10 Script zur Vorlesung: Lineare Algebra II(SoSe 2020)

Prof. Dr. Salma Kuhlmann

In diesem Skript werden wir einige Eigenschaften der Determinante, die wir im LA I Skript 28 gelernt und bewiesen hatten, hier anderweitig beweisen.

Korollar 10.1.

Für alle $\delta \in alt^{(n)}$ und $A \in M_{n \times n}(K)$ gilt $\delta(A) = \det(A)\delta(I_n)$.

Beweis:

Da det $\in alt^{(n)}$ und det $\neq 0$, ist dim $(alt^{(n)}) = 1$ (siehe Korollar 9.11). Sei $\delta \in alt^{(n)}$. Also ist $\delta = d$ det für $d \in K$. Nun muss gelten $\delta(I_n) = d$ det (I_n) , also $d = \delta(I_n)$. \square

Bemerkung 10.2.

Sei R ein kommutativer Ring mit 1. $\delta \in alt^{(n)}(R^n)$ ist analog definiert. Der Hauptsatz gilt auch in diesem erweiterten Rahmen:

Sei $A \in M_{n \times n}(R)$; $A = (a_{ij})_{1 \le i \le n, 1 \le j \le n}$. Definiere:

$$\det(A) \coloneqq \sum_{\pi \in S_n} sign(\pi) a_{1\pi(1)} \cdots a_{n\pi(n)}.$$

Dann ist det die eindeutige Funktionale $\delta \in alt^{(n)}(\mathbb{R}^n)$ mit der Eigenschaft $\delta(I_n) = 1$.

Beispiel 10.3.

Setze
$$R := K[x]$$
, und $A = \begin{pmatrix} x & 0 & -x^2 \\ 0 & 1 & 0 \\ 1 & 0 & x^3 \end{pmatrix}$

Sei $\delta \in alt^{(3)}(M_{3\times 3}(R))$ so definiert: $\delta(A) = \delta(x\varepsilon_1 - x^2\varepsilon_3, \varepsilon_2, \varepsilon_1 + x^3\varepsilon_3)$, wobei $\varepsilon_1 = (1,0,0), \varepsilon_2 = (0,1,0)$ und $\varepsilon_3 = (0,0,1)$. Wir berechnen:

$$\delta(A) = x\delta(\varepsilon_1, \varepsilon_2, \varepsilon_1 + x^3\varepsilon_3) - x^2\delta(\varepsilon_3, \varepsilon_2, \varepsilon_1 + x^3\varepsilon_3)
= x\delta(\varepsilon_1, \varepsilon_2, \varepsilon_1) + x^4\delta(\varepsilon_1, \varepsilon_2, \varepsilon_3) - x^2\delta(\varepsilon_3, \varepsilon_2, \varepsilon_1) - x^5\delta(\varepsilon_3, \varepsilon_2, \varepsilon_3)
= (x^4 + x^2)\delta(\varepsilon_1, \varepsilon_2, \varepsilon_3).$$

Erinnerung:

$$(A^T)_{ji} = A_{ij} \text{ oder } a_{ji}^T = a_{ij}.$$

Satz 10.4.

Sei $A \in M_{n \times n}(R)$. Es gilt: $\det(A) = \det(A^T)$.

Beweis:

Betrachte

$$\prod_{i=1}^{n} a_{i\pi(i)} = \prod_{i,j=1,j=\pi(i)}^{n} a_{ij} = \prod_{i,j=1,i=\pi^{-1}(j)}^{n} a_{ij} = \prod_{j=1}^{n} a_{\pi^{-1}(j)j} = \prod_{j=1}^{n} a_{j\pi^{-1}(j)}^{T}$$

für $\pi \in S_n$.

Wir berechnen nun

$$\det(A) = \sum_{\pi \in S_n} sign(\pi) \prod_{i=1}^n a_{i\pi(i)} = \sum_{\pi^{-1} \in S_n} sign(\pi^{-1}) \prod_{j=1}^n a_{j\pi^{-1}(j)}^T = \det(A^T).$$

Satz 10.5.

 $\det(AB) = \det(A) \det(B)$, für $A, B \in M_{n \times n}(R)$.

Beweis:

Fixiere
$$B \in M_{n \times n}(R)$$
, und setze $A = \begin{pmatrix} z_1 \\ --- \\ ... \\ --- \\ z_n \end{pmatrix}$.

Definiere $\delta_B(A) := \det(AB)$; also $\delta_B(z_1, \dots, z_n) = \det(z_1 B, \dots, z_n B)$.

Dann ist δ_B *n*-linear und alternierend:

n-linear?

$$\delta_B(z_1 + cz_1', z_2, \dots, z_n) = \det((z_1 + cz_1')B, \dots, z_nB) = \det(z_1B, z_2B, \dots, z_nB) + c\det(z_1'B, z_2B, \dots, z_nB)$$
 (weitere Details als ÜA).

alternierend?

$$\delta_B(z_1, z_1, \dots, z_n) = \det(z_1 B, z_1 B, \dots, z_n B) = 0$$
 (weitere Details als ÜA).

Also
$$\delta_B \in alt^{(n)}$$
 und Korollar $10.1 \Rightarrow \delta_B(A) = \det(A)\delta_B(I_n) = \det(A)\det(B)$.

Korollar 10.6.

Sei A invertierbar. Es gilt $det(A^{-1}) = [det(A)]^{-1}$.

Beweis:

$$\det(AA^{-1}) = \det(A)\det(A^{-1}) = \det(I_n) = 1.$$

Notation (Erinnerung):

Sei $A \in M_{n \times n}(R)$ und $i, j \in \{1, ..., n\}$. Wir bezeichnen mit $A[i \mid j]$ ist die $(n-1) \times (n-1)$ Matrix, die man nach Entfernung der i-ten Zeile und j-ten Spalte von A bekommt, und setzen $D_{ij}(A) := \det(A[i \mid j])$.

Satz 10.7.

Fixiere j mit $1 \le j \le n$. Setze

$$\delta(A) := \sum_{i=1}^{n} (-1)^{i+j} a_{ij} D_{ij}(A).$$

Dann ist $\delta \in alt^{(n)}$ und $\delta(I_n) = 1$.

Beweis:

n-linear? Für i, j ist $a_{ij}D_{ij}(A)$ n-linear (ÜA). Da Eine lineare Kombination von n-linearen wieder n-linear ist, folgt δ n-linear.

alternierend?

Sei
$$A = \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix}$$
 und seien $z_k = z_\ell$ für $k < \ell$.

Für $i \neq k$ und $i \neq \ell$, hat $A[i \mid j]$ zwei gleiche Zeilen, also ist $D_{ij}(A) = 0$. Wir berechnen: $\delta(A) = (-1)^{k+j} a_{kj} D_{kj}(A) + (-1)^{\ell+j} a_{\ell j} D_{\ell j}(A)$ $= (-1)^{k+j} a_{kj} D_{kj}(A) + (-1)^{\ell+j} a_{kj} D_{\ell j}(A)$ (*)

weil $a_{\ell j} = a_{k j}$ ist.

Betrachte:

$$A[k \mid j] = \begin{pmatrix} z_{1}^{-} \\ \vdots \\ z_{k-1}^{-} \\ \vdots \\ z_{k+1}^{-} \\ \vdots \\ z_{\ell}^{-} \\ \vdots \\ z_{n}^{-} \end{pmatrix} \text{ und } A[\ell \mid j] = \begin{pmatrix} z_{1}^{-} \\ \vdots \\ z_{k}^{-} \\ \vdots \\ z_{\ell-1}^{-} \\ \vdots \\ z_{\ell-1}^{-} \\ \vdots \\ z_{n}^{-} \end{pmatrix}$$

$$(I) \qquad (II)$$

- Die $(\ell-1)$ -te Zeile von (I) ist $z_{\ell}^- = z_k^-$ und
- die k-te Zeile von (II) ist ebenfalls $z_{\ell}^- = z_k^-$.

Ein Vergleich von (I) und (II) ergibt: $A[k \mid j]$ und $A[\ell \mid j]$ haben die gleichen Zeilen, bis auf die Permutation der Zeilen!!

Man kann durch wiederholte Zeilenumformunten aus Typ 1 $A[\ell \mid j]$ aus $A[k \mid j]$ erhalten, indem man die $(\ell-1)$ -te Zeile in (I) bis zur k-ten Zeile in (II) rückt. Dafür benötigt man $(\ell-1)-k$ Transpositionen, genauer benötigen wir dafür die Permutationen $(\ell-1 \ell-2)$, dann $(\ell-2 \ell-3)$, ..., $(\ell-(\ell-k-1) \ell-(\ell-k))$ i.e. bis (k+1 k).

Setze $\pi := (k+1 \ k) \cdots (\ell-1 \ \ell-2)$. Dann ist $sign(\pi) = (-1)^{(\ell-1)-k}$. Also $D_{\ell j}(A) = (-1)^{(\ell-1)-k} D_{kj}(A)$ (siehe Lemma 9.1 (ii)).

Zurück zu (*):

$$\delta(A) = (-1)^{j} \left[\underbrace{(-1)^{k} a_{kj} D_{kj}(A)}_{1. \text{ Term}} + \underbrace{(-1)^{2\ell - 1 - k} a_{kj} D_{kj}(A)}_{2. \text{ Term}} \right]$$

Aber $(-1)^k = -[(-1)^{2\ell-1-k}] = (-1)^{2(\ell-1)-k}$.

Also kürzen sich 1. Term und 2. Term ab und damit ist $\delta(A) = 0$ wie behauptet.

Wir berechnen nun $\delta(I_n) = 1$. Für $A = I_n$; $a_{ij} = 0$, wenn $i \neq j$. Also betrachte nun i = j, i.e. $a_{jj} = 1$. Wir bekommen $\delta(I_n) = (-1)^{2j} . a_{jj} \det(I_{n-1}) = (-1)^{2j} . 1.1 = 1$.

Aus Satz 10.7 erhalten wir unmittelbar LA I Satz 28.5:

Korollar 10.8. (Spaltenentwicklung)

Sei $A \in M_{n \times n}(R)$. Für jedes $1 \le j \le n$ gilt

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} D_{ij}(A).$$