
1 Lagrange’s theorem

Definition 1.1. The index of a subgroup H in a group G, denoted
[G : H], is the number of left cosets of H in G ( [G : H] is a natural
number or infinite).

Theorem 1.2 (Lagrange’s Theorem). If G is a finite group and H is
a subgroup of G then |H| divides |G| and

[G : H] =
|G|
|H|

.

Proof. Recall that (see lecture 16) any pair of left cosets of H are either
equal or disjoint. Thus, since G is finite, there exist g1, ..., gn ∈ G such
that

• G = ∪ni=1giH and

• for all 1 ≤ i < j ≤ n, giH ∩ gjH = ∅.
Since n = [G : H], it is enough to now show that each coset of H has
size |H|.
Suppose g ∈ G. The map ϕg : H → gH : h 7→ gh is surjective by
definition. The map ϕg is injective; for whenever

gh1 = ϕg(h1) = ϕg(h2) = gh2

, multiplying on the left by g−1, we have that h1 = h2. Thus each coset
of H in G has size |H|.
Thus

|G| =
n∑

i=1

|giH| =
n∑

i=1

|H| = [G : H]|H|

Note that in the above proof we could have just as easily worked with
right cosets. Thus if G is a finite group and H is a subgroup of G then
the number of left cosets is equal to the number of right cosets. More
generally, the map gH 7→ Hg−1 is a bijection between the set of left
cosets of H in G and the set of right cosets of H in G.
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Corollary 1.3. Let G be a finite group. For all x ∈ G, |x| divides |G|.
In particular, for all x ∈ G, x|G| = 1.

Proof. By Lagrange’s theorem |x| = |〈x〉| divides |G|.
Corollary 1.4. Every group of prime order is cyclic.

Proof. Let G be a finite group with |G| prime. Take x ∈ G\{1}.
By lagrange, |x| divides G and thus, since |G| is prime, |x| = |G| or
|G| = 1. Since x 6= 1, |x| 6= 1. Thus |x| = |G| and so, 〈x〉 = G.

Example: The converse of Lagrange’s theorem does not hold. The
group A4 is of size 12 and has no subgroup of size 6. See exercise
sheet 8 (Recall from linear algebra that A4 is the group of all even
permutations on 4 elements concretely: the set of permutations

(123), (132), (234), (243), (134), (143), (124), (142), (12)(34), (13)(24), (14)(23), e).

Definition 1.5. Let G be a group and S, T subsets of G. We write

ST := {st | s ∈ S and t ∈ T}.

Proposition 1.6. If K and H are subgroups of a finite group G then

|HK||H ∩K| = |H||K|.

Proof. Let ϕ : H × K → HK be the map defined by ϕ(h, k) := hk.
This map is surjective by definition.

Claim: If h ∈ H and k ∈ K then ϕ−1(hk) = {(hd−1, dk) | d ∈ K∩H}.

Clearly, if d ∈ K ∩ H and h′ = hd−1, k′ = dk then h′ ∈ H, k′ ∈ K
and h′k′ = hk. Conversely, if h′ ∈ H, k′ ∈ K and h′k′ = hk then
k′k−1 = h′−1h ∈ K ∩ H, h′ = h(h′−1h)−1 and k′ = (h′−1h)k. This
proves the claim.

Therefore for each x ∈ HK, |ϕ−1(x)| = |H ∩K|. So,

|HK||H ∩K| = |H ×K| = |H||K|.



Proposition 1.7. Let H and K be subgroups of a group G. The set
HK is a subgroup of G if and only HK = KH.

Proof. Suppose h ∈ H and k ∈ K. Then (hk)−1 = k−1h−1 ∈ KH.
Thus g ∈ HK if and only if g−1 ∈ KH. So, if HK is a subgroup then
HK = KH.
Suppose HK = KH. Take h1, h2 ∈ H and k1, k2 ∈ K. Consider
h1k1h2k2. Since k1h2 ∈ KH = HK, there exist h3 ∈ H and k3 ∈ K
such that k1h2 = h3k3. Thus h1(k1h2)k2 = h1(h3k3)k2 ∈ HK. So HK
is closed under multiplication.
From above we know that if g ∈ HK then g−1 ∈ KH = HK. Thus,
since HK is non-empty, it is a subgroup of G.

Definition 1.8. Let G be a group and A a subgroup of G. The nor-
maliser, NG(A), of A in G is the set of x ∈ G such that xAx−1 = A.

Remark 1.9. Let A ≤ B ≤ G be groups. Note that NG(A) is a
subgroup of G containing A; in fact, it is the largest subgroup of G in
which A is normal.

The subgroup A is normal in B if and only if B ≤ NG(A). In partic-
ular, A is normal in G if and only if NG(A) = G. (Please convince
yourself that this is true)

Corollary 1.10. If H and K are subgroups of G and H ≤ NG(K),
then HK is a subgroup of G. In particular, if K E G then HK ≤ G
for any H ≤ G.

Proof. It is enough to show that HK = KH. Suppose that h ∈ H
and k ∈ K. Then h−1kh, hkh−1 ∈ K since H ≤ NG(K). Thus hk =
(hkh−1)h ∈ KH and kh = h(h−1kh) ∈ HK. Thus HK = KH.

2 Isomorphism theorems

Theorem 2.1. If ϕ : G → H is a homomorphism of groups, then
kerϕEG and

G/kerϕ ∼= imϕ.



Proof. We have already seen that the kernel of a homomorphism of
groups is normal,
Define f , Glkerg -+ H bV f {"kerrp) : p(a).
This map is well-defined since: if aker g: bkerg then ab-l e kerg-
So 1 : p(ob-') : p(a)p(b)-t. Thus p(a) - p(b).
The map / is a homomorphism since:

f (akersbkere): f ("bkerrp) :g{ab): p{a)v(e): /(oker df (bkertp).

The image of / is clearly equal to the image of V. Lastl5 / is injective
for if f {aker p) : f (bker tp) then Vb} : ,p{b) and so V@b-') e ker I
i.e. a keyp : bker g.
Thus / gives a bijective group homomorphism from GlkerV to i*V.

T

Corollary 2.2. Let g : G -+ H be a homomorph'ism of graups.

1. p i,s i,nject'iae i'f and, only i,f kerp :1

s. IG : ker] - le(G)l

Proof. (1) The forward direction follows directly from the def,nition of
injective. Suppose ker g : I and rp(a) : 9&). Then tp(ab-t) : 1. So

ab-| - 1 and thus a: b.

(2) lG : ker el : lG lker sl : lp(C)|. I
Theorem 2.3 (The second isomorphism theorem). Let G be a group

and, let A and B be subgroups of G wi,tlr' A S Ife(B)' Then AB 'is a

subqroup of G, B<AB, AnB4A and,ABlB=-AlAnB-

proof. since 4 < l[c(B], AB is a subgroup of G. since B < IVG(B),

AB < ffc(B); that is B is normal in AB.

!g!§d-er@e canonical projection r : AB -+ AB I B. If a € A and
-"("):1then a e B. Thus a e A) B. So a restricted to Ä has

kernel An B (and thus is norrnal). I{ow suppose a e A and b e B-

We have that r(a) : n(ab). Thus n restricted to ,4 is surjective i.e,

imrla : ABIB. So by first iso theorem ABIB o AIA1B- n
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Theorem 2.4 (The third isomorphism theorem). Let G be a group and
let H and K be normal subgroups with H ≤ K. Then K/H E G/H
and

(G/H)/(K/H) ∼= G/K.

Proof. Consider the map f : G/H → G/K defined by f(gH) = gK.
This map is well defined: If g1H = g2H then g−11 g2 ∈ H and thus
g−11 g2 ∈ K. So g1K = g2K.
This map is a group homomorphism since

f(aHbH) = f(abH) = abK = aKbK = f(aH)f(bH).

It is clearly surjective. Suppose a ∈ G. Then f(aH) = 1K if only if
aK = 1K; that is if and only if a ∈ K. Thus K/H is the kernel of f
and so K/H is normal in G/H and

(G/H)/(K/H) ∼= G/K
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