1 — d)b* = (2a + b)? — db>.

Note that ifaA—bHT‘/E ;éc—l—dHT‘/E then a + 2b # ¢+ 2d or b # d. Thus it
is enough to show that Ok contains infinitely many elements with norm 1.
The field K has 2 real embeddings into C. So by the Dirichlet unit theorem
O has free rank 1. Using exactly the same argument as above we get that
Ok has infinitely many elements with norm 1.



Solution 12.5:

Let a,b € Z. The element a + by/3 is a unit in OQ(\/:;) = Z[\/g} if and
only if

a® —3b” = N(a +bV3) = 1.
If a + bv/3 is a torsion element of O then |a + bv/3| = 1. Since
1=|N(a+bV3)| = |a—bV3||a+ V3|,
we have that |a — bv/3| = 1. Thus
2= la+bV3| + |a — bV3| > |2al.

So1>lal. Soa=—1,0or 1. If a = 41 then b = 0 because a® — 3b*> = £1.
If a = 0 then a + by/3 is not a unit.

Thus the only torsion elements of O are £1.

The field Q(v/3) has two real embeddings. So by the Dirichlet unit theo-
rem the free rank of O is 1. So O is isomorphic to {£1} x Z.

We now show that if u € Oy is such that v > 1 and has the property

that:
for all w € Ok, w > 1 implies w > u

then Ok is generated by the set {—1,u}. Note that the following argument
works for all real quadratic extensions of Q.

First suppose that @ € O and « > 1. Since u > 1 there exists an n € N
such that u” < z < u™™!. So 1 < z/u™ < u. Since z/u™ is a unit by choice
of u, x = u"™.

Suppose = € O with 0 <z < 1. Then 1/ is a unit and 1/ > 1. Thus
there exists an n € N with 1/x =u". Soz =u™".

So for all z € OF with x > 0 there exists an n € Z such that u" = x.

Suppose z € Ok and x < 0. Then —z is a unit and —x > 0. Thus there
exists an n € Z such that —x = u™. So x = —u".

Thus all x € O are of the form +u™ for some n € Z.

It remains to show that 2 + /3 is a unit and that for all a,b € Z with

a? — 3b% = +1 and1<a+b\/§,
2+V3<a+bV3.

First note that N(2++/3) =22 —3 = 1. So 2+ /3 is a unit.

Suppose a,b € Z with a®>—3b> =1 and 1 < a+bv/3. Then 0 < a—bv/3 < 1.
Sol<2. Soa>1. SobvV3>a—1>0. Sob>1. So V3 <b/3 < a.
Thus 2 < a. Therefore 2 + /3 < a + b\/3.

Suppose a,b € Z with a®> — 30> = —1 and 1 < a + bv/3. Then 0 <
—a+bv3 <1 Sol<2V3b Sob>1. Since a > bv/3 —1 > 0, we have
a> 1. Now, if a4+bv3 < 24++v3 thena < 2. Soa = 1. So 1+bV3 < 24++/3.
So1<b< 2 But1l++/3isnota unit in Ok. Therefore 2+ /3 < a+ bv/3.



