9. Script zur Vorlesung: Lineare Algebra I

Prof. Dr. Salma Kuhlmann, Dr. Merlin Carl

WS 2011/2012: 18. November 2011

(WS 2015/2016: Korrekturen vom 17. November 2015)

Korollar 1 Seien A und B $m \times n$ -Matrizen über K. Es gilt: B ist zu A zeilenäquivalent gdw B = PA, wobei P das Produkt von $m \times m$ -elementaren Matrizen ist.

Beweis

"\(\sim \)" Sei $P = E_{\ell} \dots E_2 E_1$, wobei E_t eine elementare $m \times m$ -Matrix ist.

Also ist E_1A zeilenäquivalent zu A

und $E_2(E_1A)$ ist zeilenäquivalent zu E_1A .

Also ist E_2E_1A zeilenäquivalent zu A.

So weiter fortsetzen:

 $E_{\ell} \dots E_1 A$ ist zeilenäquivalent zu A

i.e. B ist zeilenäquivalent zu A.

"\(\Righta\)" Sei B zeilen\(\text{aquivalent}\) zu A und seien e_1, \dots, e_ℓ die elementaren Zeilenumformungen mit $A \xrightarrow{e_1} \dots \xrightarrow{e_\ell} B$.

Also
$$E_{\ell} \cdots E_2 E_1 A = B$$
,

wobei E_t die elementare Matrix $e_t(I_m)$ für $t = 1, \ldots, \ell$ ist.

Setze
$$P := E_{\ell} \cdots E_2 E_1$$
.

Definition 1 Eine $n \times n$ -Matrix A ist invertierbar, falls es eine $n \times n$ -Matrix B gibt, so dass

$$AB = I_n \text{ und } BA = I_n.$$

In diesem Fall heißt B eine $Inverse\ von\ A$.

Proposition 1 Sei A invertierbar. Dann gibt es eine eindeutige Inverse.

Beweis Seie

Seien B_1, B_2 beide Inverse von A. Es gilt:

$$AB_1 = I_n = AB_2$$

also
$$B_2(AB_1) = B_2(AB_2)$$
 (Multiplikation)

also
$$(B_2 A) B_1 = (B_2 A) B_2$$

also
$$I_nB_1 = I_nB_2$$
, i.e. $B_1 = B_2$

Notation Wir bezeichnen mit A^{-1} die eindeutige Inverse der invertierbaren Matrix A.

Proposition 2 Seien $A, B \ n \times n$ -Matrizen über K. Es gilt

- (i) Wenn A invertierbar, so auch A^{-1} und $(A^{-1})^{-1} = A$.
- (ii) Wenn A und B beide invertierbar, so auch AB und $(AB)^{-1} = B^{-1}A^{-1}$.

Beweis

- (i) Wir berechnen $AA^{-1} = A^{-1}A = I_n$. Also ist A die Inverse von A^{-1} .
- (ii) Wir berechnen $B^{-1}A^{-1}(AB) = B^{-1}(A^{-1}A)B = B^{-1}I_nB = B^{-1}B \equiv I_n$. Analog $(AB)(B^{-1}A^{-1}) = I_n$.

Korollar 2

Seien A_1, \ldots, A_ℓ $n \times n$ -invertierbare Matrizen, dann ist das Produkt $A_1 \cdots A_\ell$ auch invertierbar und es gilt $(A_1 \cdots A_\ell)^{-1} = A_\ell^{-1} \cdots A_1^{-1}$ (*)

Beweis

Induktion nach ℓ . Für $\ell = 1$ ist es klar.

Indutkionsannahme: (*) gilt für ℓ .

Induktionsschritt: (*) gilt für $\ell + 1$:

Beweis:
$$(A_1 \cdots A_\ell A_{\ell+1})^{-1} =$$

$$((A_1 \cdots A_\ell) A_{\ell+1})^{-1} = \leftarrow \text{ Proposition 2 (ii)}$$

$$A_{\ell+1}^{-1} (A_1 \cdots A_\ell)^{-1} = \leftarrow \text{ Induktionsannahme}$$

$$A_{\ell+1}^{-1} (A_\ell^{-1} \cdots A_1^{-1}) = \leftarrow \text{ Assoziativität}$$

$$A_{\ell+1}^{-1} A_\ell^{-1} \cdots A_1^{-1} \qquad \Box$$

Proposition 3 Elementare Matrizen sind invertierbar.

Beweis

Sei $E = e(I_n)$ eine elementare Matrix. Sei e^* die umgekehrte Zeilenumformung (auf die Zeilen von I_n) und $E^* := e^*(I_n)$. Wir berechnen

$$E^*E = e^*(I_n)e(I_n) = I_n \text{ und } E^*E = EE^* = I_n$$

D.h.
$$E^* = E^{-1}$$
.

Beispiel 1

 2×2 -elementare Matrizen

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \text{und} \quad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -c \\ 0 & 1 \end{pmatrix} \quad \text{und} \quad \begin{pmatrix} 1 & 0 \\ c & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 \\ -c & 1 \end{pmatrix}$$

$$c \neq 0$$

$$\begin{pmatrix} c & 0 \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} c^{-1} & 0 \\ 0 & 1 \end{pmatrix} \quad \text{und} \quad \begin{pmatrix} 1 & 0 \\ 0 & c \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & c^{-1} \end{pmatrix}$$

Satz 1

Sei A eine $n \times n$ -Matrix. Sind äquivalent:

- (i) A ist invertierbar.
- (ii) $A\underline{x} = \underline{b}$ ist konsistent für jede $n \times 1$ -Spaltenmatrix \underline{b} .
- (iii) $A\underline{x} = \underline{0}$ hat nur die triviale Lösung.
- (iv) A ist zeilenäquivalent zu I_n .
- (v) A ist Produkt von elementaren Matrizen.
- (ii) und (iii): Beziehung zwischen homogener und allgemeiner (quadratischer) Systeme.

Beweis

$$(i) \Rightarrow (ii)$$

Setze
$$\underline{x} := A^{-1}\underline{b}$$
. Es gilt $A\underline{x} = A(A^{-1}\underline{b}) = (AA^{-1})\underline{b} = I_n\underline{b} = \underline{b}$.

(iii) ⇔ (iv) schon bewiesen (Korollar 3, 7. Vorlesung i.e. Korollar 7.3)

$$(ii) \Rightarrow (iii)$$

Wenn $A\underline{x} = 0$ nicht triviale Lösungen hätte, dann ist die r.Z.S.F. R von A nicht I_n , also muss eine Nullzeile haben. Also ist zum Beispiel das System

$$(S) \quad R\underline{x} = \begin{pmatrix} 0 \\ \vdots \\ 1 \end{pmatrix} \text{inkonsistent.}$$

$$\left(\begin{array}{cc|ccc} \dots & \dots & \dots & 0 \\ & & & & \vdots \\ 0 & \dots & 0 & 1 \end{array}\right)$$

Nun $\boxed{\mathbf{R} = \mathbf{P}\mathbf{A}}$ wobei P das Produkt von elementaren Matrizen ist (Korollar 1). Also ist P invertierbar (Korollar 2 und Proposition 3).

Álso multipliziere (S) durch P^{-1} :

(S)
$$(PA)\underline{x} = \begin{pmatrix} 0 \\ \vdots \\ 1 \end{pmatrix}$$
 ist inkonsistent.

Also
$$P^{-1}(PA)\underline{x} = P^{-1}\begin{pmatrix} 0\\ \vdots\\ 1 \end{pmatrix}$$
 ist inkonsistent.

Also
$$A\underline{x} = P^{-1}$$
 $\begin{pmatrix} 0 \\ \vdots \\ 1 \end{pmatrix}$ inkonsistent.

$$\underbrace{n \times n \quad n \times 1}_{n \times 1}$$

Setze
$$\underline{b} = P^{-1} \begin{pmatrix} 0 \\ \vdots \\ 1 \end{pmatrix}$$
, wir bekommmen $A\underline{x} = \underline{b}$. Inkonsistent. Widerspruch.

$$(iv) \Rightarrow (V)$$

 $A = P'I_n = P'$, wobei P' das Produkt von elementaren Matrizen ist (Korollar 1).

$$(v) \Rightarrow (i)$$

Folgt aus Korollar 2 und Proposition 3.

Korollar 3 Seien A und B $m \times n$ -Matrizen. B ist zeilenäquivalent zu A genau dann, wenn B = PA, wobei P eine invertierbare $m \times m$ -Matrix ist.