1 Useful English/German Vocabulary

simple group -einfache Gruppe normal series - Normalreihe composition series - Kompositionsreihe refinement - Verfeinerung

2 Isomorphism theorems continued

Theorem 2.1 (Lattice isomorphism theorem). Let G be a group and let N be a normal subgroup of G. If A is a subgroup of G containing N, let $\overline{A} := A/N$.Let $\pi : G \to G/N$ be the canonical projection.

The map $A \mapsto \pi(A) = \overline{A}$ is a bijection between the set of subgroups of G containing N and the set of subgroups of G/N.

Moreover, if $A, B \leq G$ with $N \leq A$ and $N \leq B$ then:

- 1. $A \leq B$ if and only if $\overline{A} \leq \overline{B}$; and in this case $[B:A] = [\overline{B}:\overline{A}]$
- 2. $A \triangleleft B$ is and only if $\overline{A} \triangleleft \overline{B}$; and in this case $B/A \cong \overline{B}/\overline{A}$
- 3. $\overline{\langle A, B \rangle} = \langle \overline{A}, \overline{B} \rangle$
- $4. \ \overline{A \cap B} = \overline{A} \cap \overline{B}$

Proof. UB9

Theorem 2.2 (Butterfly Lemma /Zassenhaus Lemma). Let $a \triangleleft A$ and $b \triangleleft B$ be subgroups of a group G. Then

 $a(A \cap b)$ is a normal in $a(A \cap B)$, $b(B \cap a)$ is normal in $b(B \cap A)$, $(A \cap b)(B \cap a)$ is normal in $(A \cap B)$ and

$$\frac{a(A \cap B)}{a(A \cap b)} \cong \frac{(A \cap B)}{(A \cap b)(B \cap a)} \cong \frac{b(B \cap A)}{b(B \cap a)}$$

Proof. Note first that since $A \leq N_G(a)$ and $B \leq N_G(b)$, we have that

$$A \cap b \le A \cap B \le N_G(a)$$

and

$$B \cap a \le A \cap B \le N_G(b).$$

Thus $a(A \cap b)$, $a(A \cap B)$, $b(B \cap a)$ and $b(B \cap A)$ are subgroups of G (see lecture 17 corollary 1.10).

We first show that

$$(A \cap b)(B \cap a)$$
 is normal in $(A \cap B)$.

First note that $A \cap b$ and $B \cap a$ are normal in $A \cap B$; if $g \in A \cap B$ and $c \in A \cap b$ then $gcg^{-1} \in b$ since $b \triangleleft B$ and $gcg^{-1} \in A$ since $g, c \in A$. Thus $(A \cap b)(B \cap a)$ is a subgroup of $A \cap B$. In fact it is a normal subgroup since if $c_1 \in A \cap b$, $c_2 \in B \cap a$ and $g \in A \cap B$ then $gc_1c_2g^{-1} = gc_1g^{-1}gc_2g^{-1} \in (A \cap b)(B \cap a)$.

If $x \in a(A \cap B)$ then $x = \alpha \gamma$ where $\alpha \in a$ and $\gamma \in A \cap B$. Define

$$f: a(A \cap B) \to \frac{A \cap B}{(A \cap b)(B \cap a)}$$

by

$$x \mapsto \gamma(A \cap b)(B \cap a).$$

The map f is well-defined for if $\alpha \gamma = \alpha' \gamma'$ with $\alpha, \alpha' \in a$ and $\gamma, \gamma' \in A \cap B$ then $\gamma' \gamma^{-1} = (\alpha')^{-1} \alpha \in a \cap A \cap B = a \cap B \leq (A \cap b)(B \cap a)$; i.e.

$$\gamma'(A \cap b)(B \cap a) = \gamma(A \cap b)(B \cap a)$$

The map is a homomorphism: if $\alpha, \alpha' \in a$ and $\gamma, \gamma' \in A \cap B$ then $\alpha, \gamma \alpha' \gamma^{-1} \in a$ since $a \triangleleft A$. So

$$f(\alpha \gamma \alpha' \gamma') = f((\alpha \gamma \alpha' \gamma^{-1}) \gamma \gamma') = \gamma \gamma' (A \cap b)(B \cap a)$$

and since $(A \cap b)(B \cap a)$ is normal in $A \cap B$

$$f(\alpha\gamma)f(\alpha'\gamma') = \gamma(A \cap b)(B \cap a)\gamma'(A \cap b)(B \cap a) = \gamma\gamma'(A \cap b)(B \cap a).$$

The map f is surjective by definition.

It remains to find the kernel: if $\alpha \in a$ and $\gamma \in A \cap B$ are such that $f(\alpha \gamma) = 1(A \cap b)(B \cap a)$ then $\gamma \in (A \cap b)(B \cap a) = (B \cap a)(A \cap b)$. Take $x \in (B \cap a)$ and $y \in (A \cap b)$ such that $\gamma = xy$. Then $\alpha \gamma = (ax)y \in a(A \cap b)$.

Conversely, if $\alpha \in a$ and $\gamma \in A \cap B$ with $\alpha \gamma \in a(A \cap b)$ then there exist $t \in a$ and $s \in A \cap b$ such that $\alpha \gamma = ts$. Now $\alpha^{-1}t \in a$ and since $\gamma, s \in B, \ \alpha^{-1}t = \gamma s^{-1} \in B$. Thus $\alpha^{-1}ts = \gamma \in (A \cap b)(B \cap a)$. So $\alpha \gamma \in \ker f$.

So by the first isomorphism theorem, $a(A \cap b)$ is normal in $a(A \cap B)$ and

$$\frac{a(A \cap B)}{a(A \cap b)} \cong \frac{(A \cap B)}{(A \cap b)(B \cap a)}.$$

Exchanging the roles of A and B respectively a and b, we get that $b(B \cap a)$ is normal in $b(B \cap A)$ and

$$\frac{b(A \cap B)}{b(B \cap a)} \cong \frac{(A \cap B)}{(A \cap b)(B \cap a)}.$$

 \square

3 Jordan-Hölder and Simple and Solvable groups

Definition 3.1. A group G is simple if |G| > 1 and the only normal subgroups of G are 1 and G.

Remark: A non-trivial abelian group G is simple if and only if its only subgroups are 1 and G (recall: all subgroups of abelian groups are normal).

Thus, if G is simple and abelian then it is generated by every nonidentity element of G. So G is cyclic. Recall that if G is infinite and x generates G then x^2 does not generate G (lecture 15 Proposition 5(1)). Thus G is finite. Moreover, if $p \in \mathbb{N}$, a prime, divides |x| then $|x^p| < |x|$ (see lecture 15 Proposition 4(3)) and therefore $x^p = 1$. Thus |G| = p. Thus an abelian group is simple if and only if it is finite and of prime order.

Definition 3.2. Let G be a group. A sequence of subgroups

 $1 = G_0 \le G_1 \le \ldots \le G_s = G$

is called a **normal series** if G_i is normal in G_{i+1} ; we call the quotient groups G_{i+1}/G_i factor groups of the series.

A normal series is called a **composition series** if each of the quotient groups G_{i+1}/G_i are simple; in this case we call the quotient groups **composition factors** of G (we will see later that the factor groups really do only depend on G).

A normal series

 $1 = G_0 \lhd G_1 \lhd \ldots \lhd G_s = G$

is a *refinement* of a normal series

$$1 = H_0 \triangleleft H_1 \triangleleft \ldots \triangleleft H_r = G$$

if $H_0, ..., H_r$ is a subsequence of $G_0, ..., G_s$.

Example: Since A_4 is index 2 in S_4 , A_4 is normal in S_4 . You will show on the exercise sheet that the subgroup

$$V := \{ (12)(34), (13)(24), (14)(23), e \}$$

is normal in A_4 . So

$$\{1\} \lhd V \lhd A_4 \lhd S_4$$

is a normal series for S_4 . Its factor groups are \mathbb{Z}_2 and \mathbb{Z}_3 . So it is in fact a composition series.

Definition 3.3. Two normal series are said to be **equivalent** if there is a bijection between their factor groups such that corresponding factor groups are isomorphic.

Example:

Consider the following two composition series of \mathbb{Z}_{30} :

$$\mathbb{Z}_{30} \ge \langle 5 \rangle \ge \langle 10 \rangle \ge \{0\}$$
$$\mathbb{Z}_{30} \ge \langle 3 \rangle \ge \langle 6 \rangle \ge \{0\}$$

The composition factors of the first series are $\mathbb{Z}_{30}/\langle 5 \rangle \cong \mathbb{Z}_5$, $\langle 5 \rangle/\langle 10 \rangle \cong \mathbb{Z}_2$ and $\langle 10 \rangle/\{0\} \cong \mathbb{Z}_3$. The composition factors of the second series are $\mathbb{Z}_{30}/\langle 3 \rangle \cong \mathbb{Z}_3$, $\langle 3 \rangle/\langle 6 \rangle \cong \mathbb{Z}_2$ and $\langle 6 \rangle/\{0\} \cong \mathbb{Z}_5$.

So the above composition series are equivalent.

Theorem 3.4 (Schreier Refinement Theorem). Any two normal series of a group G have equivalent refinements.

Proof. Let

$$1 = G_0 \lhd G_1 \lhd \ldots \lhd G_s = G$$

and

$$1 = H_0 \lhd H_1 \lhd \ldots \lhd H_r = G$$

be normal series.

Let $G_{i,j} := G_i(G_{i+1} \cap H_j)$ for $0 \le j \le r$. So

$$G_{i,0} = G_i\{1\} = G_i \text{ and } G_{i,r} = G_i(G_{i+1} \cap G) = G_{i+1}.$$

Since $G_i \triangleleft G_{i+1}$ and $H_j \triangleleft H_{j+1}$, by Zassenhaus (with $a = G_i, A = G_{i+1}, b = H_j$ and $B = H_{j+1}$),

$$G_{i,j} = G_i(G_{i+1} \cap H_j) \lhd G_i(G_{i+1} \cap H_{j+1}) = G_{i,j+1}.$$

Thus the following series is a refinement of the first normal series:

$$\{1\} = G_{0,0} \triangleleft G_{0,1} \triangleleft \ldots \triangleleft G_{0,r} = G_{1,0} \triangleleft G_{1,1} \triangleleft \ldots \triangleleft G_{s-1,r} = G_s = G$$

Let $H_{i,j} := H_i(H_{i+1} \cap G_j)$ for $0 \le j \le s$. Exactly as above,

$$\{1\} = H_{0,0} \triangleleft H_{0,1} \triangleleft \ldots \triangleleft H_{0,s} = H_{1,0} \triangleleft H_{1,1} \triangleleft \ldots \triangleleft H_{r-1,s} = H_r = G$$

is a refinement of the second normal series.

It remains now just to note that by the Zassenhaus lemma (with $a = G_i, A = G_{i+1}, b = H_j$ and $B = H_{j+1}$)

$$G_i(G_{i+1} \cap H_{j+1})/G_i(G_{i+1} \cap H_j) \cong H_j(H_{j+1} \cap G_{i+1})/H_j(H_{j+1} \cap G_i);$$

that is

$$G_{i,j+1}/G_{i,j} \cong H_{j,i+1}/H_{j,i}$$

Theorem 3.5 (Jordan-Hölder Theorem). Let G be a finite group with $G \neq \{1\}$. Then

- 1. G has a composition series and
- 2. all composition series of G are equivalent.

Proof. (1) Suppose G is not simple. If N is a maximal normal subgroup of G then, by the correspondence theorem, G/N is simple. If G is finite G has a maximal normal subgroup. Thus, by induction on |G|, every finite group has a composition series.

(2)Composition series have no refinements by the correspondence theorem; that is, if $G_{i+1} \triangleright N \triangleright G_i$ then $N/G_i \triangleleft G_{i+1}/G_i$ and if G_{i+1}/G_i is simple then $N = G_{i+1}$ or $N = G_i$. By the Schreier Refinement Theorem, every two normal series have equivalent refinements. Thus every two composition series of G are equivalent.