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Terminology English/German

Unique factorization domain - faktorieller Ring

Field - Körper

Field of fractions - Quotientenkörper

Principal ideal domain - Hauptidealbereich

Field extension - Körpererweiterung

Prime subfield of a field - Primkörper eines Körpers

UFD’s and irreducible polynomials over integral domains

From the last lecture we have the following lemma and corollary:

Lemma 2.1 (Gauss’ lemma)

Let R be a unique factorization domain (in German faktorieller Ring) with field of fractions

F and p(x) ∈ R[x]. If p(x) = A(x)B(x) for some non-constant polynomials A(x), B(x) ∈ F [x]

then there exist r, s ∈ F such that rA(x) = a(x) and sB(x) = b(x) are both in R[x] and

p(x) = a(x)b(x).

Corollary 2.2

Let R be unique factorization domain with field of fractions F (in German: Quotientenkörper)

and let p(x) ∈ R[x]. Suppose that the greatest common divisor of the coefficients of p(x) is 1.

Then p(x) is irreducible in R[x] if and only if it is irreducible in F [x]. In particular, if p(x) is a

monic polynomial that is irreducible in R[x] then p(x) is irreducible in F [x].

Theorem 2.3

A ring R is a unique factorization domain if and only if R[x] is a unique factorization domain.

Proof

The reserve direction was covered in the last lecture. Suppose R is a UFD (unique factorization

domain). F is the field of fractions of R and p(x) ∈ R[x] is non-zero.

Let d be the greatest common divisor of the coefficients of p(x) (NOTE: The greatest common

divisor exists because R is a UFD.) and write p(x) = dq(x). The greatest common divisor of the

coefficients of q is 1. Since R is a UFD, d can be factored in R into irreducibles and irreducibles

in R remain irreducible in R[x] (this is simply because if d ∈ R\{0} and d = a(x)b(x) then

deg(a(x)) = deg(b(x)) = 0; so a(x), b(x) ∈ R).
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We now attempt to write q(x) as a product of irreducibles in R[x]. Since F [x] is a UFD, there

exist q1(x), q2(x), . . . , qn(x) ∈ F [x] irreducible in F [x] such that q(x) = q1(x) · · · qn(x). Gauss’

lemma means we may assume these factors are in R[x]. Since the greatest common divisor of

the coefficients of q(x) is 1, the greatest common divisor of the coefficients of each of the qis is

also 1. Thus by corollary 2.2 each of these factors is irreducible in R[x]. Thus we can write p as

a product of irreducible elements in R[x]:

d1 · · · dmq1(x) · · · qn(x)

where d = d1 · · · dm and each di is irreducible in R.

It remains to show that this factorization is unique up to ordering and multiplication by units.

This is in Übungsblatt. �

Corollary 2.4

If R is a UFD then so is R[x1, . . . , xn].

Proof

Use induction on n. �

We will give two methods for testing the irreducibility of a polynomial over an integral domain.

Proposition 2.5

Let I be a prime ideal of an integral domain (in German: Integritätsbereich) R and let p(x)

be a non-constant monic (in German: normiertes) polynomial in R[x]. If the image of p(x)

in (R/I)[x] can’t be factored in (R/I)[x] into two polynomials of smaller degree, then p(x) is

irreducible.

Proof

Suppose p(x) is non constant, monic and reducible. Then p(x) = a(x)b(x) ∈ R[x] with a(x), b(x)

non-constant (if either a(x) or b(x) were constant then would be a unit, since p(x) is monic).

We may assume that a(x) and b(x) are monic since p(x) is monic.

Let p(x), a(x) and b(x) be the images of p(x), a(x) and b(x) in (R/I)[x]. Then p(x) = a(x)b(x)

and since a(x) and b(x) are monic and non-constant, a(x) and b(x) are non-constant and monic.

By comparing degrees a(x) and b(x) are polynomials of smaller degree than p(x). �

The most common application of this result is to prove that a polynomial over Z is irreducible.

For instance consider the polynomial X4 + 9X3 + 10X2 + 22X + 1 ∈ Z[X].

Its image in Z2[X] is X4 + X3 + 1. It is clear that this polynomial does not have a root in

Z2 (check 0 and 1). Thus if it were reducible, it must factor as a product of two irreducible

polynomials in Z2[x] of degree 2. If p(x) ∈ Z2[X] is irreducible of degree 2 then its leading term

is 1 and its constant term is also 1 since 0 is not a root. The polynomial X2 + 1 has root 1.

Therefore, there is only one irreducible polynomial of degree 2 in Z2[X]. That is X2 + X + 1

(check it has no roots). But (X2 +X + 1)2 = X4 +X2 + 1. So X4 +X3 + 1 is irreducible over

Z2. Thus X4 + 9X3 + 10X2 + 22X + 1 is irreducible over Z.
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Unfortunately this does not always work.

Proposition 2.6 (Eisenstein’s Criterion)

Let p be a prime ideal of an integral domain R, n ≥ 1 and let f(x) = xn+an−1x
n−1+. . .+a1x+a0

be a polynomial in R[x]. Suppose an−1, . . . , a0 ∈ p and a0 6∈ p2. Then f(x) is irreducible in R[x].

Proof

Claim: If a(x), b(x) are non-constant polynomials over an integral domain R with a(x)b(x) = xn

and n > 0 then b(0) = a(0) = 0.

Proof of claim: Since R is an integral domain either a(0) = 0 or b(0) = 0. Suppose a(0) = 0.

Let Fi = Quot (R) and m be maximal such that a(x) = xma′(x) for some a′(x) ∈ F [x].

Thus a′(0) 6= 0. So now a′(x)b(x) = xn−m. Since b(x) is non-constant n − m > 0. Therefore

a′(0)b(0) = 0. So b(0) = 0. So we have proved the claim.

Suppose f(x) = a(x)b(x) in R[x] where a(x) and b(x) are non-constant polynomials. It is easy

to see that the constant term of f(x) is the product of the constant term of a(x) and the

constant term of b(x).

Let f(x), a(x), b(x) be the images of f(x), a(x) and b(x) in (R/p)[x]. Then xn = f(x) = a(x)b(x).

Thus a(0) = b(0) = 0 since R/p is an integral domain. But this means that the constant terms

of a(x) and b(x) are in p. Thus the constant term of f(x) is in p2 contradicting our assumptions.

Therefore f(x) is irreducible. �

Corollary 2.7

Let p be a prime in Z, n ≥ 1 and let f(x) := xn + an−1x
n−1 + . . . + a0 ∈ Z[x]. Suppose that p

divides ai for all 0 ≤ i ≤ n− 1 but p2 does not divide a0. Then f(x) is irreducible in both Z[x]

and Q[x].

Proof

Apply Eisenstein at the prime ideal (p). �

The polynomial X5 + 10X4 + 25X2 + 35 ∈ Z[X] is irreducible by Eisenstein’s theorem applied

at 5.

Extra example

Consider the polynomial f(X) := X4 + 1 ∈ Z[x]. We can’t apply Eisenstein’s theorem directly.

Let g(X) = f(X + 1). So g(X) = X4 + 4X3 + 6X2 + 4X + 2. Now, by Eisenstein applied at 2,

g(x) is irreducible and if f could be factored as a product of non-constant polynomials then so

could g. Thus f is irreducible.
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Fields

A reminder from linear algebra:

Definition 3.1

The characteristic of a field F , denoted char (F ) is the smallest strictly positive integer n such

that n · 1F = 0. If such an integer does not exist we say the characteristic is zero.

Note that the characteristic of a field will always be zero or a prime. (Check you know why?)

Definition 3.2

The prime subfield (Primkörper eines Körpers) of a field F is the smallest subfield of F . Note

that the prime subfield is always Q (when F has characteristic zero) or Fp (when F has positive

characteristic p).

Note that a field of characteristic p may well have infinitely many elements. For example con-

sider the field of fractions of Fp[x].

Definiton 3.3

IfK is a field containing a subfield F thenK is called an extension field (in German: Körpererweiterung)

of F , denoted K/F . We refer to F as the base field (in German: Grundkörper).

If K/F is a field extension, then the multiplication defined in K makes K as a vector space

over F .

The degree of a field extension (Grad einer Körpererweiterung) K/F , denoted [K : F ], is the

dimension of K as a vector space over F . The extension is called finite if [K : F ] is finite and

is called infinite otherwise.

Examples

The field extension C/R has degree 2. Every element of C can be written as a linear combina-

tion of 1 and i and if a+ bi = 0 then a2 + b2 = (a+ bi)(a− bi) = 0; so a = b = 0. So 1, i are a

basis for C as a vector space over R.

Remark 3.4

A homomorphism of fields is always injective.

Proof

Let ϕ : F → K be a homomorphism between fields F and K. The kernel of ϕ is an ideal of F .

The only ideals of F are {0} and F . Since ϕ(1F ) = 1K 6= 0, kerϕ = 0. So ϕ is injective. �

Theorem 3.5

Let F be a field and p(x) ∈ F [x] be irreducible. There exists a field extension K of F in which

p(x) has a root.
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Proof

consider the quotient F [x]/ < p(x) >. Since p(x) is irreducible and F [x] is a PID (Hauptideal-

bereich), the ideal generated by p(x) is maximal. Therefore F [x]/ < p(x) > is a field.

Let ϕ : F [x]→ F [x]/ < p(x) > be the canonical homomorphism. The restriction of ϕ to F is a

homomorphism of fields and thus is injective. Thus F is isomorphic to its image ϕ(F ) in F [x].

We may now identify F with its image in F [x]/ < p(x) >.

This is a subtle point: what does it mean to identify F with its image in F [x]/ < p(x) >?

If ψ : F → K is a homomorphism of fields (with K and F disjoint as sets) we simply relabel

each element ϕ(f) for f ∈ F as f . We can do this because ψ is injective; i.e. if ψ(f) = ψ(g)

then f = g. Now F as a set is a subset of K. Because ψ is a homomorphism ψ(0) = 0, ψ(1) = 1

and for all f, g ∈ F, f + g = ψ(f) +ψ(g) and f · g = ψ(f) ·ψ(g). Thus F is also a subfield of K.

Back to the proof: Let x be the image of x in F [x]/ < p(x) >. We now have that p(x) = p(x)

since ϕ is a homomorphism. But p(x) ∈< p(x) >, so p(x) = 0. Thus x is a root of the polyno-

mial p(x) in K. �


