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Definition.

(1) A place on a field K is a surjective homomorphism P : KP → ∆ where KP

is a sub-ring of K and ∆ is a field, such that if x /∈ KP then 1/x ∈ KP and
P (1/x) = 0.

(2) A place P is called trivial if KP = K.
(3) The rank of a place P is the maximal number n such that there is a chain

of prime ideals of KP. I.e. the maximal number n such that there are prime
ideals p1, . . . , pn such that p1 ⊆ p2 ⊆ p3 ⊆ . . . ⊆ pn ⊆ KP.

Question 1.
Prove the following:

Theorem. If A is a Dedekind domain, then every ideal can be written uniquely as
a product of prime ideals.

Hint: First prove existence – suppose I is an ideal, maximal with the property
that it is not a product of primes (why does it exist?). Suppose I ⊆ P where P is
prime. Then P ′I is an ideal of A, which strictly contains I (otherwise P ′I = I and
then by Question 2 of ex. 1, P ′ ⊆ A). Now use the maximality assumption on I.
Then prove uniqueness – if P1 . . .Pr = Q1 . . .Qr′ then P1 ⊇ Q1 . . .Qr′ so P1 ⊇ Qi

for some i, and so P1 = Qi. Now multiply both sides by P ′
1. Continue inductively.

Question 2.
Prove the following:

Theorem. If A is a Dedekind domain, then the set of fractional ideal is a group
under multiplication with the inverse of a fractional ideal 0 6= I being I ′ and the
unit being A. Furthermore it is a free abelian group with the nonzero prime ideals
as generators (every element can be written uniquely in the form Pr1

1 . . .Prnn for
ri ∈ Z).

Hint: for showing that I ′I = A: First suppose that I is an ideal of A. Obviously
I ′I ⊆ A. If P1 . . .Pr = I, then I ′ ⊇ P ′

1 . . .P ′
r so I ′I ⊇ A. For a general fractional

ideal I, find some a such that aI is an ideal of A by considering the denominators
of the generators of I, and note that (aI) ′ = a−1I ′.

Question 3.

(1) Show that every PID is a Dedekind domain. Deduce that every PID is a
UFD.
Hint for showing that it is integrally closed: Suppose M ⊆ quot (A) is as
Question 2 of ex. 1, (3), and that (x/y)M ⊆ M. Show that M = aA for
some 0 6= a ∈ quot (A), and deduce that x/y ∈ A.
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(2) If A is a UFD then for every principle prime ideal p of A, there is a non-
trivial place p : Ap → ∆ for some field extension of A (where Ap is the
localization of A by p).

(3) If A is a Dedekind domain then for every prime ideal p of A, there is a
non-trivial place p : Ap → ∆ for some field extension of A.
Hint: Note that given x,y, if (x/y) = P1 . . .Pr ·Q ′

1 . . .Q ′
m and p is not one

of Q1, . . . ,Qm, then Q1 . . .Qr * p (because p + Q1 . . .Qr = A, and this
is because...) and so there is an element b ∈ Q1 . . .Qr\p, so (x/y)b ⊆
P1 . . .Pr, so x/y can be written as a/b where b /∈ p.

(4) Show that the rank of the place p from (3) is 1.
Hint: Show that if q is a prime ideal of Ap then q ∩ A is a prime ideal of
A.

Question 4.
Let F be any field. Let F ((t)) be the field of formal Laurant series over F, namely:
F ((t)) =

{∑∞
i=n ait

i |n ∈ Z,∀i > n (ai ∈ F)
}
. You may also think of elements of

F ((t)) as functions f : Z → F such that supp (f) := {i ∈ Z |f (i) 6= 0 } ⊆ (n,∞) for
some n ∈ Z. Think why are these the same thing.
Addition is defined coordinate-wise: given f,g ∈ F ((t)), (f+ g) (i) = f (i) + g (i).
Multiplication is defined as follows: given f,g ∈ F ((t)), f·g (i) =

∑
k∈Z f (k)g (i− k).

(1) Prove that multiplication is well defined and that F ((t)) is a field.
(2) Show that there is a non-trivial place P on F ((t)) onto the field F with

KP = {f ∈ F ((t)) |supp (f) ⊆ N = {0, 1, . . .} }.
(3) Show that this place has rank 1.

Hint: note that f is a unit in KP iff supp (f) ⊆ {1, 2, . . .}.
(4) Prove that in fact KP is a PID and conclude that (3) follows from (4) in

Question 3.
Hint: If I is an ideal in KP, let f ∈ I be chosen so that min (supp (f)) is
minimal. Show that I = (f).


