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1 Lagrange’s theorem

Definition 1.1. The index of a subgroup H in a group G, denoted
|G : H], is the number of left cosets of H in G ( |G : H] is a natural
number or infinite).

Theorem 1.2 (Lagrange’s Theorem). If G is a finite group and H is
a subgroup of G then |H| divides |G| and
|G|
G: H]=+—.
H|
Proof. Recall that (see lecture 16) any pair of left cosets of H are either
equal or disjoint. Thus, since G is finite, there exist ¢1, ..., g, € G such
that

o G=U]",9;H and
o foralll <i<j<n,gHnNgH=0.

Since n = [G : H], it is enough to now show that each coset of H has
size |H|.

Suppose g € G. The map ¢, : H — gH : h — gh is surjective by
definition. The map ¢, is injective; for whenever

ghi = py(h1) = p4(h2) = gh

, multiplying on the left by ¢~!, we have that h; = ho. Thus each coset
of H in G has size |H|.
Thus

Gl =) lg:H| =) |H|=[G: H]H
i=1 i=1

]

Note that in the above proof we could have just as easily worked with
right cosets. Thus if G is a finite group and H is a subgroup of G then
the number of left cosets is equal to the number of right cosets. More
generally, the map gH — Hg™! is a bijection between the set of left
cosets of H in GG and the set of right cosets of H in G.
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Corollary 1.3. Let G be a finite group. For all x € G, |z| divides |G|.
In particular, for all x € G, !¢ = 1.

Proof. By Lagrange’s theorem |x| = |(z)| divides |G]|. O
Corollary 1.4. Every group of prime order is cyclic.

Proof. Let G be a finite group with |G| prime. Take z € G\{1}.
By lagrange, |z| divides G and thus, since |G| is prime, |z| = |G| or
|G| = 1. Since = # 1, |z| # 1. Thus |z| = |G| and so, () = G. O

Example: The converse of Lagrange’s theorem does not hold. The
group Ay is of size 12 and has no subgroup of size 6. See exercise
sheet 8 (Recall from linear algebra that Ay is the group of all even
permutations on 4 elements concretely: the set of permutations

(123),(132),(234), (243), (134), (143), (124), (142), (12)(34), (13)(24), (14)(23), e).
Definition 1.5. Let G be a group and S, T subsets of G. We write
ST :={st|seS andteT}.
Proposition 1.6. If K and H are subgroups of a finite group G then
HK||H 0 K| = |H||K|.
Proof. Let ¢ : H x K — HK be the map defined by ¢(h, k) := hk.
This map is surjective by definition.

Claim: If h € H and k € K then o' (hk) = {(hd™1,dk) | d € KNH}.

Clearly, if d € KN H and A’ = hd 'k’ = dk then h' € H, k' € K
and W'k’ = hk. Conversely, if ¥ € H, k' € K and W'k’ = hk then
KL = Wh e KN H, I = h(W"'h)"" and k' = (W'h)k. This
proves the claim.

Therefore for each z € HK, |p~!(z)| = |H N K|. So,
|HK||[HNK|=|H x K| = |H||K]|.



Proposition 1.7. Let H and K be subgroups of a group G. The set
HK is a subgroup of G if and only HK = KH.

Proof. Suppose h € H and k € K. Then (hk)™' = k~'h™! € KH.
Thus g € HK if and only if g7t € KH. So, if HK is a subgroup then
HK = KH.

Suppose HK = KH. Take hi,ho € H and ki, ky € K. Consider
hikihoks. Since kihy € KH = HK, there exist hs € H and k3 € K
such that kth = h3]€3 Thus hl(klhg)kg = hl(hgkg)kg € HK. So HK
is closed under multiplication.

From above we know that if g € HK then ¢o! € KH = HK. Thus,
since H K is non-empty, it is a subgroup of G. ]

Definition 1.8. Let G be a group and A a subgroup of G. The nor-
maliser, Ng(A), of A in G is the set of x € G such that xAx™ = A.

Remark 1.9. Let A < B < G be groups. Note that Ng(A) is a
subgroup of G containing A, in fact, it is the largest subgroup of G in
which A is normal.

The subgroup A is normal in B if and only if B < Ng(A). In partic-
ular, A is normal in G if and only if Ng(A) = G. (Please convince
yourself that this is true)

Corollary 1.10. If H and K are subgroups of G and H < Ng(K),
then HK is a subgroup of G. In particular, if K < G then HK < G
for any H < G.

Proof. 1t is enough to show that HK = KH. Suppose that h € H
and k € K. Then h™'kh, hkh™! € K since H < Ng(K). Thus hk =
(hkh™)h € KH and kh = h(h™'kh) € HK. Thus HK = KH. O

2 Isomorphism theorems

Theorem 2.1. If ¢ : G — H is a homomorphism of groups, then
kerp I G and
G /kerp = imep.



Proof. We have already seen that the kernel of a homomorphism of
groups is normal.

Define f : G/kerp — H by f(akerp) = p(a).

This map is well-defined since: if aker ¢ = bker ¢ then ab™' € ker ¢.
So 1= g(ab ') = p(a)p(b)~". Thus ¢(a) = ¢(b).

The map [ is a homomorphism since:

flaker pbker p) — f(abker ) = p(ab) = p(a)p(b) = f(aker ) f(bker ).

The image of f is clearly equal to the image of ¢. Lastly, f is injective

for if f(akery) = f(bker ) then p(a) = ¢(b) and so ¢(ab™') € kerp

i.e. akery = bker p.

Thus f gives a bijective group homomorphism from G/ ker ¢ to ime.
]

Corollary 2.2. Let ¢ : G — H be a homomorphism of groups.
1. ¢ is injective if and only if kerp =1
2. |G : ker|] = lo(G)]

Proof. (1) The forward direction follows directly from the definition of
injective. Suppose kerp = 1 and p(a) = ¢(b). Then p(ab™") = 1. So
ab~t =1 and thus a = b.

(2) [G < ker | = |G/ ker o] = [¢(G)]. .

Theorem 2.3 (The second isomorphism theorem). Let G be a group
and let A and B be subgroups of G with A < Ng(B). Then AB is a
subgroup of G, BLAB, ANB<A and AB/B= A/ANB.

Proof. Since A < Ng(B), AB is a subgroup of G. Since B < Ng(B),

AB < Ng(B); that is B is normal in AB.

Consider the canonical projection 7 : AB — AB/B. If a € A and
m(a) =1thén @ € B. Thus a € AN B. So 7 restricted to A has

kernel AN B (and thus is normal). Now suppose a € A and b € B.

We have that m(a) = m(ab). Thus 7 restricted to A is surjective i.e.

im7|4 = AB/B. So by first iso theorem AB/B = A/AN B. O
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Theorem 2.4 (The third isomorphism theorem). Let G be a group and
let H and K be normal subgroups with H < K. Then K/H < G/H
and

(G/H)/(K/H) = G/K.

Proof. Consider the map f: G/H — G/K defined by f(gH) = gK.
This map is well defined: If gjH = goH then g;'g» € H and thus
gl_lgz e K. So K = g, K.

This map is a group homomorphism since

flaHbH) = f(abH) = abK = aKbK = f(aH)f(bH).

It is clearly surjective. Suppose a € G. Then f(aH) = 1K if only if
aK = 1K; that is if and only if « € K. Thus K/H is the kernel of f
and so K/H is normal in G/H and

(G/H)/(K/H) = G/K
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