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Useful English/German Vocabulary
Splitting field - Zefällungskörper
Field extension - Körpererweiterung

Deflnition 0.1. Let EIF be a fi,eld, ertens'ion. Th,e Galoi's group,
denoted G*t(E I F), ,f E lF 'is the group of automorphisms of E wlvich

fit F po'intw'ise 'i.e. the automorph'isms LL of E such that for all a e F,
p(a) - a.

Definition 0.2. Let F be a field, and, G be a subgroup af the group of
automarph'isru,s of F. The set

Inu(G) ,: {o € F, I o(a} : a for all o € G}

'is a subfi,etd of F. We ca,Il i't th,e G-fi'xed' subfi'eld, of F.

Let E be a field and G the group of automorphisms af E. Let f be

the set of subgroups of G and E the set of subfields of E. The maps

I + », H r-+ Inv(/{)

and 
x -+ l, F *+ cal(E lF)

have the following properties:

(i) Gt e Gz =+ Inv(G1) r Inv(G2)

(ii) Ft C Fz ) Gar(E lFl) f Gal(E lF)
(iii) Inv(Gat(E lF)) r r

(iv) Gal( E llrw{H)) 2 f/

Lemma A.3. Let E I F be a splitti,ng fi,etd of a separable polynom'ial

with coefficients in F. Th,en

lcat(ElF)l: lE : Fl.
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Proof. What we will actually show is the following:

Let τ : F → F ′ be an isomorphism of fields. Let p(x) ∈ F [x] be a
separable. Let E be a splitting field for p(x) and E ′ be a splitting
field for τ(p)(x). There exist exactly [E : F ] extensions of τ to an
isomorphism σ : E → E ′.

We proceed by induction on [E : F ]. If [E : F ] = 1 the statement is
clear.
Fix α a root of p(x) in E\F with minimal polynomial mα(x). For
each β a root of τ(mα)(x), let τβ : F (α) → F ′(β) be the (unique)
isomorphism extending τ with τβ(α) = β.
For each root β of τ(mα)(x) let Sβ be the set of isomorphisms E → E ′

extending τβ. If β 6= β′ then Sβ ∩ Sβ′ = ∅.

The field E remains the splitting field of p(x) over F (α) and E ′ remains
the splitting field of τβ(p)(x) over F ′(β). Since [E : F (α)] < [E : F ],
by the induction hypothesis,

|Sβ| = [E : F (α)].

Since mα(x) divides p(x), mα(x) is separable and thus, so is τ(mα)(x).
Thus τ(mα)(x) has [F (α) : F ] distinct roots.
Each isomorphism σ : E → E ′ extending τ maps α to a root of
τ(mα)(x). Thus each σ restricts to some τβ. So each σ is in Sβ for
some β a root of τ(mα)(x).
Thus there are exactly [E : F (α)][F (α) : F ] isomorphisms σ : E → E ′

extending τ : F → F ′. So we have proved our claim.
Setting E = E ′, F = F ′ and τ equal to the identity homomorphism
we get our lemma as stated.



Lemma 0.4. Let G be a finite group of automorphisms of a field E
and let F = Inv(G). Then

[E : F ] ≤ |G|.

Remark/Reminder from linear algebra: A system of n homoge-
neous linear equations over a field E in m variables with n < m has a
non-trivial solution. (See LA I, Korollar 2, 7. Vorlesung am 11.11.11)

proof of lemma. Let n = |G| and G = {µ1 = 1, µ2, ..., µn}. We need
to show that any m > n elements of E are linearly dependent over F .
Let u1, ..., um ∈ E. Consider the system of linear equations in variables
x1, ..., xm

m∑
j=1

µi(uj)xj = 0, 1 ≤ i ≤ n. (1)

Let (b1, ..., bm) be a non-trivial solution with the least number of bi 6=
0. By permuting the variables xi we may assume b1 6= 0 and by
multiplying through by b−11 we may assume b1 = 1.

We now show by contradiction that each bi ∈ F := Inv(G). Without
loss of generality we may suppose b2 /∈ F and 1 ≤ k ≤ n is such that
µk(b2) 6= b2.
Applying µk to 1 we get that

m∑
j=1

(µkµi)(uj)µk(bj) = 0, 1 ≤ i ≤ n.

Since µkµ1, ...., µkµn is just a permutation of µ1, ..., µn,

(µk(1), µk(b2), ..., µk(bm)) = (1, µk(b2), ..., µk(bm))

is a solution to 1.
Thus

(0, b2 − µk(b2), ..., bm − µk(bm))



is a solution to 1 and is non-trivial since b2 - pn(bz) + A. But this
solutions has mäe zero entries than our original solution. So we have

a contradiction. Thus each b,;, e F and from the first equation in 1:

rn

\ u'b' : 6'

A
Thus 11L,...,'u,nl ate linearly dependent over F. 

I

Definition 0.5. We say an algebrai,c field, erte,ns'ion E I F 'is separable
if the rni,ni,mal polynomial of eaery element of E oaer F 'is sep*rable.

Theorem A.6. Let EIF be a field ertension. The follow'ing are equ'iu-

s,lent:

1. E i,s a splitting fietd of a separ*ble polynomi,al p(r) e Flr]-

2. F : InutG) for sonle fi,nite group of automorphisnts of E-

3. E i,s a fi,ni,te d'imens'ional, n'ormal and, separable auer F.

Moreouer, i,f E and F are as'i'n (1) and G : Gal(ElF) then F -
Inu(G) and, 'i,f G and, F *re as 'in {2), then G : Gal(E I F} .

Proof. (t)+(Z) Let Ft: Inv(Gal(ElF)) and note F') F. Clearly E
is a splitting field of p(r) over F' and since Gal(E I F) fixes F/ pointwise,

Gar(ElF): Gal(ElF').

By lemma 0.3, lE : Fl: lGal(ElF)[ and lE : F'l: lGaI(ElF')l-
Thus, since lE: Fl:lE: F'llF" l'], lF': F] :1. Thus F: F'- So

(2) holds.
Ir{ote we have also shown that t ;: Irw(G) for G:- Gal(E lF), which
is the first part of the moreover.
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(2) ⇒ (3) E is finite dimensional over F by lemma 0.4. Let α ∈ E.
Let α1 = α, α2, ..., αm be the orbit of α under the action of G. Let
g(x) =

∏m
i=1(x− αi). For any σ ∈ G,

σ(g)(x) =
m∏
i=1

(x− σ(αi)) = g(x)

since σ just permutes the elements of {α1, ..., αm}. Thus g(x) ∈ F [x].

Since g(α) = 0 and g(x) ∈ F [x], the minimal polynomial of α over F
divides g. Since the αis are all different, g is separable and thus the
minimal polynomial of α is separable. So E/F is separable.
Moreover, all roots of the minimal polynomial of α are in E. Thus E
is a normal over F (it is the splitting field of the minimal polynomials
over F of all elements α ∈ E).

(3)⇒ (1) Since E/F is normal and finite dimensional, E is the splitting
field of a finite number of polynomials p1, ..., pn ∈ F [x]. We may as
well assume that each of these polynomials is monic, irreducible over
F and that no two are equal. Thus, each polynomial pi is the minimal
polynomial of some α ∈ E over F . Thus, since they are non-equal,
they also have no common roots. Therefore, there product p1 · · · pn is
separable and E is its splitting field.

We now prove the second part of the “moreover”. Suppose F = Inv(G)
for some finite group of automorphisms of E. Then by lemma 0.4, [E :
F ] ≤ |G|. Since (1) holds, lemma 0.3 says that Gal(E/F ) = [E : F ].
So, since G is a subgroup of Gal(E/F ), G = Gal(E/F ).

Definition 0.7. We call a field extension E/F which satisfies any (and
hence all) the equivalent conditions of the above theorem a Galois
extension.



Theorem 0.8 (Fundamental theorem of Galois theory). Let E/F be
a Galois extension with G := Gal(E/F ). Let Γ be the set of subgroups
of G := Gal(E/F ) and let Σ be the set of intermediate fields between
E and F . The maps

H 7→ Inv(H)

K 7→ Gal(E/K)

are inverse bijective maps. Moreover, we have the following properties:

(i) H1 ⊇ H2 ⇔ Inv(H1) ⊆ Inv(H2).

(ii) |H| = [E : Inv(H)], [G : H] = [Inv(H) : F ]

(iii) H in G is normal if and only if Inv(H) is normal over F . In
this case

Gal(Inv(H)/F ) ∼= G/H




