8. Script zur Vorlesung: Algebra (B III) Prof. Dr. Salma Kuhlmann, Gabriel Lehéricy, Simon Müller WS 2016/2017: 22. November 2016

Terminology English/German

Unique factorization domain - faktorieller Ring Field - Körper Field of fractions - Quotientenkörper Principal ideal domain - Hauptidealbereich Field extension - Körpererweiterung Prime subfield of a field - Primkörper eines Körpers

UFD's and irreducible polynomials over integral domains

From the last lecture we have the following lemma and corollary:

Lemma 2.1 (Gauss' lemma)

Let R be a unique factorization domain (in German faktorieller Ring) with field of fractions F and $p(x) \in R[x]$. If p(x) = A(x)B(x) for some non-constant polynomials $A(x), B(x) \in F[x]$ then there exist $r, s \in F$ such that rA(x) = a(x) and sB(x) = b(x) are both in R[x] and p(x) = a(x)b(x).

Corollary 2.2

Let R be unique factorization domain with field of fractions F (in German: Quotientenkörper) and let $p(x) \in R[x]$. Suppose that the greatest common divisor of the coefficients of p(x) is 1. Then p(x) is irreducible in R[x] if and only if it is irreducible in F[x]. In particular, if p(x) is a monic polynomial that is irreducible in R[x] then p(x) is irreducible in F[x].

Theorem 2.3

A ring R is a unique factorization domain if and only if R[x] is a unique factorization domain.

Proof

The reserve direction was covered in the last lecture. Suppose R is a UFD (unique factorization domain). F is the field of fractions of R and $p(x) \in R[x]$ is non-zero.

Let d be the greatest common divisor of the coefficients of p(x) (NOTE: The greatest common divisor exists because R is a UFD.) and write p(x) = dq(x). The greatest common divisor of the coefficients of q is 1. Since R is a UFD, d can be factored in R into irreducibles and irreducibles in R remain irreducible in R[x] (this is simply because if $d \in R \setminus \{0\}$ and d = a(x)b(x) then deg(a(x)) = deg(b(x)) = 0; so $a(x), b(x) \in R$). We now attempt to write q(x) as a product of irreducibles in R[x]. Since F[x] is a UFD, there exist $q_1(x), q_2(x), \ldots, q_n(x) \in F[x]$ irreducible in F[x] such that $q(x) = q_1(x) \cdots q_n(x)$. Gauss' lemma means we may assume these factors are in R[x]. Since the greatest common divisor of the coefficients of q(x) is 1, the greatest common divisor of the coefficients of each of the $q_i s$ is also 1. Thus by corollary 2.2 each of these factors is irreducible in R[x]. Thus we can write p as a product of irreducible elements in R[x]:

$$d_1 \cdots d_m q_1(x) \cdots q_n(x)$$

where $d = d_1 \cdots d_m$ and each d_i is irreducible in R.

It remains to show that this factorization is unique up to ordering and multiplication by units. This is in Übungsblatt. $\hfill \Box$

Corollary 2.4

If R is a UFD then so is $R[x_1, \ldots, x_n]$.

Proof

Use induction on n.

We will give two methods for testing the irreducibility of a polynomial over an integral domain. Proposition 2.5

Let I be a prime ideal of an integral domain (in German: Integritätsbereich) R and let p(x) be a non-constant monic (in German: normiertes) polynomial in R[x]. If the image of p(x) in (R/I)[x] can't be factored in (R/I)[x] into two polynomials of smaller degree, then p(x) is irreducible.

Proof

Suppose p(x) is non constant, monic and reducible. Then $p(x) = a(x)b(x) \in R[x]$ with a(x), b(x) non-constant (if either a(x) or b(x) were constant then would be a unit, since p(x) is monic). We may assume that a(x) and b(x) are monic since p(x) is monic.

Let $\overline{p}(x), \overline{a}(x)$ and $\overline{b}(x)$ be the images of p(x), a(x) and b(x) in (R/I)[x]. Then $\overline{p}(x) = \overline{a}(x)\overline{b}(x)$ and since a(x) and b(x) are monic and non-constant, $\overline{a}(x)$ and $\overline{b}(x)$ are non-constant and monic. By comparing degrees $\overline{a}(x)$ and $\overline{b}(x)$ are polynomials of smaller degree than $\overline{p}(x)$.

The most common application of this result is to prove that a polynomial over \mathbb{Z} is irreducible. For instance consider the polynomial $X^4 + 9X^3 + 10X^2 + 22X + 1 \in \mathbb{Z}[X]$.

Its image in $\mathbb{Z}_2[X]$ is $X^4 + X^3 + 1$. It is clear that this polynomial does not have a root in \mathbb{Z}_2 (check 0 and 1). Thus if it were reducible, it must factor as a product of two irreducible polynomials in $\mathbb{Z}_2[x]$ of degree 2. If $p(x) \in \mathbb{Z}_2[X]$ is irreducible of degree 2 then its leading term is 1 and its constant term is also 1 since 0 is not a root. The polynomial $X^2 + 1$ has root 1. Therefore, there is only one irreducible polynomial of degree 2 in $\mathbb{Z}_2[X]$. That is $X^2 + X + 1$ (check it has no roots). But $(X^2 + X + 1)^2 = X^4 + X^2 + 1$. So $X^4 + X^3 + 1$ is irreducible over \mathbb{Z}_2 . Thus $X^4 + 9X^3 + 10X^2 + 22X + 1$ is irreducible over \mathbb{Z} .

Unfortunately this does not always work.

Proposition 2.6 (Eisenstein's Criterion)

Let \mathfrak{p} be a prime ideal of an integral domain $R, n \ge 1$ and let $f(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0$ be a polynomial in R[x]. Suppose $a_{n-1}, \ldots, a_0 \in \mathfrak{p}$ and $a_0 \notin \mathfrak{p}^2$. Then f(x) is irreducible in R[x].

Proof

Claim: If a(x), b(x) are non-constant polynomials over an integral domain R with $a(x)b(x) = x^n$ and n > 0 then b(0) = a(0) = 0.

Proof of claim: Since R is an integral domain either a(0) = 0 or b(0) = 0. Suppose a(0) = 0. Let $F_i = \text{Quot}(R)$ and m be maximal such that $a(x) = x^m a'(x)$ for some $a'(x) \in F[x]$. Thus $a'(0) \neq 0$. So now $a'(x)b(x) = x^{n-m}$. Since b(x) is non-constant n - m > 0. Therefore a'(0)b(0) = 0. So b(0) = 0. So we have proved the claim.

Suppose f(x) = a(x)b(x) in R[x] where a(x) and b(x) are non-constant polynomials. It is easy to see that the constant term of f(x) is the product of the constant term of a(x) and the constant term of b(x).

Let $\overline{f}(x), \overline{a}(x), \overline{b}(x)$ be the images of f(x), a(x) and b(x) in $(R/\mathfrak{p})[x]$. Then $x^n = \overline{f}(x) = \overline{a}(x)\overline{b}(x)$. Thus $\overline{a}(0) = \overline{b}(0) = 0$ since R/\mathfrak{p} is an integral domain. But this means that the constant terms of a(x) and b(x) are in \mathfrak{p} . Thus the constant term of f(x) is in \mathfrak{p}^2 contradicting our assumptions. Therefore f(x) is irreducible.

Corollary 2.7

Let p be a prime in \mathbb{Z} , $n \ge 1$ and let $f(x) := x^n + a_{n-1}x^{n-1} + \ldots + a_0 \in \mathbb{Z}[x]$. Suppose that p divides a_i for all $0 \le i \le n-1$ but p^2 does not divide a_0 . Then f(x) is irreducible in both $\mathbb{Z}[x]$ and $\mathbb{Q}[x]$.

\mathbf{Proof}

Apply Eisenstein at the prime ideal (p).

The polynomial $X^5 + 10X^4 + 25X^2 + 35 \in \mathbb{Z}[X]$ is irreducible by Eisenstein's theorem applied at 5.

Extra example

Consider the polynomial $f(X) := X^4 + 1 \in \mathbb{Z}[x]$. We can't apply Eisenstein's theorem directly. Let g(X) = f(X+1). So $g(X) = X^4 + 4X^3 + 6X^2 + 4X + 2$. Now, by Eisenstein applied at 2, g(x) is irreducible and if f could be factored as a product of non-constant polynomials then so could g. Thus f is irreducible.

Fields

A reminder from linear algebra:

Definition 3.1

The characteristic of a field F, denoted char (F) is the smallest strictly positive integer n such that $n \cdot 1_F = 0$. If such an integer does not exist we say the characteristic is zero. Note that the characteristic of a field will always be zero or a prime. (Check you know why?)

Definition 3.2

The prime subfield (Primkörper eines Körpers) of a field F is the smallest subfield of F. Note that the prime subfield is always \mathbb{Q} (when F has characteristic zero) or \mathbb{F}_p (when F has positive characteristic p).

Note that a field of characteristic p may well have infinitely many elements. For example consider the field of fractions of $\mathbb{F}_p[x]$.

Definiton 3.3

If K is a field containing a subfield F then K is called an extension field (in German: Körpererweiterung) of F, denoted K/F. We refer to F as the base field (in German: Grundkörper).

If K/F is a field extension, then the multiplication defined in K makes K as a vector space over F.

The degree of a field extension (Grad einer Körpererweiterung) K/F, denoted [K : F], is the dimension of K as a vector space over F. The extension is called finite if [K : F] is finite and is called infinite otherwise.

Examples

The field extension \mathbb{C}/\mathbb{R} has degree 2. Every element of \mathbb{C} can be written as a linear combination of 1 and *i* and if a + bi = 0 then $a^2 + b^2 = (a + bi)(a - bi) = 0$; so a = b = 0. So 1, *i* are a basis for \mathbb{C} as a vector space over \mathbb{R} .

Remark 3.4

A homomorphism of fields is always injective.

Proof

Let $\varphi : F \to K$ be a homomorphism between fields F and K. The kernel of φ is an ideal of F. The only ideals of F are $\{0\}$ and F. Since $\varphi(1_F) = 1_K \neq 0$, ker $\varphi = 0$. So φ is injective. \Box

Theorem 3.5

Let F be a field and $p(x) \in F[x]$ be irreducible. There exists a field extension K of F in which p(x) has a root.

Proof

consider the quotient $F[x] / \langle p(x) \rangle$. Since p(x) is irreducible and F[x] is a PID (Hauptidealbereich), the ideal generated by p(x) is maximal. Therefore $F[x] / \langle p(x) \rangle$ is a field.

Let $\varphi: F[x] \to F[x]/\langle p(x) \rangle$ be the canonical homomorphism. The restriction of φ to F is a homomorphism of fields and thus is injective. Thus F is isomorphic to its image $\varphi(F)$ in F[x]. We may now identify F with its image in $F[x]/\langle p(x) \rangle$.

This is a subtle point: what does it mean to identify F with its image in $F[x]/\langle p(x) \rangle$?

If $\psi: F \to K$ is a homomorphism of fields (with K and F disjoint as sets) we simply relabel each element $\varphi(f)$ for $f \in F$ as f. We can do this because ψ is injective; i.e. if $\psi(f) = \psi(g)$ then f = g. Now F as a set is a subset of K. Because ψ is a homomorphism $\psi(0) = 0, \psi(1) = 1$ and for all $f, g \in F, f + g = \psi(f) + \psi(g)$ and $f \cdot g = \psi(f) \cdot \psi(g)$. Thus F is also a subfield of K. Back to the proof: Let \overline{x} be the image of x in $F[x]/\langle p(x) \rangle$. We now have that $p(\overline{x}) = \overline{p(x)}$ since φ is a homomorphism. But $p(x) \in \langle p(x) \rangle$, so $\overline{p(x)} = 0$. Thus \overline{x} is a root of the polynomial p(x) in K.