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Chapter I: Valued vector spaces

1. Valued modules

All modules M considered are left Z-modules for a �xed ring Z with 1
(we are mainly interested in Z = Z, i.e. in valued abelian groups).

De�nition 1.1. Let Γ be a totally ordered set and ∞ an element greater
than each element of Γ (Notation: ∞ > Γ). A surjective map

v : M −→ Γ ∪ {∞}

is a valuation on M (and (M,v) is a valued module) if ∀x, y ∈ M and
∀ r ∈ Z:

(i) v(x) =∞ ⇔ x = 0,

(ii) v(rx) = v(x), if r 6= 0 (value preserving scalar multiplication),

(iii) v(x− y) > min{v(x), v(y)} (ultrametric ∆-inequality).

Remark 1.2. (i) + (ii) ⇒ M is torsion-free.

Remark 1.3. Consequences of the ultrametric ∆-inequality:

(i) v(x) 6= v(y) ⇒ v(x+ y) = min{v(x), v(y)},

(ii) v(x+ y) > v(x) ⇒ v(x) = v(y).

De�nition 1.4. v(M) := Γ = {v(x) : 0 6= x ∈ M} is called the value set
of M .
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De�nition 1.5.

(i) Let (M1, v1), (M2, v2) be valued Z-modules with value sets Γ1 and
Γ2 respectively. Let

h : M1 −→ M2

be an isomorphism of Z-modules. We say that h preserves the
valuation if there is an isomorphism of ordered sets

ϕ : Γ1 −→ Γ2

such that ∀x ∈M1 : ϕ(v1(x)) = v2(h(x)).

(ii) Two valuations v1 and v2 on M are equivalent if the identity map
on M preserves the valuation.

De�nition 1.6.

(1) An ordered system of Z-modules is a pair

[ Γ, {B(γ) : γ ∈ Γ} ],

where {B(γ) : γ ∈ Γ} is a family of Z-modules indexed by a totally
ordered set Γ.

(2) Two ordered systems

Si = [ Γi, {Bi(γ) : γ ∈ Γi} ] i = 1, 2

are isomorphic (we write S1
∼= S2) if and only if there is an isomor-

phism

ϕ : Γ1 −→ Γ2

of totally ordered sets, and ∀ γ ∈ Γ1 an isomorphism of Z-modules

ϕγ : B1(γ) −→ B2(ϕ(γ)).

(3) Let (M,v) be a valued Z-module, Γ := v(M). For γ ∈ Γ set

Mγ := {x ∈M : v(x) > γ}

Mγ := {x ∈M : v(x) > γ}.

Then Mγ (Mγ (M . Set

B(M,γ) := Mγ/Mγ .

B(M,γ) is called the (homogeneous) component correspond-
ing to γ. The skeleton (das Skelett) of the valued module (M,v)
is the ordered system

S(M) := [ v(M), {B(M,γ) : γ ∈ v(M)} ].

We write B(γ) for B(M,γ) if the context is clear.
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(4) For every γ ∈ Γ, the coe�cient map (Koe�zient Abbildung)

πM (γ,−) : Mγ −→ B(γ)

x 7→ x+Mγ

is the canonical projection.

We write π(γ,−) instead of πM (γ,−) if the context is clear.

Lemma 1.7. The skeleton is an isomorphism invariant, i.e.

if (M1, v1) ∼= (M2, v2),

then S(M1) ∼= S(M2).

Proof. Let h : M1 → M2 be an isomorphism which preserves the valuation.
Then

h̃ : v1(M1) −→ v2(M2)

de�ned by
h̃(v1(x)) := v2(h(x))

is a well-de�ned map and an isomorphism of totally ordered sets.
For each γ ∈ v1(M1), the map

hγ : B1(γ) −→ B2(h̃(γ))

de�ned by

πM1(γ, x) 7→ πM2(h̃(γ), h(x))

is well-de�ned and an isomorphism of modules. �

2. Hahn valued modules

A system [ Γ, {B(γ) : γ ∈ Γ} ] of torsion-free modules can be realized as
the skeleton of a valued module through the following canonical construction:

Consider
∏
γ∈ΓB(γ) the product module. For s ∈

∏
γ∈ΓB(γ) de�ne

support(s) = {γ ∈ Γ : s(γ) 6= 0}.
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1. Hahn valued modules

The Hahn sum is the Z-submodule of
∏
γ∈ΓB(γ) consisting of all ele-

ments with �nite support. We denote it by

⊔
γ∈Γ

B(γ) :=

s ∈∏
γ∈Γ

B(γ) : |supp(s)| <∞


We endow

⊔
γ∈ΓB(γ) with the valuation

vmin :
⊔
γ∈Γ

B(γ) −→ Γ ∪ {∞}

vmin(s) = min support(s).

(convention: min ∅ =∞).

The Hahn product is the Z-submodule of
∏
γ∈ΓB(γ) consisting of all

elements with well-ordered support in Γ. We denote it by

Hγ∈ΓB(γ) :=

s ∈∏
γ∈Γ

B(γ) : supp(s) is a well-ordered subset of Γ


We endow Hγ∈ΓB(γ) with the valuation vmin as well.

2. Well-ordered sets

We recall that a totally ordered set Γ is well-ordered if every non-empty
subset of Γ has a least element, or equivalently if every strictly descending
sequence of elements from Γ is �nite.
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Example 2.1.

(1) Z = Z, assume Γ = {1, . . . , n}, B(γ) = Z. Then⊔
γ=1,...,n

B(γ) = Hγ=1,...,nB(γ)

(2) Z = Q, assume Γ = N (with natural order).
order type N = the �rst in�nite ordinal number ω.

Let B(γ) :=

{
Q if γ is odd
R if γ is even

Then

Hγ∈NB(γ) =
∏
γ∈N

B(γ).

More generally this holds whenever Γ is a well-ordered set, i.e.
whenever Γ is an ordinal.

(3) Γ = −N with natural order.⊔
γ∈−N

B(γ) = Hγ∈−NB(γ)

More generally this holds whenever Γ is an anti well-ordered set,
i.e. well-ordered under the order relation

γ1 6∗ γ2 ⇔ γ2 6 γ1.

(4) Γ = Q. Then⊔
γ∈Q

B(γ) ( Hγ∈QB(γ) (
∏
γ∈Q

B(γ).

Note that every countable ordinal is the order type of a well-
ordered subset of Q.

Theorem 2.2. (Cantor)
Every countable dense linear order without endpoints is isomorphic to Q.

De�nition 2.3.

(i) A linear order Q is dense if

∀q1 < q2 ∈ Q ∃q3 ∈ Q such that q1 < q3 < q2.

(ii) A linear order has no endpoints if it has no least element and no
last element.

Example 2.4.

(i) Q is dense because for q1 < q2 de�ne q3 := q1+q2
2 .

R is dense.
(ii) Q and R have no endpoints.
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Example 2.5.

(5)
⊔
γ∈Q<0 B(γ) ( Hγ∈Q<0 B(γ)

q 7→ −q q 7→ 1
−q (q 6= 0) 0 7→ 0. Note that Q<0 := {q ∈ Q : q < 0}

has no endpoints.⊔
γ∈Q<0

B(γ) ∼=
⊔
γ∈Q

B(γ) ∼=
⊔

γ∈Q>0

B(γ).

More generally let us now take Γ = (q1, q2), the open intervall in
Q determined by q1 < q2. Note that (q1, q2) ∼= Q.

(6) Γ = R. Then⊔
γ∈R

B(γ) ( Hγ∈RB(γ) (
∏
γ∈R

B(γ).

What are the well-ordered subsets of R?

(i) all well-ordered subsets of Q!

(ii) all countable ordinals are the order type of some well-ordered
subset of R.

Now: Are there more?

Discussion: What is the cardinality of R?

|R| =
∣∣∣{0, 1}N∣∣∣ = |{0, 1}|N = 2ℵ0 = c := the continuum

Therefore
c = |P(N)| > |N| = ℵ0.

More precisely: are there uncountable well-ordered subsets of R?
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1. Hahn Sandwich Proposition

Lemma 1.1.

(i)
⊔
γ∈ΓB(γ) ⊆ Hγ∈ΓB(γ).

(ii)

S(
⊔
γ∈Γ

B(γ)) ∼= [ Γ, {B(γ) : γ ∈ Γ} ]

∼= S(Hγ∈ΓB(γ)).

We shall show that if Z = Q is a �eld and (V, v) is a valued Q-vector
space with skeleton S(V ) = [ Γ, {B(γ) : γ ∈ Γ ], then⊔

γ∈Γ

B(γ), vmin

 ↪→ (V, v) ↪→ (Hγ∈ΓB(γ), vmin).

2. Immediate extensions

De�nition 2.1. Let (Vi, vi) be valued Q-vector spaces (i = 1, 2).

(1) Let V1 ⊆ V2 be a Q-subspace with v1(V1) ⊆ v2(V2). We say that
(V2, v2) is an extension of (V1, v1), and we write

(V1, v1) ⊆ (V2, v2),

if v2|V1
= v1.
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(2) If (V1, v1) ⊆ (V2, v2) and γ ∈ v1(V1), the map

B1(γ) −→ B2(γ)

x+ (V1)γ 7→ x+ (V2)γ

is a natural identi�cation of B1(γ) as a Q-subspace of B2(γ). The
extension (V1, v1) ⊆ (V2, v2) is immediate if Γ := v1(V1) = v2(V2)
and ∀ γ ∈ v1(V1)

B1(γ) = B2(γ).

Equivalently, (V1, v1) ⊆ (V2, v2) is immediate if S(V1) = S(V2).

Lemma 2.2. (Characterization of immediate extensions)
The extension (V1, v1) ⊆ (V2, v2) is immediate if and only if

∀x ∈ V2, x 6= 0, ∃ y ∈ V1 such that v2(x− y) > v2(x).

Proof. We show that in a valued Q-vector space (V, v), for every x, y ∈ V

v(x− y) > v(x) ⇐⇒

{
(i) γ = v(x) = v(y) and

(ii) π(γ, x) = π(γ, y).

(⇐) Suppose (i) and (ii). So x, y ∈ V γ and x− y ∈ Vγ .
Then v(x− y) > γ = v(x).

(⇒) Suppose v(x− y) > v(x). We show (i) and (ii).
Assume for a contradiction that v(x) 6= v(y). Then v(x − y) =

min{v(x), v(y)}. So if v(x) > v(y), then v(y) = v(x− y) > v(x) and
if v(y) > v(x), then v(x) = v(x − y) > v(x). Both is obviously a
contradiction. Thus, v(x) = v(y). (ii) is analogue.

�

Example 2.3. (
⊔
γ∈ΓB(γ), vmin) ⊆ (Hγ∈ΓB(γ), vmin)

is an immediate extension.

Proof. Given x ∈ Hγ∈ΓB(γ), x 6= 0, set

γ0 := min support(x) and x(γ0) := b0 ∈ B(γ0).

Let y ∈
⊔
γ∈ΓB(γ) such that

y(γ) =

{
0 if γ 6= γ0

b0 if γ = γ0.

Namely y = b0χγ0 , where
χγ0 : Γ −→ Q

χγ0(γ) =

{
1 if γ = γ0

0 if γ 6= γ0.

Then vmin(x − y) > γ0 = vmin(x) (because (x − y)(γ0) = x(γ0) − y(γ0) =
b0 − b0 = 0).
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�

3. Valuation independence

De�nition 3.1. B = {xi : i ∈ I} ⊆ V \ {0} is Q-valuation independent
if for qi ∈ Q with qi = 0 for all but �nitely many i ∈ I, we have

v

(∑
i∈I

qixi

)
= min

i∈I,qi 6=0
{v(xi)}.

Remark 3.2.

(1) Q-linear independence 6⇒ Q-valuation independence.
Consider (

⊔
2 Q, vmin) and the elements x1 = (1, 1), x2 = (1, 0).

(2) B ⊆ V \{0} is Q-valuation independent ⇒ B is Q-linear indepen-
dent.

Else ∃ qi 6= 0 with
∑
qixi = 0 and min{v(xi)} = v(

∑
qixi) = ∞,

a contradiction.

Proposition 3.3. (Characterization of valuation independence)
Let B ⊆ V \ {0}. Then B is Q-valuation independent if and only if

∀n ∈ N and ∀ b1, . . . , bn ∈ B pairwise distinct with v(b1) = · · · = v(bn) = γ,
the coe�cients

π(γ, b1), . . . , π(γ, bn) ∈ B(γ)

are Q-linear independent in the Q-vector space B(γ).

Proof.

(⇒) Let b1, . . . , bn ∈ B with v(b1) = · · · = v(bn) = γ and suppose for a
contradiction that

π(γ, b1), . . . , π(γ, bn) ∈ B(γ)

are not Q-linear independent. So there are q1, . . . , qn ∈ Q non-zero
such that π(γ,

∑
qibi) = 0, so v(

∑
qibi) > γ. This contradicts the

valuation independence.

(⇐) We show that

v
(∑

qibi

)
= min{v(bi)} = γ.

Since π(γ, b1), . . . , π(γ, bn) are Q-linear independent in B(γ),

π
(
γ,
∑

qibi

)
6= 0,

i.e. v(
∑
qibi) 6 γ.

On the other hand v(
∑
qibi) > γ, so v(

∑
qibi) = γ = min{v(bi)}.

�
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4. Maximal valuation independence

By Zorn's lemma, maximal valuation independent sets exist:

Corollary 4.1. (Characterization of maximal valuation independent sets)
B ⊆ V \ {0} is maximal valuation independent if and only if ∀ γ ∈ v(V )

Bγ := {π(γ, b) : b ∈ B, v(b) = γ}

is a Q-vector space basis of B(γ).

Corollary 4.2. Let B ⊆ V \ {0} be valuation independent in (V, v). Then
B is maximal valuation independent if and only if the extension

〈 B 〉 := (V0, v|V0) ⊆ (V, v)

is an immediate extension.

Proof.

(⇒) Assume B ⊆ V is maximal valuation independent. We show V0 ⊆ V
is immediate.

If not ∃ x ∈ V , x 6= 0, such that

∀ y ∈ V0 : v(x− y) 6 v(x).

We will show that in this case B∪{x} is valuation independent (which
will contradict our maximality assumption). Consider v(y0 + qx),
q ∈ Q, q 6= 0, y0 ∈ V0. Set y := −y0/q. We claim that

v(y0 + qx) = v(x− y) = min{v(x), v(y)} = min{v(x), v(y0)}.
This follows immediately from

Fact: v(x− y) 6 v(x) ⇐⇒ v(x− y) = min{v(x), v(y)}.
Proof of the fact. The implication (⇐) is trivial. To see (⇒), assume
that v(x− y) > min{v(x), v(y)}.
If min{v(x), v(y)} = v(x), then we have the contradiction

v(x) > v(x− y) > min{v(x), v(y)} = v(x).

If min{v(x), v(y)} = v(y) < v(x), then v(y) = v(x−y) > v(y), again
a contradiction.

(⇐) Now assume that (V0, v|V0) ⊆ (V, v) is immediate. We show that B
is maximal valuation independent.

If not, B ∪ {x} is valuation independent for some x ∈ V \{0} with
x /∈ B. So ∀y ∈ V0 we get v(x − y) 6 v(x) by the fact above. This
contradicts that (V0, v|V0) ⊆ (V, v) is immediate.

�
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Additional lecture on Ordinals

1. Preliminaries

Theorem 1.1. (trans�nite induction)
If (A,<) is a well-ordered set and P (x) a property such that

∀a ∈ A(∀b < a P (b)⇒ P (a)),

then P (a) holds for all a ∈ A.

Proof. Consider the set

B := {b ∈ A : P (b) is false}.
If B 6= ∅, let b = minB. Then ∀c < b P (c) is true but P (b) is false, a
contradiction. �

De�nition 1.2. Let A be a well-ordered set. An initial segment of A is a
set of the form Aa := {b ∈ A : b 6 a}.

Proposition 1.3. No proper initial segment of a well-ordered set (A,6) is
∼= A.

Proof. Assume f : A → Aa is an isomorphism of ordered sets. Prove by
induction

∀x ∈ A : f(x) > x.

Since Aa ( A we �nd some b ∈ A\Aa, i.e. b > a. Therefore

f(b) > b > a,

contradicting f(b) ∈ Aa. �

De�nition 1.4. A set A is transitive, if ∀a ∈ A ∀b ∈ a : b ∈ A (or
equivalently ∀a ∈ A : a ⊆ A).
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Lemma 1.5. Let A be a transitive set. Then ∈ is transitive on A if and
only if a is transitive for all a ∈ A.

Lemma 1.6. A union of transitive sets is transitive.

2. Ordinals

De�nition 2.1. A set α is an ordinal if

(i) α is transitive,
(ii) (α,∈) is a well-ordered set.

Notation 2.2. Ord = {ordinals}

Remark 2.3. ∈ is an order on α ⇒ ∈ is transitive, i.e. ∀a ∈ α : a is
transitive.

Proposition 2.4. ∈ is a strict order on Ord.

Proof. If α ∈ β ∈ γ, then α ∈ γ by transitivity of γ. Therefore ∈ is transitive
on Ord. Now let α ∈ β. We claim β /∈ α. Otherwise α ∈ β ∈ α and therefore
α, β ∈ α, α ∈ β, β ∈ α, a contradiction. �

We write α < β instead of α ∈ β.

Example 2.5. Each n ∈ N = {0, 1, . . .} is an ordinal

0 = ∅,
1 = {0},
2 = {0, 1},
3 = {0, 1, 2},
...

n = {0, 1, . . . , n− 1}.
Moreover, N =: ω is an ordinal.

Proposition 2.6. ∀α ∈ Ord : α = {β ∈ Ord : β < α}.

Proof. Let β ∈ α. Then β is transitive. Thus β ⊆ α and (β,∈) = (α,∈)β. �

Lemma 2.7. Let α, β ∈ Ord such that α ( β. Then min(β\α) exists and is
= α, so α ∈ β.

Proof. Since β\α 6= ∅, γ := min(β\α) exists. To show: γ = α.
First let δ ∈ γ, i.e. δ < γ. Then δ /∈ β\α. Since δ ∈ γ ∈ β, we have δ ∈ β.
Hence δ ∈ α.
Now let δ ∈ α. If δ > γ, then α > γ, i.e. γ ∈ α, a contradiction. Therefore
δ < γ, i.e. δ ∈ γ. �
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Lemma 2.8. α 6 β ⇔ α ⊆ β.

Proof.

⇒ Clear if α = β. Otherwise α < β, i.e. α ∈ β and therefore α ⊆ β by
transitivity.

⇐ α ( β ⇒ α ∈ β ⇒ α < β.

�

Proposition 2.9. < (which is ∈) is a total order on Ord.

Proof. Assume α 66 β. Then α 6⊆ β. Hence β ∈ α, i.e. β < α. �

Proposition 2.10. If α 6= β, then α 6∼= β.

Proof. Without loss of generality α < β, so α is an initial segment of β. �

Proposition 2.11. (Ord, <) is well-ordered.

Proof. Assume α0 > α1 > α2 > . . . then (α0, <) is not well-ordered, a
contradiction. �

Proposition 2.12.

(i) If α ∈ Ord, then α ∪ {α} ∈ Ord.
(α+ 1 := α ∪ {α} is called the successor of α.)

(ii) If A is a set of ordinals, then
⋃
A ∈ Ord.

(supA :=
⋃
A is the supremum of A.)

Remark 2.13.

(i) n+ 1 = {0, . . . , n} = {0, . . . , n− 1} ∪ {n}.

(ii) supA is not always a max, e.g. A = {2n : n ∈ ω}. Then supA = ω,
but A has no max.

(iii) If α ∈ Ord, then supα = α.

De�nition 2.14. An ordinal, which is not a succesor, is called a limit
ordinal.

Proposition 2.15. If α ∈ Ord and P (x) is a property such that

(1) P (0) is true,

(2) ∀β ∈ α(P (β)⇒ P (β + 1)),

(3) if β ∈ α is a limit ordinal, then ∀γ < β P (γ)⇒ P (β),

Then P (β) holds for all β ∈ α.
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Theorem 2.16. If (A,<) is a well-ordered set, ∃!α ∈ Ord,∃!π : A → α an
isomorphism.

De�nition 2.17. This unique ordinal α is called the order type of A,
written α = ot(A).

Lemma 2.18. If ∃α ∈ Ord such that A ↪→ α, then the theorem holds.

Proof. Let α = min{β ∈ Ord : A ↪→ β}.
(1) π(0) = minA.
(2) If π(β) has been de�ned, either β + 1 = α (and we are done) or

β + 1 < α and Aπ(β) ( A. Set π(β + 1) = min(A\Aπ(β)).
(3) If β is a limit ordinal and if π(γ) has already been de�ned for all

γ < β, we distinguish two cases:
If β = α we are done.
If β < α, set B = {π(γ) : γ < β} and set π(β) = min(A\B).

�

3. Arithmetic of ordinals

De�nition 3.1. We de�ne the ordinal sum α+ β by induction on β :

(i) α+ 0 = α,

(ii) α+ (β + 1) = (α+ β) + 1,

(iii) if β is a limit ordinal, then α+ β = sup
γ<β

(α+ γ).

Proposition 3.2.

(i) α+ (β + γ) = (α+ β) + γ

(ii) If β < γ, then α+ β < α+ γ.

Proof. We prove (i) by induction on γ.

- α+ (β + 0) = α+ β = (α+ β) + 0
-

α+ (β + (γ + 1)) = α+ ((β + γ) + 1)

= (α+ (β + γ)) + 1

= ((α+ β) + γ) + 1

= (α+ β) + (γ + 1).

-

α+ (β + γ) = α+ sup
δ<γ

(β + δ)

= sup
δ<γ

(α+ (β + δ))

= sup
δ<γ

((α+ β) + δ)

= (α+ β) + γ.

�
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Remark 3.3. + is not commutative, e.g. 1 + ω 6= ω + 1.

De�nition 3.4. We de�ne the ordinal product α · β by induction on β :

(i) α · 0 = 0,

(ii) α · (β + 1) = (α · β) + α,

(iii) if β is a limit ordinal, then α · β = sup
γ<β

(α · γ).

De�nition 3.5. We de�ne the ordinal exponentiation αβ by induction
on β :

(i) α0 = 1,

(ii) αβ+1 = αβ · α,

(iii) if β is a limit ordinal, then αβ = sup
γ<β

αγ .

Proposition 3.6. Let F be the set of functions β → α with �nite support.
De�ne

f < g :⇔ f(γ) < g(γ),

where γ = max{δ : f(δ) 6= g(δ)}. Then ot((F,<)) = αβ.

Proposition 3.7.

(i) α(β + γ) = αβ + αγ,

(ii) αβ+γ = αβ · αγ ,

(iii)
(
αβ
)γ

= αβ·γ .

Remark 3.8.

(i) (ω + 1) · 2 6= ω · 2 + 1 · 2,

(ii) (ω · 2)2 6= ω2 · 22.
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1. Valuation basis

De�nition 1.1. B ⊆ V \{0} is a Q-valuation basis of (V, v) if

(1) B is a Q-linear basis for V ,
(2) B is Q-valuation independent.

Remark 1.2. B is a Q-valuation basis ⇒ B is maximal valuation indepen-
dent.

(This is because valuation independence ⇒ linear independence).

Warning 1.3.

(i) a maximal valuation independent set needs not to be a valuation
basis.
Example: HNQ is a Q-vector space, with vmin valuation. Consider

B = {(1, 0, . . .), (0, 1, . . .), . . .} ⊆ HNQ\{0}.
Then ∀γ ∈ N : Bγ = {1}, which is a Q-basis of B(γ). Hence, B is
maximal valuation independent. However, note that B is not a Q-
linear basis of HNQ.

(ii) a valued vector space needs not to admit a valuation basis.

Example 1.4. (
⊔
γ∈ΓB(γ), vmin) admits a valuation basis.

Proof. Let Bγ be a Q-basis of B(γ) for all γ ∈ Γ and consider

B :=
⋃
γ∈Γ

{bχγ ; b ∈ Bγ},

where ∀ γ ∈ Γ
χγ : Γ −→ Q

χγ(γ′) =

{
1 if γ = γ′

0 if γ 6= γ′.

�
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Corollary 1.5. Let (V, v) be a valued Q-vector space with skeleton S(V ) =
[ Γ, {B(γ) : γ ∈ Γ} ]. Then (V, v) admits a valuation basis if and only if

(V, v) ∼= (
⊔
γ∈Γ

B(γ), vmin).

Proof.

(⇐) ÜA.

(⇒) Let B := {bi : i ∈ I} be a valuation basis for (V, v). Then B is
maximal valuation independent. For every bi ∈ B with v(bi) = γ
de�ne

h(bi) = π(γ, bi)χγ ∈
⊔
γ∈Γ

B(γ)

and then extend h to all of V by linearity, i.e. for x ∈ V such that
x =

∑
bi∈B qbibi de�ne

h(x) :=
∑
bi∈B

qbih(bi).

Verify that h is valuation preserving, i.e. verify that

vmin(h(x)) = v(x) (= id(v(x))) ∀x ∈ V
First consider the case x = bi. Then it holds by construction

v(bi) = vmin(h(bi)).

For arbitrary x we have h(x) =
∑
qbih(bi), and therefore

v(x) = min{v(bi) : bi ∈ B}
= min{vmin(h(bi)) : bi ∈ B}
= vmin(h(x)).

�

Corollary 1.6. Let (V, v) be a valued Q-vector space with skeleton S(V ) =
[Γ, {B(γ) : γ ∈ Γ}]. Then

(
⊔
γ∈Γ

B(γ), vmin) ↪→ (V, v),

i.e. there exists a valued subspace (V0, v0) of (V, v) such that (V0, v0) ⊆ (V, v)
is immediate and

(V0, v0) ∼= (
⊔
B(γ, vmin)).

Proof. By Zorn's lemma, let B ⊂ V \ {0} be maximal valuation independent.
Set

V0 := 〈 B 〉Q.

Then B is a valuation basis of V0 and the extension V0 ⊆ V is immediate by
maximality. By de�nition S(V0) = [Γ, {B(γ) : γ ∈ Γ}]. So (V0, v|V0) admits
a valuation basis and has skeleton S(V0) = [Γ, {B(γ) : γ ∈ Γ}]. By the
previous corollary (V0, v|V0) ∼= (

⊔
B(γ), vmin) . �
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1. Introduction

Our aim for this and next lecture is to complete the proof of Hahn's em-
bedding Theorem:

Let (V, v) be a Q-valued vector space with S(V ) = [ Γ, B(γ) ].
Let {xi : i ∈ I} ⊂ V be maximal valuation independent and

h : V0 = (〈{xi : i ∈ I}〉, v)
∼−→ (

⊔
γ∈Γ

B(γ), vmin).

Then h extends to a valuation preserving embedding (i.e. an isomorphism
onto a valued subspace)

h̃ : (V, v) ↪→ (Hγ∈ΓB(γ), vmin).

The picture is the following:

(V, v)

immediate

� � h̃ // (Hγ∈ΓB(γ), vmin)

immediate

(V0, v)
h
∼
// (

⊔
γ∈ΓB(γ), vmin)

2. Pseudo-convergence and maximality

De�nition 2.1. A valued Q-vector space (V, v) is said to be maximally
valued if it admits no proper immediate extension.
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De�nition 2.2. Let S = {aρ : ρ ∈ λ} ⊂ V for some limit ordinal λ.
Then S is said to be pseudo-convergent (or pseudo-Cauchy) if for every
ρ < σ < τ we have

v(aσ − aρ) < v(aτ − aσ).

Example 2.3.

(a) Let V = (HN0 R, vmin), where N0 = {0, 1, 2, . . . }. An element s ∈ V
can be viewed as a function s : N0 → R. Consider

a0 = (1, 0, 0, 0, 0 . . . )

a1 = (1, 1, 0, 0, 0 . . . )

a2 = (1, 1, 1, 0, 0 . . . )

...

The sequence {an : n ∈ N0} ⊂ V is pseudo-Cauchy.

(b) Take (V, v) as above and s ∈ V with

support(s) = N0,

i.e. si := s(i) 6= 0 ∀ i ∈ N0. De�ne the sequence

b0 = (s0, 0, 0, 0, 0 . . . )

b1 = (s0, s1, 0, 0, 0 . . . )

b2 = (s0, s1, s2, 0, 0 . . . )

...

For every l < m < n ∈ N0, we have

l + 1 = vmin(bm − bl) < vmin(bn − bm) = m+ 1.

Therefore {bn : n ∈ N0} ⊂ V is pseudo-Cauchy.

Lemma 2.4. If S = {aρ}ρ∈λ is pseudo-convergent then

(i) either v(aρ) < v(aσ) for all ρ < σ ∈ λ,

(ii) or ∃ ρ0 ∈ λ such that v(aρ) = v(aσ) ∀ ρ, σ > ρ0.

Proof. Assume (i) does not hold, i.e. v(aρ) > v(aσ) for some ρ < σ ∈ λ.
Then we claim that

v(aτ ) = v(aσ) ∀ τ > σ.

Otherwise, v(aτ − aσ) = min{v(aτ ), v(aσ)} 6 v(aσ).
But v(aσ − aρ) > v(aσ), contradicting pseudo-convergence for ρ < σ <

τ. �
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Notation 2.5. In case (ii) de�ne

UltS := v(aρ0) = v(aρ) ∀ρ > ρ0.

Lemma 2.6. If {aρ}ρ∈λ is pseudo-convergent, then for all ρ < σ ∈ λ we

have

v(aσ − aρ) = v(aρ+1 − aρ).

Proof. We may assume σ > ρ+ 1 (so ρ < ρ+ 1 < σ). From

v(aρ+1 − aρ) < v(aσ − aρ+1)

and the identity

aσ − aρ = (aσ − aρ+1) + (aρ+1 − aρ),

we deduce that

v(aσ − aρ) = min{v(aσ − aρ+1), v(aρ+1 − aρ)}
= v(aρ+1 − aρ).

�

Notation 2.7.

γρ : = v(aρ+1 − aρ)
= v(aσ − aρ) ∀σ > ρ.

Remark 2.8. Since ρ < ρ+ 1 < ρ+ 2, we have γρ < γρ+1 for all ρ ∈ λ.

3. Pseudo-limits

De�nition 3.1. Let S = {aρ}ρ∈λ be a pseudo-convergent set. We say that
x ∈ V is a pseudo-limit of S if

v(x− aρ) = γρ for all ρ ∈ λ.
Remark 3.2.

(i) If v(aρ) < v(aσ) for ρ < σ, then x = 0 is a pseudo-limit.

(ii) If 0 is not a pseudo-limit and x is a pseudo-limit, then v(x) = UltS.

Example 3.3.

(a) In Example 2.3(a), the constant function 1:

a = (1, 1, . . . )

is a pseudo-limit of the sequence {an}n∈N0 .
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(b) In Example 2.3(b), s is a pseudo-limit of {bn}n∈N0 .

De�nition 3.4. (V, v) is pseudo-complete if every pseudo-convergent se-
quence in V has a pseudo-limit in V .

We will analyse the set of pseudo-limits of a given pseudo-Cauchy sequence
(this set can be empty, a singleton, or in�nite).

De�nition 3.5. Let S = {aρ}ρ∈λ be a pseudo-convergent set. The breadth
(Breite) B of S is de�ned to be the following subset of V :

B = B(S) := {y ∈ V : v(y) > γρ ∀ ρ ∈ λ}.

Lemma 3.6. Let S = {aρ}ρ∈λ be pseudo-convergent with breadth B and let

x ∈ V be a pseudo-limit of S. Then an element of V is a pseudo-limit of S
if and only if it is of the form x+ y with y ∈ B.

Proof.

(⇒) Let z be another pseudo-limit of S. It follows from

x− z = (x− aρ)− (z − aρ)

that

v(x− z) > min{v(x− aρ), v(z − aρ)} = γρ ∀ ρ ∈ λ.

Since γρ is strictly increasing, it follows v(x−z) > γρ for all ρ ∈ λ.
So x− z ∈ B is as required.

(⇐) If y ∈ B then v(y) > γρ = v(x− aρ) for all ρ ∈ λ. Then

v((x+ y)− aρ) = v((x− aρ) + y) = min{v(x− aρ), v(y)} = γρ ∀ ρ ∈ λ.
�

4. Cofinality

De�nition 4.1. Let Γ be a totally ordered set. A subset A ⊂ Γ is co�nal
in Γ if

∀ γ ∈ Γ ∃ a ∈ A with γ 6 a.

Example 4.2. If Γ = [0, 1] ⊂ R, then A = {1} is co�nal in Γ.

Lemma 4.3. Let ∅ 6= Γ be a totally ordered set. Then there is a well-ordered

co�nal subset A ⊂ Γ. Moreover if Γ has no last element, then A has also no

last element, i.e. the order type of A is a limit ordinal.
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Remark 4.4. Note that if {aρ}ρ∈λ is pseudo-Cauchy in (V, v), x ∈ V is a
pseudo-limit and {γρ}ρ∈λ is co�nal in Γ = v(V ), then it follows by Lemma
3.6 that the limit is unique. This is because if {γρ}ρ∈λ is co�nal in Γ, then
B(S) = {0}.

Warning: {γρ}ρ∈λ is co�nal in Γ 6⇒ S has no limit.
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1. Pseudo-completeness

Let (V, v) be a valued Q-vector space. We recall that

- (V, v) is maximally valued if (V, v) admits no proper immediate
extension.

- (V, v) is pseudo-complete if every pseudo-convergent sequence in
V has a pseudo-limit in V .

Theorem 1.1. (V, v) is maximally valued if and only if (V, v) is pseudo-

complete.

Today we will prove the implication:

(V, v) pseudo-complete ⇒ (V, v) maximally valued.

It follows from the following proposition:

Proposition 1.2. Let (V, v) be an immediate extension of (V0, v). Then

any element in V which is not in V0 is a pseudo-limit of a pseudo-Cauchy

sequence of elements of V0, without a pseudo-limit in V0.

Note that once the proposition is established we have pseudo complete⇒
maximally valued. If not, assume that (V, v) is not maximally valued. Then
there is a proper immediate extension (V ′, v′) of (V, v). Let y ∈ V ′\V. By the
proposition y is a pseudo-limit of a pseudo-Cauchy sequence in V without
pseudo-limit in (V, v), a contradiction.

Proof. (of the proposition)
Let z ∈ V \V0. Consider the set

X = {v(z − a) : a ∈ V0} ⊂ Γ.

Since z /∈ V0, ∞ /∈ X. We show that X can not have a maximal ele-
ment. Otherwise, let a0 ∈ V0 be such that v(z − a0) is maximal in X. By
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the characterization of immediate extensions (Lecture 3, Lemma 2.2), there
exists some a1 ∈ V0 such that v((z − a0)− a1) > v(z − a0). So a0 + a1 ∈ V0
and v(z − (a0 + a1)) > v(z − a0), a contradiction. Thus, X has no greatest
element.

Select from X a well-ordered co�nal subset {αρ}ρ∈λ. Note that {αρ}ρ∈λ
has no last element, as λ is a limit ordinal.

For every ρ ∈ λ choose an element aρ ∈ V0 with

v(z − aρ) = αρ.

The identity

aσ − aρ = (z − aρ)− (z − aσ)

and the inequality

v(z − aρ) < v(z − aσ) (∀ ρ < σ ∈ λ)

imply

(∗) v(aσ − aρ) = v(z − aρ).

Thus, {aρ}ρ∈λ is pseudo-convergent with z as a pseudo-limit.
Finally suppose that {aρ}ρ∈λ has a further limit z1 ∈ V0.
By a result from the last lecture we have

v(z − z1) > v(aσ − aρ).

Combining this with (∗) we get

v(z − z1) > v(z − aρ) = αρ ∀ ρ ∈ λ

and this is a contradiction, since {αρ}ρ∈λ is co�nal in X. �

Theorem 1.3. Suppose that

(i) Vi and V
′
i are Q-valued vector spaces and V ′i is an immediate exten-

sion of Vi for i = 1, 2.

(ii) h : V1 → V2 is an isomorphism of valued vector spaces.

(iii) V ′2 is pseudo-complete.

Then there exists an embedding h′ : V ′1 → V ′2 such that h′ extends h.
Moreover h′ is an isomorphism of valued vector spaces if and only if V ′1 is

pseudo-complete.

Proof. The picture is the following:

V ′1

immediate

� � h′ // V ′2

immediate

V1
h
∼
// V2
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Consider the collection of triples (M1,M2, g), where

V1 ⊆M1 ⊆ V ′1 ,
V2 ⊆M2 ⊆ V ′2 ,

and g a valuation preserving isomorphism of M1 onto M2 extending h.
This collection is non-empty, because (V1, V2, h) belongs to it. Moreover,

one can show that every chain has an upper bound (ÜA). Therefore the con-
ditions of Zorn's lemma are satis�ed, i.e. there exists a maximal such triple
(M1,M2, g).We claim thatM1 = V ′1 . Assume for a contradiction there exists
some y1 ∈ V ′1 \M1.

(Note: If V0 ⊂ V1 ⊂ V2 are extensions of valued vector spaces and V2|V0
is immediate, then V2|V1 and V1|V0 are immediate)

Since V ′1 is an immediate extension ofM1, there exists a pseudo-convergent
sequence S = {aρ}ρ∈λ of M1 without a pseudo-limit in M1, but with a
pseudo-limit y1 ∈ V ′1 . Consider g(S) = {g(aρ)}ρ∈λ.

(Facts/ÜA:
(i) the image of a pseudo-convergent sequence under a valuation pre-

serving isomorphism is pseudo-convergent.
(ii) the image of a pseudo-limit of a pseudo-convergent sequence under

a valuation preserving isomorphism is a pseudo-limit of the image of
the pseudo-convergent sequence.

(iii) the image of a pseudo-complete vector space under a valuation pre-
serving isomorphism is pseudo-complete.)

Since g is a valuation preserving isomorphism, g(S) is a pseudo-convergent
sequence of M2 without a pseudo-limit in M2 but with a pseudo-limit y2 ∈
V ′2 , because V

′
2 is pseudo-complete.

Let M ′i = 〈Mi, yi〉Q for i = 1, 2, and denote by g′ the unique Q-vector
space isomorphism of the linear spaceM ′1 onto the linear spaceM

′
2 extending

g such that g′(y1) = y2.
We show that g′ is valuation preserving: let

y = x+ qy1 x ∈M1 (q ∈ Q \ {0})

be an arbitrary element of M ′1 \M . The sequence

S(y) = {x+ qaρ}ρ∈λ

is pseudo-convergent in M1 with pseudo-limit y ∈ M ′1 and 0 is not a
pseudo-limit (otherwise −x/q ∈M1 would be a pseudo-limit of S).

It follows that (since y = x+qy1 is a pseudo-limit for the sequence x+qaρ
which does not have 0 as a pseudo-limit)

v(y) = UltS(y)

and similarly
v(g′(y)) = UltS(g′(y)),
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where
S(g′(y)) = {g′(x) + qg′(aρ)}ρ∈λ

is a pseudo-convergent sequence of M2 with pseudo-limit g′(y) ∈M ′2.
Now g′|M1

= g is valuation preserving from M1 to M2. So we have

Ult(S(y)) = Ult(S(g′(y))),

hence
v(y) = v(g′(y))

as required.

Now if h′ is onto, then V ′1 is pseudo-complete. Conversely, if V ′1 is pseudo-
complete, then h′(V ′1) is also pseudo-complete and hence maximally valued.
So the immediate extension V ′2 |h′(V ′1) cannot be proper, i.e. h′(V ′1) = V ′2 .
Thus, h′ is onto as claimed. �
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1. Pseudo-completeness

In the last lecture we showed that pseudo complete implies maximally
valued. Today, we prove the converse implication.

Proposition 1.1. The Hahn product (Hγ∈ΓB(γ), vmin) is pseudo-complete.

Proof. Let {aρ}ρ∈λ be pseudo-Cauchy. Recall that γρ = v(aρ − aρ+1) is a
strictly increasing sequence. De�ne x ∈ Hγ∈ΓB(γ) by

x(γ) =

{
aρ(γ) if γ < γρ for some ρ.

0 otherwise.

This is well-de�ned because if ρ1 < ρ2 ∈ λ, γ < γρ1 and γ < γρ2 , then
v(aρ1 − aρ2) = γρ1

and therefore
aρ1(γ) = aρ2(γ)

(note that vmin(a− b) is the �rst spot where a and b di�er).

Now we show that support(x) is well-ordered.
Let A ⊆ support(x), A 6= ∅ and γ0 ∈ A. Then ∃ ρ such that γ0 < γρ and

x(γ0) = aρ(γ0) with γ0 ∈ support(aρ). Consider

A0 := {γ ∈ A : γ 6 γ0}.

Note that since x(γ) = aρ(γ) for γ 6 γ0 it follows that A0 ⊆ support(aρ)
which is well-ordered, so minA0 exists in A0 and it is the least element of A.

We conclude by showing that x is a pseudo-limit. By de�nition of x follows

v(x− aρ) > γρ = v(aρ+1 − aρ) ∀ ρ ∈ λ.

If v(x− aρ) > v(aρ − aρ+1), then

v(x− aρ+1) = v(x− aρ + aρ − aρ+1) = v(aρ − aρ+1) = γρ,

but on the other hand we have

v(x− aρ+1) > γρ+1 > γρ,

a contradiction. �
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Corollary 1.2. Let (V, v) be a valued vector space with S(V ) = [Γ, {B(γ), γ ∈
Γ}]. Then there exists a valuation preserving embedding

(V, v) ↪→ (Hγ∈ΓB(γ), vmin)

Proof. The picture is the following:

V ′1 = V

immediate

� � h′ // Hγ∈ΓB(γ) = V ′2

immediate

V1
h
∼

//
⊔
γ∈ΓB(γ) = V2

Let B be a maximal valuation independent set in V and set V1 = 〈B〉Q.
Then V1 has a valuation basis and therefore h exists and V |V1 is immediate.

�

Hilfslemma 1.3. Let (V1, v1) be maximally valued, (V2, v2) a valued vector

space and h : V1 → V2 a valuation preserving isomorphism. Then (V2, v2) is

maximally valued.

Proof. Let S(V1) = [Γ, {B(γ) : γ ∈ Γ}]. Assume that V2 is not maximally
valued, so ∃V ′2 a proper immediate extension. By our main theorem there
exists an embedding h′ of immediate extensions V ′2 into Hγ∈ΓB(γ). This is
impossible, since h′ cannot be injective. �

Corollary 1.4. Let (V, v) be a maximally valued vector space. Then it is

pseudo complete. In fact

(V, v) ' (Hγ∈ΓB(γ), vmin),

where S(V ) = [Γ, {B(γ) : γ ∈ Γ}].

Proof. By the �rst corollary, the picture is the following

HB(γ)

immediate

V
h
∼

// V2.

Since V is maximally valued, it follows from the Hifslemma that V2 is
maximally valued. Therefore the extension HB(γ)|V2 is not proper, i.e.
V2 = HB(γ). Thus h is surjective, i.e. h is an isomorphism of valued vector
spaces V → Hγ∈ΓB(γ). �
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1. Ordered abelian groups

De�nition 1.1. (G,+, 0, <) is a (totally) ordered abelian group if (G,+, 0)
is an abelian group and < a total order on G, such that for all a, b, c ∈ G

a 6 b ⇒ a+ c 6 b+ c (∗).

De�nition 1.2. A subgroup C of an ordered abelian group G is convex if
∀ c1, c2 ∈ C and ∀x ∈ G

c1 < x < c2 ⇒ x ∈ C.
Note that because of (∗) this is equivalent to requiring ∀ c ∈ C and ∀x ∈ G

0 < x < c⇒ x ∈ C.

Example 1.3. C = {0} and C = G are convex subgroups.

Lemma 1.4. Let G be an ordered abelian group and C a convex subgroup of
G. Then

(i) G/C is an ordered abelian group by de�ning g1+C 6 g2+C if g1 6 g2.

(ii) There is a bijective correspondence between convex subgroups C ⊆
C ′ ⊆ G and convex subgroups of G/C.

(iii) In particular, if D and C are convex subgroups of G such that D ⊂ C
and there are no further subgroups between D and C, then C/D has
no non-trivial convex subgroups.

(iv) If an ordered abelian group has only the trivial convex subgroups, then
it is an Archimedean group.
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De�nition 1.5. Let G be an ordered abelian group, x ∈ G, x 6= 0.
We de�ne:

Cx :=
⋂
{C : C is a convex subgroup of G and x ∈ C}.

Dx :=
⋃
{D : D is a convex subgroup of G and x /∈ D}.

A convex subgroup C of G is said to be principal if there is some x ∈ G
such that C = Cx.

Lemma 1.6.

(i) Cx and Dx are convex subgroups of G.

(ii) Dx ( Cx.

(iii) Dx is the largest proper convex subgroup of Cx, i.e. if C is a convex
subgroup such that

Dx ⊆ C ⊆ Cx

then C = Dx or C = Cx.

(iv) It follows that the ordered abelian group Cx/Dx has no non-trivial
proper convex subgroup.

2. Archimedean groups

De�nition 2.1. Let (G,+, 0, <) be an ordered abelian group. We say that
G is Archimedean if for all non-zero x, y ∈ G:

∃n ∈ N : n|x| > |y| and n|y| > |x|,

where for every g ∈ G, |g| := max{g,−g}.

Proposition 2.2. (Hölder) Every Archimedean group is isomorphic to a
subgroup of (R,+, 0, <).

Proposition 2.3. G is Archimedean if and only if G has no non-trivial
proper convex subgroup.

Therefore if G is an ordered group and x ∈ G with x 6= 0, the quotient
Cx/Dx is Archimedean (by 2.3) and can be embedded in (R,+, 0, <) (by
2.2).

De�nition 2.4. Let G be an ordered group, x ∈ G, x 6= 0. We say that

Bx := Cx/Dx

is the Archimedean component associated to x.
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3. Archimedean equivalence

De�nition 3.1. An abelian group G is divisible if for every x ∈ G and for
every n ∈ N there is some y ∈ G such that x = ny.

Remark 3.2. Any ordered divisible abelian group G is an ordered Q-vector
space and G can be viewed as a valued Q-vector space in a natural way.

De�nition 3.3. (Archimedean equivalence) Let G be an ordered abelian
group. For every 0 6= x, y ∈ G we de�ne

x ∼+ y :⇔ ∃n ∈ N n|x| > |y| and n|y| > |x|.
x <<+ y :⇔ ∀n ∈ N n|x| < |y|.

Proposition 3.4.

(1) ∼+ is an equivalence relation.

(2) ∼+ is compatible with <<+:

x <<+ y and x ∼+ z ⇒ z <<+ y,

x <<+ y and y ∼+ z ⇒ x <<+ z.

Because of the last proposition we can de�ne a linear order <Γ on Γ :=
G/ ∼+, the set of equivalence classes {[x] : x ∈ G}, as follows:

∀x, y ∈ G\{0} : [y] <Γ [x] ⇔ x <<+ y (and ∞ > Γ)

(convention: [0] =∞)

Proposition 3.5.

(1) Γ is a totally ordered set under <Γ.

(2) The map

v : G −→ Γ ∪ {∞}
0 7→ ∞
x 7→ [x] (if x 6= 0)

is a valuation on G as a Z-module, called the natural valuation:

For every x, y ∈ G:

- v(x) =∞ i� x = 0,

- v(nx) = v(x) ∀n ∈ Z, n 6= 0,

- v(x+ y) > min{v(x), v(y)}.
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(3) if x ∈ G, x 6= 0, v(x) = γ, then

Gγ := {a ∈ G : v(a) > γ} = Cx.

Gγ := {a ∈ G : v(a) > γ} = Dx.

So

Bx = Cx/Dx = Gγ/Gγ = B(γ)

is the Archimedean component associated to γ. By Hölder's Theo-
rem, the homogeneous components B(γ) are all (isomorphic to) sub-
groups of (R,+, 0, <).

Example 3.6. Let [Γ, {B(γ) : γ ∈ Γ}] be an ordered family of Archimedean
groups. Consider

⊔
γ∈ΓB(γ) endowed with the lexicographic order <lex: for

0 6= g ∈
⊔
γ∈ΓB(γ) let γ := min support g. Then declare g > 0 :⇔ g(γ) > 0.

Then (
⊔
B(γ), <lex) is an ordered abelian group. Moreover, the natural

valuation is the vmin valuation. Similarly for the Hahn product.

Theorem 3.7. (Hahn's embedding theorem for divisible ordered abelian groups)
Let G be a divisible ordered abelian group with skeleton S(G) = [Γ, {B(γ) :
γ ∈ Γ}]. Then (⊔

B(γ), <lex

)
↪→ (G,<) ↪→ (HB(γ), <lex).
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Chapter II: Valuations on ordered �elds (particularly real closed �elds)

1. Valued fields

De�nition 1.1. Let K be a �eld, G an ordered abelian group and ∞ an
element greater than every element of G. A surjective map

w : K −→ G ∪ {∞}

is a valuation if and only if ∀ a, b ∈ K:

(i) w(a) =∞ ⇔ a = 0,

(ii) w(ab) = w(a) + w(b),

(iii) w(a− b) > min{w(a), w(b)}.

Immediate consequences:

• w(1) = 0,

• w(a) = w(−a),

• w(a−1) = −w(a) if a 6= 0,

• w(a) 6= w(b) ⇒ w(a+ b) = min{w(a), w(b)}.

De�nition 1.2.

(i) Rw := {a ∈ K : w(a) > 0} is a subring of K, called the valuation
ring of w.

(ii) Iw := {a ∈ K : w(a) > 0} ⊆ Rw is called the valuation ideal of w.
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(iii) Uw := {a ∈ Rw : a−1 ∈ Rw} = {a ∈ Rw : w(a) = 0} is a multiplica-
tive subgroup of Rw and is called the group of units of Rw.

Remark 1.3.

• Note that Rw = Uw ∪̇ Iw. By this observation one can immediately
show that Rw is a local ring with unique maximal ideal Iw.

• Note that for any x ∈ K× either x ∈ Rw or x−1 ∈ Rw (or both in
case x ∈ Uw).

De�nition 1.4.

(i) The residue �eld is denoted by Kw := Rw/Iw.

(ii) The residue map Rw → Kw, a 7→ a := aw is the canonical projec-
tion.

(iii) The group of 1-units of Rw is denoted by

1 + Iw := {a ∈ Rw : w(a− 1) > 0}
and is a multiplicative subgroup of Uw.

2. The natural valuation of an ordered field

Let (K,+, ·, 0, 1, <) be an ordered �eld.

Remark 2.1. (K,+, 0, <) is an ordered divisible abelian group.

So on (K,+, 0, 1) we have already de�ned the natural valuation, namely
via the �Archimedean equivalence relation�:

0 6= a 7→ v(a) := [a]

0 7→ ∞

We have set G := (K,+, 0, 1)/ ∼+ and totally ordered G by

[a] < [b] :⇔ b <<+ a.

We shall show now that we can endow the totally ordered value set (G,<)
with a group operation + such that (G,+, <) is a totally ordered abelian
group. For every a, b ∈ K \ {0} de�ne

[a] + [b] := [ab],

or in valuation notation

v(a) + v(b) := v(ab).

Lemma 2.2.

(i) (G,+, <) is an ordered abelian group.

(ii) The map v : (K,+, ·, 0, 1, <)→ G ∪ {∞} is a (�eld) valuation.
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From now on let K be an ordered �eld and v : K → G ∪ {∞} its natural
valuation, with value group v(K∗) = G.

Consider

Rv := {a ∈ K : v(a) > 0},

Iv := {a ∈ K : v(a) > 0}.

What are Rv and Iv (from the point of view of chapter 1)?

Rv : = {a : [a] > [1]}
= {a : a ∼+ 1 or a <<+ 1}
= {a : v(a) > v(1)}.

Iv : = {a : [a] > [1]}
= {a : a <<+ 1}
= {a : v(a) > v(1)}.

Proposition 2.3. (Properties of the natural valuation)

(1) The valuation ring Rv is a convex subring of K. It consists of all the
elements of K that are bounded in absolute value by some natural
number n ∈ N. Therefore Rv is often called the ring of bounded ele-
ments, or the ring of �nite elements.
This valuation ring of the natural valuation is indeed the convex hull
of Q in K. It is the smallest convex subring of (K,<).

(2) The valuation ideal Iv is a convex ideal. It consists of all elements of
K that are strictly bounded in absolute value by 1

n for every n ∈ N.
Therefore Iv is called the ideal of in�nitely small elements, or ideal
of in�nitesimal elements.

(3) The residue �eld Kv is Archimedean, i.e. a sub�eld of R.
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1. The field of generalized power series

Let k ⊆ R be an Archimedean �eld and G an ordered abelian group.
Recall that we have de�ned a (totally) ordered abelian group, namely the
Hahn product

K := HG(k,+, 0, <),

i.e. take the Hahn product over the family S := [G, {k : g ∈ G}] with the
lexicographic ordering, i.e.

K := {s : G→ k : support s is well-ordered in G},
where support s := {g ∈ G : s(g) 6= 0}.
Endow this set with pointwise addition of functions, i.e. ∀s, r ∈ K

(s+ r)(g) := s(g) + r(g) ∈ k,
and the lexicographic order:

s > 0 :⇔ s(min support(s)) > 0 in k ∀s ∈ K\{0}.
We have veri�ed that (K,+, <lex) is an ordered abelian group. Our �rst

goal of today is to make K into a (totally) ordered �eld. We need to de�ne
multiplication.

Notation 1.1. For s ∈ K write

s =
∑
g∈G

s(g)tg =
∑

g ∈ support s

s(g)tg.

De�nition 1.2. For r, s ∈ K de�ne

(rs)(g) :=
∑
h∈G

r(g − h)s(h),

i.e.

sr =
∑
g∈G

(∑
h∈G

r(g − h)s(h)

)
tg.
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We now adress the following problem: Let F := {si : i ∈ I} ⊆ K. Can we
"make sense" of

∑
i∈I si as an element of K?

De�nition 1.3.

(i) The family F is said to be summable, if
(1) supportF :=

⋃
i∈I support si is well-ordered in G,

(2) ∀g ∈ supportF, the set Sg := {i ∈ I : g ∈ support si} is �nite.

(ii) Assume that F is summable. Write∑
i∈I

si :=
∑

g ∈ supportF

∑
i∈Sg

si(g)

 tg.

We now prove that this multiplication is well-de�ned. For h ∈ G de�ne

ρh := thr : =
∑
g∈G

r(g)tg+h

=
∑

g ∈ support r

r(g)tg+h,

i.e. ρh(g) = r(g − h) ∀g ∈ G. Note that ρh ∈ K because

support ρh = support r ⊕ {h} = {g + h : g ∈ support r},
which is again well-ordered (ÜA).

We now consider

F := {s(h)ρh : h ∈ support s}.

Lemma 1.4. F is summable.

Note that once the lemma is established we de�ne

sr =
∑

h ∈ support s

s(h)ρh =
∑

g ∈ supportF

∑
h∈Sg

s(h)ρh(g)

 tg,

and comparing, we see that this is the product.

Proof. (1) Show that supportF =
⋃

h∈support s support(ρhs(h)) is well-
ordered. Indeed⋃
h ∈ support s

support(ρhs(h)) =
⋃

h ∈ support s

(support r ⊕ {h})

= support s⊕ support r.

ÜA: If A,B are well-ordered, then A⊕B is well-ordered.

(2) Show that Sg = {h ∈ support s : g ∈ support(ρhs(h))} is �nite for
g ∈ supportF. We have

Sg : = {h ∈ support s : g ∈ support r ⊕ {h}}
= {h ∈ support s : g = g′ + h, g′ ∈ support r}
= {h ∈ support s : g − h ∈ support r}.
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Assume Sg is in�nite. Since Sg is well-ordered, take an in�nite strictly
increasing sequence in it, say a sequence of h′s in it. But then g − h′s is an
in�nite strictly decreasing sequence in support r, contradicting that support r
is well-ordered. �

Note we have shown that support(rs) ⊆ support r ⊕ support s.

Notation 1.5. K = k((G)).

Our next goal is to show that k((G)) with the convolution multiplication
is a �eld. We give two proofs:

(1) Follows from �Neumann's lemma� (now)
(2) From S. Prieÿ-Crampe: k((G)) is pseudo-complete (later)

Lemma 1.6. (Neumann's lemma)
Let ε ∈ k((G)) such that support ε ⊆ G>0 (written ε ∈ k((G>0))) and
{cn}n∈N ⊂ k∗. Then the family F = {cnεn : n ∈ N} is summable, i.e.∑
n∈N

cnε
n ∈ k((G)).

Corollary 1.7. k((G)) is a �eld.

Proof. Let s ∈ k((G)), s 6= 0. Set g0 := min support s and c0 = s(g0) 6= 0.
Write

s = c0t
g0(1− ε),

where

ε = −
∑
g>g0

g ∈ support s

s(g)

c0
tg−g0 ∈ k((G>0)),

so

s−1 := c−10 t−g0

( ∞∑
i=0

εi

)
.

Verify that ( ∞∑
i=0

εi

)
(1− ε) = 1,

i.e.

(1− ε)−1 =
∞∑
i=0

εi.

�
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1. Proof of Neumann's lemma

The aim of today's lecture is to prove Neumann's lemma. By what was
shown last time, we then obtain that k((G)) is indeed a �eld.

Proposition 1.1. Set Sn := support εn and S :=
⋃

n∈N Sn. Then S is a
well-ordered set.

Remark 1.2. Note that support εn ⊆ support ε⊕ . . .⊕ support ε (n-times).
Thus, Sn is well-ordered for any n ∈ N.

Proof. (of the proposition)
We argue by contradiction. Let (ui : i ∈ N) ⊆ S be an in�nite strictly
decreasing sequence. We write

ui = ai1 + . . .+ aini
,

where aij ∈ S1 ⊂ G>0 ∀j = 1, . . . , ui. Let vG denote the natural valuation
on G.

ÜB: sign(g1) = sign(g2)⇒ vG(g1 + g2) = min{vG(g1), vG(g2)}.

Note that vG(ui) = min{vG(aij )} =︸︷︷︸
wlog

vG(ai1). Thus, vG(Su) = vG(S1).

Now recall that
0 < g1 < g2 ⇒ vG(g1) > vG(g2).

Since vG(S1) is anti well-ordered and since (vG(ui) : i ∈ N) ⊂ vG(S1) is an
increasing sequence, it must stabilize after �nitely many terms. We assume
without loss of generality that it is constant and denote this constant by
U ∈ vG(G\{0}), without loss of generality U is as large as possible. So for
every i ∈ N consider vG(ui) = U = vG(ai1). Let a

∗ be the smallest element
in S1 for which vG(a

∗) = U.

We have that vG(u1) = U = vG(a
∗), so 0 < u1 6 ra∗ for some r ∈ N. Fix

r. Then ui 6 ra∗ ∀i ∈ N. Since S1 is well-ordered, it does not contain any
in�nite decreasing sequence, so we may without loss of generality assume
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that ni > 1 ∀i ∈ N. We write ui = ai1 + vi, where vi ∈ Sni−1 and vi 6= 0 ∀i.

Claim: There is a subsequence (vik)k of (vi)i, which is strictly decreasing.

Let us construct this subsequence. Note that the set {ui − vi : i ∈ N} is
well-ordered. Proceed as follows:
Let ui1 − vi1 = min{ui − vi}, let ui2 − vi2 be the smallest element of the
set {ui − vi : i > i1} etc., so (uik − vik)k is an increasing sequence, i.e.
uik+1

− vik+1
> uik − vik , so

vik+1
− vik 6 uik+1

− uik .

Therefore, (vik)k is strictly decreasing in S, and this proves the claim.

Now note that 0 < vi < ui ∀i. Therefore, vG(vi) > vG(ui) = U, i.e.
vG(vik) = U ∀k (recall that U was as large as possible).
But now a∗ 6 ai1 and ui 6 ra∗. Hence,

vi = (ui − ai1) 6 (r − 1)a∗ ∀i,
in particular for all ik, so vik 6 (r− 1)a∗ ∀k and (vik)k is strictly decreasing
with vG(vik) = U ∀k.

Repeat the argument with the sequence {vik} ⊂ S ⊂ G>0 to eventually
get a sequence 6 (r − l)a∗ < 0, the desired contradiction.

�

Proposition 1.3. ∀g ∈ S : |{n ∈ N : g ∈ Sn}| <∞.

Proof. Assume ∃a ∈ S such that |{n ∈ N : a ∈ Sn}| = ∞. Since S is
well-ordered, we may choose a to be the smallest such element of S. Write

a = aji1 + . . .+ ajinj
∈ Snj (∗)

where nj is strictly increasing in N and ajik ∈ S1. So {aji1 : j ∈ N} ⊆ S1

is well-ordered. Thus, this set has an in�nite increasing sequence, assume

without loss of generality that (aji1 |j ∈ N) is increasing.

Denote by a′j := aji2 + . . . + ajini
∈ Snj−1, so a′j < a ∀i ∈ N. Since

(∗) is constant and (ai1 |i ∈ N) is increasing, we obtain that {a′j : j ∈ N} is
decreasing and contained in S. Therefore it stabilizes, i.e. becomes ultimately
constant. Denote this constant by a′j := a′ ∀j >> N. So a′ ∈ Snj−1, and
therefore ∣∣{n ∈ N : a′ ∈ Sn}

∣∣ =∞ ∀j >> N,

and a′ < a because a′ = a′j < a ∀j >> N, contradicting the minimality of a.
�

The two propositions �nish the proof of Neumann's lemma.
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1. The field of generalized power series

In order to prove that k((G)) is a �eld, we have seen that it su�ces to
�nd a multiplicative inverse for f ∈ k((G)) of the form f = 1 + s, where
v(s) > 0, i.e. support s ⊂ G>0. We already constructed (1 + s)−1 via the
expansion which gives a summable series by Neumann's lemma.

Today we give an alternative proof by S. Prieÿ-Crampe, which capitalizes
on the fact that k((G)) is pseudo-complete.

Proof. Let v := vmin be the canonical valuation on the Hahn product k((G));
that is v(f) = min support f for f 6= 0, f ∈ k((G)). It is enough, as noted,
to �nd an inverse for f = 1 + s, s 6= 0 with v(s) > 0. Note that v(f) = 0
and f(0) = 1. Denote K := k((G)) and consider the set

Σ := {v(1− fy) : y ∈ K and 1− fy 6= 0}.

Note that Σ 6= ∅.

Case 1: Σ has a largest element α. Let ỹ ∈ K be such that v(1−fỹ) = α.
Set z := 1− fỹ and ŷ := ỹ + z(α)tα. Compute

v(1− fŷ) = v(1− fỹ − fz(α)tα)

> min{v(1− fỹ), v(fz(α)tα)} = α.

On the other hand

(1− fŷ)(α) = (1− fỹ)(α)− (fz(α)tα)(α)

= z(α)− z(α)

= 0.

Thus v(1 − fŷ) > α, a contradiction to the maximal choice of α, unless
1− fŷ = 0, so 1 = fŷ and therefore ŷ = f−1.
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(Recall: In chapter 1 we have shown that K is pseudo-complete, or equiv-
alently, maximally valued).

Case 2: Σ has no largest element. Thus, there is a strictly increasing
sequence {πρ}ρ<σ of Σ where σ is a limit ordinal and {πρ}ρ<σ is co�nal in
Σ.
For every ρ < σ choose yρ ∈ K such that v(1−fyρ) = πρ. Now for µ < ν < σ
we have πµ < πν . We claim that {yρ}ρ<σ is pseudo-Cauchy. Indeed

v(yµ − yν) = v(1− fyµ + fyν − 1)

= min{πµ, πν} = πµ.

So the sequence is indeed pseudo-Cauchy. Now since K is pseudo-complete
let y∗ be a pseudo-limit of {yρ}ρ<σ, i.e. v(y∗−yρ) = πρ for all ρ < σ. Assume
that 1− fy∗ 6= 0. Then τ := v(1− fy∗) ∈ Σ. By co�nality of {πρ}ρ<σ there
is a ρ large enough such that τ < πρ. On the other hand

τ = v(1− fy∗) = v(1− fyρ + fyρ − fy∗)
> min{v(1− fyρ), v(fyρ − fy∗)}
> πρ,

a contradiction.
�

Remark 1.1.

(i) We have used the fact that for 0 6= s, r ∈ K, we have

vmin(sr) = vmin(s) + vmin(r).

This follows immediately from the de�nition of multiplication of se-
ries in the convolution product.

(ii) Note that here the pseudo-limit y∗ turns out to be unique. We can
conclude that the breadth of {πρ}ρ<σ is {0}.

In conclusion, for k ⊆ R an Archimedean �eld and G any non-trivial or-
dered abelian group, the �eld K = k((G)) endowed with <lex is a totally
ordered non-Archimedean �eld. Its natural valuation is vmin, its value group
is G and its residue �eld k. Note that in general k((G)) needs not to be a
real closed �eld.

In the next lectures we will give necessary and su�cient conditions on k
and G such that K = k((G)) is a real closed �eld.

2. Hardy fields

De�nition 2.1. Consider the set of all real valued functions de�ned on
positive real half lines:

F := {f | f : [a,∞)→ R or f : (a,∞)→ R, a ∈ R ∪ {−∞}}.
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De�ne an equivalence relation on F by

f ∼ g ⇔ ∃N ∈ N s.t. f(x) = g(x) ∀x > N.

Let [f ] denote the equivalence class of f, also called the �germ of f at∞�.
We identify f ∈ F with its germ [f ].

We denote by G := F/ ∼ the set of all germs. Note that G is a commuta-
tive ring with 1 by de�ning

[f ] + [g] := [f + g]

[f ] · [g] := [f · g]

Note that G is not a �eld. For example [sinx] is not invertible.

De�nition 2.2. A subring H of G is a Hardy �eld if it is a �eld with
respect to the operations above and if it is closed under di�erentiation of
germs, i.e. ∀f ∈ H : f ′ ∈ H exists and is well-de�ned ultimately (i.e. for all
x > N ∈ N).

Remark 2.3. (de�ning a total order on a Hardy �eld).
Let H be a Hardy �eld and f ∈ H, f 6= 0. Since 1/f ∈ H, f(x) 6= 0
ultimately. Moreover since f ′ ∈ H, f is ultimately di�erentiable and thus
ultimately continuous. Therefore, by the Intermediate Value Theorem, the
sign of f is ultimately constant and non-zero (i.e. f is strictly positive on
some interval (N,∞) or f is strictly negative on some interval (N,∞)).
Thus we can de�ne

f > 0 if ult sign f = 1,

respectively

f < 0 if ult sign f = −1.

Verify that (H,<) is a totally ordered �eld.
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1. Hardy fields

Today we want to de�ne the canonical valuation on a Hardy �eld H. For
this purpose we observe:

Remark 1.1. (Monotonicity of germs)
Let H be a Hardy �eld and f ∈ H, f ′ 6= 0. Since f ′ ∈ H is ultimately
strictly positive or negative, it follows that f is ultimately strictly increasing
or decreasing. Therefore

lim
x→+∞

f(x) ∈ R ∪ {−∞,∞}

exists.

Example 1.2.

(i) R and Q are Archimedean Hardy �elds (constant germs)

(ii) Consider the set of germs of real rational functions with coe�cients
in R (multivariate). By abuse of denation denote it by R(X). Verify
that this is a Hardy �eld.
Note that with respect to the order de�ned on a Hardy �eld, this is
a non-Archimedean �eld, because the function X is ultimately > N
for all N ∈ N.

2. The natural valuation of a Hardy field

De�nition 2.1. (The canonical valuation on a Hardy �eld H).
Let H be a Hardy �eld. De�ne for 0 6= f, g ∈ H

f ∼ g ⇔ lim
x→∞

f(x)

g(x)
= r ∈ R \ {0}.



2 SALMA KUHLMANN

This is an equivalence relation, called asymptotic equivalence relation.
Denote the equivalence class of 0 6= f by v(f). De�ne

v(0) :=∞ and v(f) + v(g) := v(fg),

Moreover, de�ne an order on the set {v(f) : f ∈ H} by setting

∞ = v(0) > v(f) for f 6= 0.

and

v(f) > v(g) ⇔ lim
x→∞

f(x)

g(x)
= 0.

Verify that (v(H),+, <) is a totally ordered abelian group.

Lemma 2.2. The map

v : H −→ v(H) ∪ {∞}
0 6= f 7→ v(f)

0 7→ ∞

is a valuation and it is equivalent to the natural valuation.

Remark 2.3.

Rv = {f : lim
x→∞

f(x) ∈ R}.

Iv = {f : lim
x→∞

f(x) = 0}.

Uv = {f : lim
x→∞

f(x) ∈ R×}.

3. Construction of non-Archimedean real closed fields

Our next goal is to prove the following:

Theorem 3.1. (Main Theorem of chapter 2)
Let k ⊆ R be a sub�eld, G a totally ordered abelian group and K := k((G)).
Then K is a real closed �eld if and only if

(i) G is divisible,

(ii) k is a real closed �eld.

Remark 3.2. Once the Main Theorem is proved we can proceed as follows
(starting from R) to construct non-Archimedean real closed �elds:
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(1) Let ∅ 6= Γ be a totally ordered set.

(2) Choose divisible subgroups of (R,+, 0, <), say {Bγ : γ ∈ Γ} (note
that R is a Q-vector space).

(3) Take
⊔
γ∈ΓBγ ⊂ G ⊂ Hγ∈ΓBγ . Note that G is a divisible ordered

abelian group.

(4) Take k ⊂ R a sub�eld and consider krc = {α ∈ R : α alg. over k}.
Then krc ⊂ R is a real closed �eld (because R is real closed).

(5) Set K = krc((G)).

In the next chapters, we will show "Kaplansky's embedding theorem":
any real closed �eld is a sub�eld of such a K.

4. Towards the proof of the Main Theorem

Let k ⊂ R and G be an ordered abelian group.

Proposition 4.1. Set K = k((G)) and v = vmin. If K is real closed, then G
is divisible and k is a real closed �eld.

Proof. We �rst prove that G is divisible. So let g ∈ G and n ∈ N. We have
to show that g

n ∈ G. Assume without loss of generality g > 0. Consider
K 3 s = tg > 0 in the lex order on K.

(Note that a real closed �eld R is �root closed for positive elements�: For
some s > 0 consider xn − s. Then 0n − s < 0 and (s + 1)n − s > 0. The
Intermediate Value Theorem gives a root in the interval ]0, s+ 1[).

Since K is real closed take y = n
√
s ∈ K. Then v(s) = g and thus

v(y) = g
n ∈ G.

To show that k is a real closed �eld let n ∈ N be odd and consider some
polynomial

xn + cn−1x
n−1 + . . .+ c0 ∈ k[X] ⊆ K[X].

Since K is real closed, we �nd some x ∈ K such that x is a root of this
polynomial, i.e.

xn + cn−1x
n−1 + . . .+ c0 = 0.

Note that the residue �eld of K is k and the residue map is a homomor-
phism. We want to compute c for c ∈ k. Note that s = c = ct0 ∈ k so
vmin(c) = 0 and c = c. So the residue map is just the identity on k. It
remains to show that v(x) > 0. Assume v(x) < 0. Then

v(xn + . . .+ c0) = v(0) =∞,
a contradiction.

�
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1. The Main Theorem

In the previous lecture we introduced the "Main Theorem" of this chapter.

Theorem 1.1. Let k ⊆ R be a sub�eld, G a totally ordered abelian group
and K := k((G)). Then K is a real closed �eld if and only if

(i) G is divisible,

(ii) k is a real closed �eld.

Last time we already proved the implication "⇒". For the converse we
need some notions and preliminary results.

2. The divisible hull

Proposition 2.1.

(i) Let (G,+) be a torsion free abelian group. Then there exists a unique

(up to isomorphism of groups) minimal divisible group (G̃,+) that
contains (G,+).

(G̃,+) is called the divisible hull of G.

(ii) If H 6 G, then H̃ 6 G̃.

(iii) If G is a totally ordered abelian group (particularly torsion free),

then the order on G extends uniquely to an order on G̃. Therefore
the ordered divisible hull (G̃, <) of (G,<) is unique up to an order
preserving isomorphism.

Proof. (i) Consider the set {(x, n) : x ∈ G,n ∈ N} under the equivalence
relation

(x, n) ∼ (y,m) :⇔ mx = ny,
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i.e. set

G̃ := {(x, n) : x ∈ G,n ∈ N} / ∼ .
De�ne an addition on G̃ by (x, n)+̃(y,m) := (mx+ ny,mn).

Verify that (ÜA)
� +̃ is well-de�ned and (G̃, +̃) is a torsion free abelian group.
� the map g 7→ (g, 1) de�nes an embedding of G in G̃.
� (G̃, +̃) is divisible.
� if G∗ ⊇ G is a group extension and G∗ is divisible and torsion
free, then

QG := {qx : q ∈ Q, x ∈ G}
is a minimal divisible subgroup of G∗ containing G. Moreover,
the map (a, n) 7→ 1

na is an isomorphism of groups G̃→ QG.

(ii) Straight forward by construction as in (i) (ÜA).

(iii) Declare (x, n) ∈ G̃ to be positive if and only if x ∈ G is positive.
Verify that the map G→ G̃, a 7→ (a, 1) is order preserving.

�

Remark 2.2. G is divisible if and only if G = G̃.

Proposition 2.3. (Generalized ultrametric inequality)

(i) v(a) 6= v(b)⇒ v(a+ b) = min{v(a), v(b)}.

(ii) v(
∑
ai) > min{v(ai)}.

(iii) If there exists a unique index i0 ∈ {1, . . . , n} such that v(ai0) =
min{v(ai) : i = 1, . . . , n}, then v(

∑
ai) = min{v(ai)}.

Proposition 2.4. Let (L, v) be a valued �eld and K ⊆ L be a sub�eld such
that L|K is algebraic. Then v(L) is contained in the divisible hull of v(K).

Proof. Let α ∈ v(L)\v(K) and let l ∈ L be such that α = v(l). Since L is
algebraic over K, l satis�es

n∑
i=0

ail
i = 0

for some ai ∈ K with 0 6= an. Applying v on both sides yields

v

(
n∑

i=0

ail
i

)
=∞ = v(0).

Thus, there must be two indices i, j ∈ {0, . . . , n} with i < j such that
∞ 6= v(ajl

j) = v(ail
i). In other words

v(aj) + jv(l) = v(ai) + iv(l)
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i.e.
(j − i)v(l) = v(ai)− v(aj) ∈ v(K)

and therefore

α =
v(ai)− v(aj)

j − i
∈ v(K̃).

�

3. Algebraically closed fields

In this section we prove the Main Theorem for algebraically closed �elds.
We conclude by showing that this transfers to real closed �elds by applying
the Theorem of Artin-Schreier (see RAG I).

Proposition 3.1. Let (L, v) be a valued �eld and K ⊂ L a sub�eld such
that L|K is algebraic. Then the residue �eld L is contained in an algebraic
closure of the residue �eld K.

Proof. Let 0 6= z ∈ L and 0 6= z ∈ L be a preimage of z in L. Now L is
algebraic over K, so z satis�es a polynomial equation

anz
n + . . .+ a0 = 0 (ai ∈ K, an 6= 0).

Set v(aj) = min{v(ai) : i = 0, . . . , n} and bi :=
ai
aj

for i = 0, . . . , n. Then

bj = 1 and v(bi) > 0 for i = 0, . . . , n. Therefore

0 6= bnX
n + . . .+ b0 ∈ Kv[X]

and
bnz

n + . . .+ b0 = 0,

where Kv denotes the valuation ring of K. Thus z is a root of the non-zero
polynomial 0 6=

∑n
i=0 biX

i ∈ K[X], i.e. z is algebraic over K. �

Theorem 3.2. (algebraically closed �elds of generalized power series, Mac
Lane, 1939)
Set K := k((G)) for some �eld k and some ordered abelian group G. Then K
is algebraically closed if and only if

(i) G is divisible,

(ii) k is an algebraically closed �eld.

Proof. "⇒" is analogue to the proof for the real closed �eld case seen last
lecture (ÜA). Let us prove "⇐". So we want to show that K is algebraically
closed.

Claim: Every algebraic extension L of K is immediate.

(Since K is maximally valued, as was shown in lectures 6 � 8, K will then
admit no proper algebraic extensions at all, i.e. is algebraically closed)
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Proof of the claim: Since L|K is algebraic we know by Proposition 2.4
that

v(L) ⊆ v(K) = G̃ = G.

On the other hand, since (L, v) is a valued extension of (K, v), we have
v(L) ⊇ v(K) = G, so we get v(L) = v(K).
Similarly we show that L = K = k. By Proposition 3.1 L is contained in the
algebraic closure of k, but k = k. So L ⊆ k = k. On the other hand, since
(L, v) is a valued �eld extension of (K, v), we have L ⊇ K = k, so again
L = k. Hence the valued �eld extension (L, v)|(K, v) is immediate. �

Remark 3.3. What is meant in the claim is the following: (K, v) is a valued
�eld and L|K a �eld extension, extending the valuation v on K to a valuation
v on L. After that we mean (L, v) is an immediate extension of (K, v).

4. Finishing the proof of the Main Theorem

Proposition 4.1. Let k be a �eld, G an ordered abelian group and i =
√
−1.

Then k((G))(i) ∼= k(i)((G)).

Proof. ÜA. �

Theorem 4.2. (real closed �elds of power series)
k((G)) is a real closed �eld if and only if k is a real closed �eld and G is
divisible.

Proof. It remains to prove "⇐". Since k is real closed, k(i) is algebraically
closed (Artin-Schreier). So k(i)((G)) is algebraically closed by Mac Lane.
But then k((G))(i) is also algebraically closed. By Artin-Schreier k((G)) is
a real closed �eld. �

Example 4.3. De�ne Q̃rc := the �eld of all real algebraic numbers. Then
K = Q̃rc((Q)) is a real closed �eld. Note that K is not countable.

Question: Are there countable non-Archimedean real closed �elds?
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1. Real closed fields of power series

Notation 1.1. For K = k((G)) let k(G) denote the sub�eld of K generated
by k ∪ {tg : g ∈ G}.

Theorem 1.2. Let K be a real closed �eld, v its natural valuation, G =
v(K×) its value group, K its residue �eld. Then K is order isomorphic to a
sub�eld i(K) such that

K(G)rc ⊆ i(K) ⊆ K((G)).

Remark 1.3. We denote by k(G)rc the relative algebraic closure of k(G)
in K. Note that if K is real closed, then k(G)rc is (isomorphic to) the real
closure of k(G) (i.e. K is "sandwiched" between two real closed �elds of
power series).

Remark 1.4. Note about k(G) :

(i) Consider all series in K which have �nite support and denote it by
k[G] := {s ∈ K : support(s) is �nite}.

ÜB: k[G] is a subring of K, so it is a domain, called the group ring
over k and the group G.

Excurs about k[G] : Let s ∈ k[G], support(s) = {g1, . . . , gr}, r ∈ N,
i.e. there are coe�cients c1, . . . , cr ∈ k such that s = c1t

g1+. . .+crt
gr ,

so the group ring k[G] can be viewed as the ring of �polynomials� with
coe�cients in k and variables in {tg : g ∈ G}.
Example: If G = Z, say k = R or k = C, then k[G] is called the
ring of Laurent polynomials.

(ii) k(G) = ff(k[G]) = k(tg : g ∈ G).
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2. Embedding of the value group

The aim of this section is to prove that the value group of a real closed
�eld K under its natural valuation can be embedded into the multiplicative
subgroup (K>0, ·, 1, <).

Proposition 2.1. Let K be an ordered �eld and G = v(K×), where v denotes
the natural valuation.

(i) the map

ν : (K>0, ·, 1, <)→ G, a 7→ −v(a) = v(a−1)

is a surjective homomorphism of ordered groups with kernel

U>0
v = {a ∈ Kv : a > 0, v(a) = 0}.

So U>0
v is a convex subgroup of (K>0, ·, 1, <) and K>0/U>0

v
∼= G.

(ii) if moreover K>0 is divisible (in particular this is the case if K is real
closed), then (K>0, ·, 1, <) = B · U>0

v , where B is a multiplicative
subgroup of (K>0, ·, 1) and is order-isomorphic to G.

Remark 2.2. Here we are considering (K>0, ·, 1, <) as a Q-vector space as
follows:

(i) (K>0, ·, 1, <) is an ordered abelian group.
(ii) De�ne the scalar map Q×K>0 → K>0, (q, a) 7→ aq.

Note that U>0
v is also divisible. Use the Theorem from LA1 about

existence and uniqueness up to isomorphism of a complement to a
subspace in a vector space.

Proof. (of the proposition)

(i) Note that

ν(ab) = −v(ab) = −v(a)− v(b) = ν(a) + ν(b).

To show surjectivity let g ∈ G and choose a > 0, a ∈ K, such that
−v(a) = g (then ν(a) = g).
Order-preserving: Let a > 1. Show ν(a) > 0, i.e. −v(a) > 0 or
v(a) 6 v(1) (via Archimedean equivalence classes).
Compute kernel:

a ∈ ker ν ⇔ ν(a) = 0⇔ −v(a) = 0⇔ v(a) = 0⇔ a ∈ U>0
v ,

since a ∈ K>0.

�

Corollary 2.3. If K is a totally ordered �eld such that (K>0, ·, 1) is divis-
ible (in particular if K is real closed), then there exists an order preserving
embedding of v(K×) into (K>0, ·, 1, <).
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3. Embedding of the residue field

In this section we prove that the residue �eld of a real closed �eld K, with
respect to the natural valuation, embedds in K.

Proposition 3.1. Let K be a real closed �eld. Then there exists a sub�eld
of K which is order-isomorphic to the residue �eld K of K with respect to
the natural valuation (i.e. the residue �eld embedds in K).

Proof. We want to apply Zorn's lemma to the collection Θ of all Archimedean
sub�elds of K, which is partially ordered under inclusion. Note that Q is
Archimedean, i.e. Θ is non-empty. Now let C ⊆ Θ be a totally ordered
subset. We need to �nd an upper bound in Θ. Set S =

⋃
C and verify that

this is indeed an upper bound.
Let k ⊆ K be a maximal Archimedean sub�eld. We will show k ∼= K. Note
that k× ⊂ Uv. Consider the residue map k → K, x 7→ x. This is an injective
homomorphism. We claim that it is also surjective.
First of all note that k is real closed. This is because the real closure of an
Archimedean �eld is Archimedean. Moreover the real closure of a sub�eld
of Kv is a sub�eld of Kv. Indeed v(z) = 0 for any z in the relative algebraic

closure of k, because v(z) is in the divisible hull ṽ(k) = {0} of v(k). So the
relative algebraic closure of k, if a proper extension, would contradict the
maximal choice of k. Note that by Proposition 4.1 lecture 14, also k is real
closed.
Now assume the residue map is not surjective, i.e. ∃y ∈ K\k. Let y ∈
Uv denote a preimage of y. We claim that k(y) ⊆ Uv and that (k(y) is
Archimedean. Note that y is transcendental, so k(y) = ff(k[y]). Consider
any

n + . . .+ a0 ∈ k[y]. If

anyn + . . .+ a0 = an y
n + . . .+ a0 = 0,

then y would be algebraic over k.
So any z ∈ k(y) has z 6= 0, so k(y) ⊂ Uv and is Archimedean (because
∀z ∈ k(y) : v(z) = 0, so z ∼+ 1), contradicting the maximality of k.

�
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1. Kaplansky's Embedding Theorem

In the last lecture we showed that

(i) the value group of a real closed �eld K is isomorphic (as an ordered
group) to a subgroup of (K>0, ·, 1, <).

(ii) if K is a real closed �eld, then every maximal Archimedean sub�eld
of K is isomorphic to K (with respect to the natural valuation), and
there exist such Archimedean sub�elds (lemma of Zorn). Therefore
the residue �eld K is isomorphic to some sub�eld of K.

(iii) If k[G] is a group ring, then ff(k[G]) = k(G) = k(tg : g ∈ G) is the
smallest sub�eld of k((G)) generated by k ∪ {tg : g ∈ G}.

Theorem 1.1. (Kaplansky's �sandwiching� or embedding theorem for rcf)
Let K be a real closed �eld, G its value group and k its residue �eld. Then
there exists a sub�eld of K isomorphic to k(G)rc.
Moreover, every such isomorphism extends to an embedding ofK into k((G)),

K � � µ // k((G))

l(B)rc
µ0
∼
// k(G)rc

i.e. K is isomorphic to a sub�eld µ(K) such that k(G)rc ⊆ µ(K) ⊆ k((G)).

Proof. Let l ⊆ K be a sub�eld isomorphic to k and let B be a subgroup iso-
morphic to G. More precisely, B is a multiplicative subgroup of (K>0, ·, 1, <)
isomorphic to the multiplicative subgroup {tg : g ∈ G} of monomials in
k((G)). Consider the sub�eld of K generated by l ∪ B, i.e. the sub�eld l(B)
and we take its relative algebraic closure in K.
It is clear that ∃ isomorphism µ0 : l(B)rc → k(G)rc.



2 SALMA KUHLMANN

Claim 1: the extension l(B)rc ⊆ K is immediate.
This is because the residue �eld of a real closure equals the real closure of
the residue �eld equals the residue �eld of K. Also the value group of the
real closure is the divisible hull of the value group = G. So the extension is
value group preserving and residue �eld preserving. Therefore the extension
is immediate.
Now consider the collection of all pairs (M,µ) where M is a real closed
sub�eld of K containing l(B)rc and µ : M ↪→ k((G)) is an embedding of M
extending µ0. We partially order this collection the obvious way, i.e.

(M1, µ1) 6 (M2, µ2) :⇔M1 ⊆M2, µ2|M1
= µ1.

It is clear that every chain C in this collection has an upper bound in it,
namely

⋃
C. So the hypothesis of Zorn's lemma is veri�ed. Therefore, we

�nd some maximal element (M,µ).

K

immediate

µ // k((G))

l(B)rc
µ0
∼
// k(G)rc

Claim 2: M = K.
We argue by contradiction. If this is not the case, let y ∈ K\M. Note that
y is transcendental over M. Also since K ⊇M is immediate, y is a pseudo-
limit of a pseudo-Cauchy sequence {yα}α∈S ⊂M without a limit in M. Set
zα := µ(yα), so {zα}α∈S ⊂ k((G)) is a pseudo-Cauchy sequence and k((G))
is pseudo-complete, so choose z ∈ k((G)) a pseudo-limit of {zα}α∈S .

Claim 3: z is transcendental over µ(M).
This is because z /∈ µ(M). Otherwise µ−1(z) ∈ M would be a pseudo-limit
of {yα}α∈S = {µ−1(zα)}α∈S in M, a contradiction.
ThereforeM(y) ∼= µ(M)(z) as �elds andM(y)rc ∼= µ(M)(z)rc, contradicting
the maximality of (M,µ).

�
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Chapter III: Convex valuations on ordered �elds:

2. Convex valuations

LetK be a non-Archimedean ordered �eld. Let v be its non-trivial natural
valuation with valuation ring Kv and valuation ideal Iv.

De�nition 2.1. Let w be a valuation on K. We say that w is compatible
with the order (or convex) if ∀ a, b ∈ K

0 < a 6 b ⇒ w(a) > w(b).

Example 2.2. We have seen that the natural valuation is compatible with
the order. Moreover, Kv is convex.

Proposition 2.3. (Characterization of compatible valuations).
The following are equivalent:

(1) w is compatible with the order of K.

(2) Kw is convex.

(3) Iw is convex.

(4) Iw < 1.

(5) 1 + Iw ⊆ K>0.

(6) The residue map

Kw → Kw, a 7→ a+ Iw

induces an ordering on Kw given by

a+ Iw > 0 :⇔ a > 0.

(7) The group

U>0
w := {a ∈ K : w(a) = 0 ∧ a > 0}

of positive units is a convex subgroup of (K>0, ·, 1, <).

Proof. (1)⇒ (2). 0 < a 6 b ∈ Kw ⇒ w(a) > w(b) > 0⇒ a ∈ Kw.

(2) ⇒ (3). Let a, b ∈ K with 0 < a < b ∈ Iw. Since w(b) > 0, it follows
that w(b−1) = −w(b) < 0 and then b−1 /∈ Kw.

Therefore also a−1 /∈ Kw, because 0 < b−1 < a−1 and Kw is convex by
assumption. Hence w(a) > 0 and a ∈ Iw.

(3)⇒ (4). Otherwise 1 ∈ Iw but w(1) = 0, contradiction.

(4)⇒ (5). Clear.

�
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1. The rank of ordered fields

(Applications later on: the rank of a Hardy-�eld).

De�nition 1.1. Let K be a �eld and w and w′ be valuations on K. We
say that w′ is �ner than w or that w is coarser than w′, if Kw′ ⊆ Kw (or
equivalently Iw ⊆ Iw′).

Remark 1.2.

(i) An overring of a valuation ring is a valuation ring.

(ii) If w′ is a convex valuation and w is coarser than w′, then w is a
convex valuation.

(iii) We have proved that the natural valuation on an ordered �eld K
induces the smallest (for inclusion) convex valuation ring of K.

(iv) The collection of all convex valuations (respectively valuation rings)
of K is totally ordered by inclusion.

De�nition 1.3. The rank of the totally ordered �eld K is the (order type
of the totally ordered) set

R := {Kw : Kw is a convex valuation and Kv ( Kw},
where v denotes the natural valuation. Note that

R := {Kw : w is strictly coarser than v}.

Example 1.4.

• The rank of an Archimedean ordered �eld is empty (since its natural
valuation is trivial), its order type 0.
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• The rank of the rational function �eld K = R(t) with any order is a
singleton. Indeed the �eld R(t) is non-Archimedean under any order
(see RAG I). Moreover, any ordering of R(t) has rank 1.

2. The Descent

From the ordered �eld K down to the ordered group v(K×) =: G.

Let Kw be a convex valuation ring of K. We associate to w the following
subset of G :

Gw : = {v(a) : a ∈ K, w(a) = 0}
= {v(a) : a ∈ K>0, w(a) = 0}
= v(Uw) = v(U>0

w ).

Remark 2.1. Note that w is a coarsening of v if the following holds:

v(a) 6 v(b)⇒ w(a) 6 w(b).

Lemma 2.2. Gw is a convex subgroup of G.

Proof.

• 0 = v(1) and 1 ∈ Uw.

• Let g ∈ Gw. Show −g ∈ Gw. Let a ∈ Uw such that g = v(a). Then
a−1 ∈ Uw and

Gw 3 v(a−1) = −v(a) = −g.
• Similarly assume g1, g2 ∈ Gw. There exist a1, a2 ∈ Uw such that
v(ai) = gi. Then a1a2 ∈ Uw and

v(a1a2) = v(a1) + v(a2) = g1 + g2 ∈ Gw.

• Let g ∈ Gw and 0 < h < g for some h ∈ G. Show h ∈ G>0
w . Let

g = v(b), b ∈ Uw, and h = v(a) for some a ∈ K>0. Then

v(a) 6 v(b)⇒ w(a) 6 w(b) = 0⇒ w(a) = 0.

�

Lemma 2.3. The value group w(K×) is isomorphic (as an ordered group)
to v(K×)/Gw, so

w(K×) ∼= v(K×)/v(Uw).

Proof. Consider the map

φ : v(K×)→ w(K×), v(a) 7→ w(a).

Compute

kerφ = {v(a) : φ(v(a)) = 0}
= {v(a) : w(a) = 0}
= Gw,
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i.e. φ is a surjective homomorphism with kernelGw, so w(K
×) ∼= v(K×)/Gw.

Moreover this isomorphism is order preserving: note that since Gw is a
convex subgroup of v(K×), the group v(K×)/Gw is totally ordered.

�

De�nition 2.4. Given w a coarsening of v, we call Gw = v(Uw) the convex
subgroup of G associated to w.

Conversely, we get the following result:

Lemma 2.5. Given any convex subgroup C of G we de�ne a valuation w
on K as follows:

w : K× → v(K×)/C, w(a) = v(a) + C (the canonical map)

Then w is a convex valuation on K and Gw = C.

Proof.

• v(a) ∈ Gw ⇔ w(a) = 0⇔ v(a) ∈ C.
•

w(a+ b) = v(a+ b) + C > min{v(a) + C, v(b) + C}
⇔ v(a+ b) > min{v(a), v(b)}
⇔ w(a+ b) > min{w(a), w(b)}.

• 0 < a 6 b⇒ v(a) > v(b)⇒ v(a) + C > v(b) + C ⇒ w(a) > w(b).
•

w(ab) = v(ab) + C = (v(a) + v(b)) + C

= (v(a) + C) + (v(b) + C)

= w(a) + w(b).

�

De�nition 2.6. w is called the convex valuation associated to C.

Let us summarize:

Proposition 2.7. Suppose that w is coarser than v. Then for all a, b ∈ K :

v(a) 6 v(b)⇒ w(a) 6 w(b).

Let Gw = v(Uw) be the convex subgroup of v(K×) associated to w. Then

w(K×) ∼= v(K×)/Gw.

Conversely every convex subgroup C of v(K×) is of the form Gw, where w
is the convex valuation associated to C.

Corollary 2.8. (Descent into the value group)
The correspondence Kw 7→ Gw is a one to one (inclusion) order preserving
correspondence between the rank of K and the rank of G = v(K×).

Example 2.9.
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(i) K = R((Z)) the �eld of Laurent series ordered lex. Then RK = 1.

(ii) K = R((Q))⇒ rank is 1,

(iii) K = R((R))⇒ rank is 1.

(iv) K = R((Z× Z))⇒ rank is 2.
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1. Final segments

As always, let K be an ordered �eld and let v denote the natural valuation
on K with value group G := v(K∗).

Lemma 1.1. Let G be a totally ordered abelian group and denote by vG its

natural valuation.

(i) If Gw 6= {0} is some convex subgroup of G, then Γw := vG(Gw\{0})
is a non-empty �nal segment of Γ := vG(G\{0})
(Γ denotes the value set of G)

(ii) Conversely, if Γw is a non-empty �nal segment of Γ, then

Gw := {g ∈ G : vG(g) ∈ Γw} ∪ {0}
is a convex subgroup of G with Γw = vG(Gw).

Proof.

(i) Clearly Γw is non-empty since Gw 6= {0}. Show Γw is a �nal seg-
ment. Let γ ∈ Γw and γ′ ∈ Γ such that γ < γ′. We want to show
that γ′ ∈ Γw.
Now γ ∈ Γw, so let g ∈ Gw such that γ = vG(g) and let g′ ∈ G
such that vG(g′) = γ′. Now γ < γ′ means g′ << g, i.e. n|g′| 6 |g|.
Therefore g′ ∈ Gw since Gw is convex. Thus, γ′ ∈ Γw as required.

(ii) ÜA.

�

De�nition 1.2. Let Γ 6= ∅ be a totally ordered set. De�ne

Γfs := {F : F 6= ∅ a �nal segment of Γ}.

Remark 1.3. The set Γfs is totally ordered by inclusion. Indeed, given
F1 6= ∅, F2 6= ∅ �nal segments, either F1 ⊆ F2 or F2 ⊆ F1 (verify!). So Γfs is
a totally ordered set.
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Example 1.4.

• For Γ = R, what is the order type of Γfs?
A proper non-empty �nal segment of R is either of the form r+ :=
[r,∞) or r− := (r,∞) for r ∈ R (Recall the Dedekind completeness
of the reals, see RAG I). Hence,

Γfs = {r± : r ∈ R} ∪ {R}.
Clearly r− < r+. Let r1 6= r2, say r1 < r2. Then r

−
2 < r+2 < r−1 < r+1 ,

i.e. Γfs is a double covering of R,(∑
R

2

)
+ 1 = R×lex 2 + 1.

• Suppose Γ = Q and F := {q ∈ Q : q >
√

2}. Let ∅ 6= F be a proper
�nal segment of Q.
� q ∈ Q, then F = [q,∞) =: q+ and F = (q,∞) =: q− in Q.
� r ∈ R\Q, F = r−1 ∩Q = r+ ∩Q.

We claim that these are all the proper non-empty �nal segments.

• Zfs = Z + {1}.

Corollary 1.5. There is a 1 to 1 correspondence

Gw 7→ vG(Gw\{0}) = Γw

between the rank of G and Γfs, where Γ = vG(G\{0}).

Corollary 1.6. There is a bijective correspondence

Kw 7→ Gw = v(Uw) 7→ Γw

between the rank of K and Γfs.

Lemma 1.7. The map

ι : Γ→ Γfs, γ 7→ γ+

is an order reversing embedding. Its image consists of those �nal segments

which have a smallest element

Notation 1.8. Let us denote by Γ∗ the set Γ endowed with the reverse
order.

Corollary 1.9. The map ι : Γ∗ ↪→ Γfs, γ 7→ γ+ is an order preserving

embedding.

De�nition 1.10. A �nal segment which has a smallest element is called a
principal �nal segment.

Corollary 1.11. Γ∗ is isomorphic to the chain of principal �nal segments

of Γ.
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1. Principal final segments

Last lecture we studied the order type of the chain Γfs of non-empty �nal
segments of the set Γ =: vG(G\{0}).

Lemma 1.1. The order type of the chain Γfs is uniquely determined by the
order type of Γ, i.e. if Γ1 and Γ2 are chains such that φ : Γ1

∼= Γ2 as ordered

sets, then Γfs
1
∼= Γfs

2 as ordered sets.

Proof. De�ne φfs : Γfs1 → Γfs2 , F 7→ φ(F ). Verify (ÜA) that φ is injective, i.e.

F1 ( F2 ⇒ φ(F1) ( φ(F2) (∗)

so the map φfs is injective. Also if F ′ ∈ Γfs2 , then φ−1(F ′) ∈ Γfs1 , so
φfs(φ−1(F ′)) = F ′, showing φfs is surjective.
Finally φfs is order preserving because of (∗). �

Recall we noted last lecture that Γ∗ is order isomorphic to the totally
ordered (inclusion) set of principal �nal segments, given by

Γ∗ → Γpfs, γ 7→ [γ,∞) = γ+.

2. Principal convex subgroups

De�nition 2.1. Let G be a totally ordered abelian group and Gw 6= {0}
a convex subgroup. Gw is said to be a principal convex subgroup, if
∃g ∈ G such that Gw is the smallest convex subgroup containing g.

Remark 2.2. In the notation introduced and used in chapter I, Gw = Cg,
i.e. Gw is the convex subgroup generated by g.
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Lemma 2.3. Let Gw 6= {0} be a convex subgroup of G. The following are
equivalent:

(i) Gw is principle convex generated by g,

(ii) Γw is a principal �nal segment, namely vG(g)+.

Proof. First show (i)⇒ (ii). Note that [g]∩G<0
w is an initial segment in Gw

and that [g]∩G>0
w is a �nal segment in Gw. So vG(g) is the smallest element

of the �nal segment Γw, i.e. Γw = vG(g)+.
Show now (ii) ⇒ (i). Assume that ∃g ∈ G>0 such that Γw = vG(g)+ and
argue reversing implications that we must have [g] ∩G>0

w is a �nal segment,
i.e. Gw is the smallest convex subgroup containing g and multiples. �

3. Principal convex rank

De�nition 3.1. Let G be a totally ordered abelian group. The principal
rank of G is the order type of the chain of principle convex subgroups 6= {0}
of G.

Corollary 3.2. (Characterization of the principal rank)
The map Gw 7→ min vG(Gw) is an order reversing bijection between the prin-
cipal rank of G and Γ. Therefore the principle rank of G is order isomorphic
to Γpfs, i.e. to Γ∗.

Remark 3.3.

• Going down for the rank:

rank of K → rank of G = v(K)→ Γfs, Γ = vG(G) = vG(v(K)).

• Going up for the principal rank:

Γpfs ∼= Γ∗ → principal rank of G→ principal rank of K?

De�nition 3.4.

(i) A convex subring Kw ) Kv is said to be a principal convex sub-
ring if ∃a ∈ K>0\Kv such that Kw is the smallest convex subring
containing a. We say Kw is the convex subring generated by a.

(ii) The principal rank of K is the (order type of the) set of all principal
convex valuation rings ordered by inclusion. Denote it by Rpr ⊂ R.

De�nition 3.5. Let a, b ∈ K>0\K. We de�ne a relation

a ∼ b :⇔ ∃n ∈ N such that an > b and bn > a.

ÜA: Show that ∼ is an (Archimedean) equivalence relation. Moreover,

a ∼ b⇔ v(a) ∼+ v(b)⇔ vG(v(a)) = vG(v(b)).

Therefore
K → v(K)→ vG(v(K∗)).
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Theorem 3.6. (Characterization of the principal rank of an ordered �eld)
For Kw ∈ R, the following are equivalent:

(i) Kw ∈ Rpr (generated by a)

(ii) Gw is a principal convex subgroup of G = v(K∗) generated by v(a).

(iii) Γw is a principal �nal segment generated by vG(v(a))+.

Corollary 3.7. Rpr ∼= Γ∗.

Corollary 3.8. Given a chain ∆ 6= ∅, there exists a non-Archimedean real
closed �eld K such that Rpr

K is isomorphic to ∆.

Proof. Take k = R (for example). Set Γ = ∆∗, set G :=
⊕

Γ R the Hahn
sum. Then G has principal rank Γ∗ = ∆∗∗ = ∆. Set

K = k((G)) = R((G)).

Then K has principal rank ∆. �
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Chapter IV: Real closed exponential �elds

1. Real closed exponential fields

De�nition 1.1. Let K be a real closed �eld and

exp : (K,+, 0, <)→ (K>0, ·, 1, <)

such that exp is an order preserving isomorphism of ordered groups, i.e.

(i) x < y ⇒ exp(x) < exp(y),

(ii) exp(x+ y) = exp(x) exp(y).

Then (K,+, 0, 1, <, exp) is called a real closed exponential �eld.

Question: Is the theory Texp = Th(R,+, ·, 0, 1, <, exp) decidable?

• Osgood proved that Texp does not admit quanti�er-elimination.

• ∼ 1991 A. Wilkie showed that Texp is o-minimal.

• In 1994 A. Wilkie and A. Macintyre showed that Texp is decidable
if Schanuel's conjecture is true. In fact they showed that Texp is
decidable, if and only if "a weak form of Schanuel's conjecture" is
true.
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2. Additive lexicographic decomposition

Remark 2.1. Let A,B be ordered abelian groups. The lexicographic
product A tB is the ordered abelian group de�ned as follows:
As a group it is just the direct sum A⊕B. The total order is the lexicographic
order on A⊕B, i.e. for ai ∈ A and bi ∈ B

a1 + b1 < a2 + b2 :⇔ either a1 < a2 or a1 = a2 and b1 < b2.

Recall 2.2. A complement U of a subspace W of V is just a subspace
such that V = U ⊕W. Moreover, U is unique up to isomorphism.

Theorem 2.3. Let (K,+, ·, 0, 1, <) be an ordered non-Archimedean �eld with
value group G and residue �eld K. Consider the ordered divisible abelian
group (K,+, 0, <).

• There exists a complement A of Kv in (K,+, 0, <) and a complement
A′ of Iv in Kv such that (K,+, 0, <) = A t A′ t Iv.

• Both A and A′ are unique (up to isomorphism of ordered groups).
Moreover, A′ is isomorphic to (K,+, 0, <).

• Furthermore the value set of A is G<0 and the value set of Iv is
G>0. The Archimedean components of A and Iv are all isomorphic
to (K,+, 0, <).

The proof of this theorem will be in the assignment. Consider

v : (K,+, 0, <)→ G.

Note that v(Iv) = G>0, so v(A) = G<0.

Hilfslemma 2.4.

(i) Let M be an ordered Q-vector space and C a convex subspace of M
such that M = C ′ ⊕ C, where C ′ is the vector space complement of
C in M. Then M = C ′ t C.

(ii) Let η : M → N be a surjective homomorphism of ordered vector
spaces. Then ker η is a convex subspace of M and M ∼= N t ker η.

(iii) Let M,N be ordered vector spaces with convex subspaces C and D,
respectively. Assume that η : M → N is an isomorphism of ordered
vector spaces such that η(C) = D. Then

η :M/C 7→ N/D, a+ C 7→ η(a) +D

is a well-de�ned isomorphism of ordered vector spaces.

Remark 2.5. Consider the divisible ordered abelian group (K,+, 0, <) and
x = 1 ∈ K. Compute C1 = (Kv,+, 0, <) and D1 = (Iv,+, 0, <). For the
Archimedean component we have

B1
∼= C1/D1

∼= (K,+, 0, <).
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We generalize this observation to the following:

Proposition 2.6. All the Archimedean components of the divisible ordered
abelian group (K,+, 0, <) are isomorphic to the divisible ordered abelian
group (K,+, 0, <).

Proof. Let a ∈ K, a > 0. The map

η : Ca 7→ (K,+, 0, <), x 7→ xa−1

(Recall: G = {x : v(x) > v(a)}) is a surjective homomorphism of ordered
groups with kernel Da = {x : v(x) > v(a)} ⊂ Ca. �

3. Multiplicative lexicographic decomposition

Theorem 3.1. Let (K,+, ·, 0, 1, <) be a totally ordered non-Archimedean
�eld with natural valuation v, G = v(K∗) and residue �eld K. Assume that
K is root closed for positive elements, i.e. (K>0, ·, 1, <) is a divisible ordered
group.

• There exists a group complement B of U>0
v in (K>0, ·, 1, <) and a

group complement B′ of 1 + Iv in (U>0
v , ·, 1, <) such that

(K>0, ·, 1, <) = B t B′ t (1 + Iv, ·, 1, <).
• Every group complement B is isomorphic to G.

• Every group complement B′ is isomorphic to (K
>0
, ·, 1, <).

The proof follows from the following two lemmas and the Hilfslemma.

Lemma 3.2. The map

(K>0, ·, 1, <)→ G, a 7→ −v(a) = v(a−1)

is a surjective homomorphism of ordered groups with kernel U>0
v . Thus, U>0

v

is a convex subgroup of (K>0, ·, 1, <) and
(K>0, ·, 1, <)/U>0

v
∼= G.

Therefore (K>0, ·, 1, <) ∼= B t U>0
v with B ∼= G.

Lemma 3.3. The map

(U>0
v , ·, 1, <)→ (K

>0
, ·, 1, <), a 7→ a,

is a surjective homomorphism of ordered groups with kernel 1 + Iv. Thus

(U>0
v , ·, 1, <)/(1 + Iv, ·, 1, <) ∼= (K

>0
, ·, 1, <).

Therefore U>0
v
∼= B′ t 1 + Iv, where B′ ∼= (K

>0
, ·, 1, <).
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1. Decomposition

Recall 1.1. We had the additive and multiplicative decomposition. Let K
be a totally ordered �eld, root closed for positive elements (in particular, if
K is real closed). Then

(K,+, 0, <) = A t A′ t Iv,

(K>0, ·, 1, <) = B t B′ t 1 + Iv,

where A is a complement to the valuation ring and A′ a complement
to the valuation ideal in the valuation ring S(A) = [G<0, {(K,+, 0, <)}],
A′ ∼= (K,+, 0, <).

B is a (multiplicative) complement to U>0
v in K>0 and B′ is a complement

to 1 + Iv in Uv. We have B ∼= G and B′ ∼= (K
>0
, ·, 1, <).

2. Compatible exponentials

De�nition 2.1. Let K be a totally ordered �eld root closed for positive
elements.

(i) f : (K,+, 0, <)
∼−→ (K>0, ·, 1, <) is called an exponential.

(ii) An exponential f on K is called v-compatible (i.e. compatible with
the natural valuation) if
� f(Kv) = U>0

v (the image of the valuation ring is the group of
positive units)

� f(Iv) = 1 + Iv (the image of the valuation ideal is the group of
1-units)
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Remark 2.2. We only study v-compatible exponentials. In fact: a root
closed (positive elements) totally ordered �eld K admits an exponential if
and only if it admits a v-compatible exponential.

Indeed, if K admits an exponential e, then it admits a v-compatible ex-
ponential f, namely: Let a ∈ K>0 such that e(a) = 2 and set f(x) = e(ax).
One veri�es that f(Kv) = U>0

v and f(Iv) = 1 + Iv (ÜA).

The question we want to answer: Given a totally ordered �eld (root closed
for positive elements), when does K admit a v-compatible exponential. We
will give necessary conditions on v(K∗) and K as follows:

Remark 2.3. If f is a v-compatible exponential, then

(i) f(Kv) = f(A′ t Iv) = U>0
v = B′ t 1 + Iv,

(ii) f(Iv) = 1 + Iv,

(iii) f(A t A′ t Iv) = B t B′ t (1 + Iv).

Therefore f "decomposes" into 3 isomorphisms of ordered groups, namely

• the left exponential fL := f � A,

• the middle exponential fM := f � A′,

• the right exponential fR := f � Iv.

Note that

A t A′ t Iv ∼= (K,+0, <) ∼= (K>0, ·, 1, <) ∼= B t B′ t 1 + Iv

and conversely, given fL : A ∼= B, fM : A′ ∼= B′, and fR : Iv ∼= 1 + Iv, the
exponential

f : (K,+, 0, <)→ (K>0, ·, 1, <), a+ a′ + ε 7→ fL(a)fM (a′)fR(ε)

on K is v-compatible.

So the question is: when does a totally ordered �eld K (root closed for
positive elements) admit a left exponential, a middle exponential and a right
exponential?

Proposition 2.4. Let K be a non-Archimedean real closed �eld, G = v(K∗).
Assume that K admits a left exponential. Then

S(G) = [G<0, {(K,+, 0, <)}],
i.e. the value set of G is isomorphic to G<0 and all Archimedean components
of G are isomorphic to (K,+, 0, <).

Proof. Note that A ∼= B and B ∼= G, so A ∼= G. In particular

[G<0, {(K,+, 0, <)}] = S(A) = S(G).

�

Example 2.5. Consider the divisible ordered abelian group G =
⊔
NQ and

K = R((G)). Then K does not admit an exponential because
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- G is divisible, so G<0 � N,

- the Archimedean components of G are Q, whereas the residue �eld
is R.

Example 2.6. Consider G =
⊔
QQrc. Note that the value set of G is Q and

that G<0 is a dense linear order without end points. So by Cantor Q ∼= G<0.

ConsiderK = Qrc((
⊔
QQrc)). ThenK is real closed and also the Archimedean

components of G are all isomorphic to Qrc (the additive group of the residue
�eld).

Unfortunately K still does not admit a left exponential because of the
following theorem (without proof)

Theorem 2.7. Let K = k((G)), G 6= {0}, a real closed �eld of power series.
Then K does not admit a left exponential function.

Thus, the necessary condition on the value group is not su�cient.
Question: Does K = Qrc((

⊔
QQrc)) admit a right exponentiation?

Theorem 2.8. Every real closed �eld of formal power series admits a right
exponential function, namely

exp : R((G>0))
∼−→ 1 + R((G>0)), ε 7→

∑
i

εi

i!

(recall Neumann's lemma, see chapter II)

Proposition 2.9. Let K be a real closed �eld and assume that K admits a
middle exponential. Then K is an exponential Archimedean �eld.

Proof. Note that

(K,+, 0, <) ∼= A′ ∼= B′ ∼= (K
>0
, 1, ·, <),

therefore fM is an exponential on K. �

K does not admit a middle exponential (e is transcendental, Qrc is not an
Archimedean exponential �eld).

Example 2.10. Let E be a countable real closed exponentially closed sub-
�eld of R. Note that such an E exists, it can be constructed by induction
from Q by countable iteration of taking real closure, exponential closure and
closure under logarithm for positive elements.

Consider G =
⋃
QE, K = E((G)). Then K admits a middle and right

exponential, but still no left exponential.

Open Question: Does every non-Archimedean real closed �eld admit a
right exponential function?
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Theorem 2.11. (Ron Brown)
Let (V, v) be a countable dimensional valued vector space. Then V admits a
valuation basis.
In particular, if (V1, v1) and (V2, v2) are countable dimensional valued vector
spaces with same skeleton S(V1) = S(V2), then they are isomorphic as valued
vector spaces, i.e. (V1, v1) ∼= (V2, v2).

Proof. Follows by induction from the following lemma �

Lemma 2.12. Let V be a valued vector space, W a �nite dimensional sub-
space with valuation basis B and let a ∈ V. Then B can be extended to a
valuation basis of < W, a > .

Proof. Consider {v(b) : b ∈ B} �nite. So there exists some a0 ∈ W such
that v(a− a0) /∈ v(W ) or, if this is not possible, such that v(a− a0) ∈ v(W )
is maximal. Without loss of generality, a /∈ W. If v(a − a0) /∈ v(W ), then
B ∪ {a− a0} is the required valuation basis of < W, a > .
Otherwise set γ := v(a − a0) ∈ v(W ). By the characterization of valuation
basis (see chapter I) Bγ forms a basis of B(W,γ). If π(γ, a−a0) would live in
B(W,γ), there would be a linear combination a1 of elements of B with value
γ such that π(γ, a − a0 − a1) = 0. But this means that v(a − a0 − a1) > γ,
a contradiction. So π(γ, a − a0) /∈ B(W,γ), so B ∪ {a − a0} is valuation
independent.

�

Corollary 2.13. (Answer to the open question in the countable case)
Let K be a countable non-Archimedean real closed �eld. Then K admits right
exponentiation.

Proof. It can be shown that for any ordered �eld S(Iv) ∼= S(1 + Iv). In
particular, by Brown's theorem, if K is countable, Iv and Iv + 1 are both
countable and have the same skeleton, so they are isomorphic. �
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Appendix

The goal of this lecture is to describe the real closure of a Hardy field.
In particular, we want to prove the following theorem:

Theorem 0.1. (Main Theorem)
The real closure of a Hardy field is again a Hardy field.

1. Preliminaries

Notation 1.1.
• If f is a differentiable function from some half-line (a,∞) to C, we
will denote by δ(f) the derivative of f .

• If k is a field and P ∈ k[X], let P ′ denote the derivative of P and
Z(P ) the set of roots of P .

• F := {f : (a,∞)→ C | a ∈ R}.

• G := {f : (a,∞)→ R | a ∈ R} ⊆ F.

• For f, g ∈ F define

f ∼ g :⇔ ∃a ∈ R ∀x > a : f(x) = g(x).

Then ∼ is an equivalence relation on F. Denote by f the equivalence
class of f.

• Denote F := F/∼ and G := G/∼. Then F and G are rings with
operations defined by:

f + g = f + g and f g = fg.

• We say that f is differentiable if there exists a ∈ R such that f is
differentiable on (a,∞), and in that case we define the derivative of
f as δ(f) := δ(f)
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Definition 1.2.
(i) A Hardy field is a subring K of G which is a field and such that for

every f ∈ K, f is differentiable and δ(f) ∈ K.

(ii) A complex Hardy field is a subring K of F which is a field and
such that for every f ∈ K, f is differentiable and δ(f) ∈ K.

Definition 1.3. Let K be a Hardy field and P ∈ K[X] of degree n, say
P =

∑n
m=0 fmX

m. If a ∈ R is such that f1, . . . , fn are all defined and C1

on (a,∞) and fn(x) 6= 0 for all x > a, we say that P is defined on (a,∞).
Note that such an a always exists.

Notation 1.4. If P is defined on (a,∞), then for any x > a we define
Px :=

∑n
m=0 fm(x)Xm ∈ R[X].

Remark 1.5. Note that Px also has degree n and that (Px)
′ = (P ′)x, which

we will just denote by P ′x. Of course, the definition of Px depends on the
choice of representatives for f1, . . . , fn. However, whenever a polynomial is
introduced, we will always assume we have fixed the representatives of its
coefficients, so that Px is well-defined.

Remark 1.6. Note that if g ∈ F , then P (g) is the germ of the function∑
fig

i, so P (g) = 0 if and only if there exists some a such that Px(g(x)) = 0
for all x > a.

Recall 1.7. Let K be a field and P ∈ K[X].
(i) P has only simple roots in its splitting field iff gcd(P, P ′) = 1 iff there

exist A,B ∈ K[X] such that AP +BP ′ = 1.

(ii) If char(K) = 0 and P is irreducible, then gcd(P, P ′) = 1.

The keystone of the proof of the main theorem is a well-known theorem
from analysis, namely the implicit function theorem, which we recall
here.

Theorem 1.8. (IFT)
Let U ⊆ Rn, V ⊆ Rm be open, u : U × V → Rm a Ck function for some
k ∈ N and (x0, y0) ∈ U × V such that u(x0, y0) = 0 and det(∂u∂y (x0, y0)) 6= 0.
Then there exists an open ball U0 containing x0, an open ball V0 containing
y0 and a Ck function φ : U0 → V0 such that for any (x, y) ∈ U0 × V0 :

u(x, y) = 0⇔ y = φ(x).

We will actually need a particular form of the implicit function theorem,
namely:
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Theorem 1.9. (IFT’)
Let K be a Hardy field, P ∈ K[X] defined on (a,∞), x0 > a and y0 a
complex root of Px0 which is not a root of P ′x0

. Then there exists an open
interval I containing x0, an open ball U containing y0 and a C1 function
φ : I → U such that:

(∗) ∀(x, y) ∈ I × U : Px(y) = 0⇔ y = φ(x)

Proof. Set
u : (a,∞)× C→ C, (x, y) 7→ Px(y).

Then u is C1 on (a,∞) × C. By assumption, we have u(x0, y0) = 0 and
∂u
∂y (x0, y0) = P ′x0

(y0) 6= 0, so we can apply the IFT to the function u at the
point (x0, y0). �

2. Proof of the Main Theorem

Lemma 2.1. Let K be a Hardy field and P ∈ K[X] defined on (a,∞). If
gcd(P, P ′) = 1, then there exists some b > a such that gcd(Px, P

′
x) = 1 for

all x > b.

Proof. Since gcd(P, P ′) = 1, there are A,B ∈ K[X] such that AP+BP ′ = 1.
Now let b > a such that A,B are defined on (b,∞); for x > b we have
AxPx +BxP

′
x = 1, hence gcd(Px, P

′
x) = 1. �

Lemma 2.2. Let K be a Hardy field, P ∈ K[X] non-zero defined on (a,∞)
and f a continuous function from (a,∞) to C such that Px(f(x)) = 0 and
P ′x(f(x)) 6= 0 for all x > a. Then f is differentiable on (a,∞).

Proof. Let x0 > a, y0 := f(x0). By hypothesis, y0 is a root of Px0 but not of
P ′x0

. Thus, we may apply IFT’, and obtain I, U and φ as in IFT’ such that
(∗) holds.
Set J := I ∩ f−1(U). U is a neighborhood of y0 and f is continuous, so
f−1(U) is a neighborhood of x0, so J is also a neighborhood of x0. Let
x ∈ J ; by assumption we have Px(f(x)) = 0 and (x, f(x)) ∈ I × U , which
by (∗) implies that f(x) = φ(x).
Therefore f|J = φ|J , which, since φ is C1, implies that f is differentiable
at x0. Since x0 was chosen arbitrarily, we obtain that f is differentiable on
(a,∞). �

Proposition 2.3. Let K be a Hardy field and f ∈ F a continuous function
such that there exists P ∈ K[X] non-zero such that P (f) = 0. Then the ring
K[f ] is a complex Hardy field. If f happens to be in G, then K[f ] is a Hardy
field.

Proof. Without loss of generality we can assume that P is irreducible. This
implies that K[f ] is isomorphic to K[X]/(PK[X]), so it is a field. We now
have to show that every element of K[f ] is differentiable and that K[f ] is
stable under derivation. It is sufficient to show that f is differentiable and
that δ(f) ∈ K[f ].
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Since P (f) = 0, there exists some a ∈ R such that Px(f(x)) = 0 for all
x > a. As P is irreducible and char(K) = 0, gcd(P, P ′) = 1, so by Lemma
2.1 there exists some b > a such that gcd(Px, P

′
x) = 1 for all x > b. Hence,

Px and P ′x have no root in common. Thus, Px(f(x)) = 0 6= P ′x(f(x)) for any
x > b. Now apply Lemma 2.2 and obtain that f is differentiable on (b,∞).
Set P =

∑n
m=0 gmX

m. Then

0 = δ(P (f)) =
n∑

m=0

δ(gmf
m
)

= δ(g0) +
n∑

m=1

(δ(gm)f
m
+mgmf

m−1
δ(f))

=
n∑

m=0

δ(gm) f
m
+ δ(f)

n∑
m=1

mgmf
m−1

= Q(f) + δ(f)P ′(f)

with Q ∈ K[X], hence δ(f) = −Q(f)

P ′(f)
∈ K(f) = K[f ]. �

Lemma 2.4. Let K be a Hardy field, n ∈ N and P ∈ K[X] of degree n
defined on (a,∞), such that Px has n distinct roots in C for all x > a.
For any pair (x0, y0) ∈ (a,∞)× C such that y0 is a root of Px0, there exists
a C1 function φ : (a,∞)→ C such that y0 = φ(x0) and

∀x > a : Px(φ(x)) = 0 (†)

Proof. Let x0 > a and y0 a complex root of Px0 . Since Px0 has simple roots,
y0 is not a root of P ′x0

, so we can apply IFT’ and we get an open interval I
containing x0, an open ball U containing y0 and a C1 function φ : I → U
such that (∗) is satisfied, which in particular implies that φ(x0) = y0 and
Px(φ(x)) = 0 for all x ∈ I. Define E to be the set

{(J, ψ) | I ⊆ J open interval, ψ C1-extension of φ to J satisfying (†) on J}.
Note that E is non-empty since (I, φ) ∈ E . We can partially order E by
saying that (J, ψ) 6 (J ′, χ) if J ⊆ J ′ and χ extends ψ.
Let (Jh, ψh)h∈H be a chain in E . Set J :=

⋃
h∈H Jh and define ψ on J by

ψ(x) = ψh(x) if x ∈ Jh; this is well-defined because ψh is an extension of ψh′

for any h, h′ ∈ H such that Jh′ ⊆ Jh. If x ∈ J , then x ∈ Jh for some h ∈ H,
and since (Jh, ψh) ∈ E we have Px(ψh(x)) = 0, hence Px(ψ(x)) = 0. Thus,
ψ satisfies (†) on J , so (J, ψ) ∈ E . Moreover, we have (Jh, ψh) 6 (J, ψ) for
any h ∈ H, so (J, ψ) is an upper bound of (Jh, ψh)h∈H .
We just proved that any chain of E has an upper bound. By Zorn’s lemma,
it follows that E has a maximal element (J, ψ)

To conclude the proof, we have to show that J = (a,∞). Set b := sup J .
Towards a contradiciton, assume that b 6= ∞. By hypothesis, Pb has n
distinct roots y1, . . . , yn, none of which is a root of P ′b. We apply IFT’ at
each of the points (b, y1), . . . , (b, yn), and we obtain open intervals I1, . . . , In
containing b, open balls U1, . . . , Un containing y1, . . . , yn and C1 functions
φ1 : I1 → U1, . . . , φn : In → Un, such that for each m ∈ {1, . . . , n}, for any
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(x, y) ∈ Im × Um, Px(y) = 0 ⇔ y = φm(x). Since y1, . . . , yn are pairwise
distinct,we can choose the sets U1, . . . , Un so small that they are pairwise
disjoint.

Let I ′ :=
⋂n

m=1 Im. For any x ∈ I ′, we have φ1(x) ∈ U1, . . . , φn(x) ∈ Un;
since U1, . . . , Un are pairwise disjoint, φ1(x), . . . , φn(x) are pairwise distinct.
By (∗), each φm(x) is a root of Px; since Px has n roots, it follows that
Z(Px) = {φ1(x), . . . , φn(x)} ⊆

⋃n
m=1 Um.

Let J ′ := I ′ ∩ J ; note that J ′ is an interval. For any x ∈ J ′, (†) implies
that ψ(x) is a root of Px, hence ψ(x) ∈

⋃n
m=1 Um. Thus, ψ(J ′) ⊆

⋃n
m=1 Um.

Since ψ is continuous, ψ(J ′) is connected. Since U1, . . . , Un are pairwise
disjoint, this implies that there exists m ∈ {1, . . . , n} such that ψ(J ′) ⊂ Um.

Let x ∈ J ′; we have (x, ψ(x)) ∈ Im × Um and Px(ψ(x)) = 0. Since φm
satisfies (∗) on Im × Um, it follows that ψ(x) = φm(x). This proves that
ψ|J ′ = φm|J ′ .

Define the function ψ̃ on J ∪ I ′ by ψ̃(x) :=

{
ψ(x) if x ∈ J
φm(x) if x ∈ I ′

.

This definition makes sense because ψ and φm agree on I ′. ψ̃ is a strict
extension of ψ. Since ψ and φm are C1, ψ̃ is also C1. Since ψ satisfies (†) on
J and φm satisfies (∗) on I ′, it follows that ψ̃ satisfies (†) on J ∪ I ′, which
contradicts the maximality of (J, ψ). Thus, b =∞ (note that we could prove
the same way that inf J = a). �

Lemma 2.5. Let K be a Hardy field and P ∈ K[X] of degree n such that
gcd(P, P ′) = 1. Then there exists some a ∈ R and n C1 functions φ1, . . . φn :
(a,∞)→ C such that Z(Px) = {φ1(x), . . . , φn(x)} for each x > a.

Proof. By Lemma 2.1, there exists some a0 ∈ R such that gcd(Px, P
′
x) = 1

for all x > a0, which means that Px has n distinct roots in C. Let a > a0,
and let y1, . . . , yn be the n distinct roots of Pa. By the previous lemma, we
obtain n C1 functions φ1, . . . , φn : (a0,∞) → C such that φm(a) = ym for
any m ∈ {1, . . . , n}, and {φ1(x) . . . , φn(x)} ⊆ Z(Px) for any x > a. To show
equality, we just have to show that φl(x) 6= φm(x) for any x > a and any
m, l ∈ {1, . . . , n}.

Now let m, l ∈ {1 . . . n} and E := [a,∞] ∩ (φm − φl)
−1({0}). Assume

E 6= ∅. By continuity of φm and φl, E is a closed subset of R and has a
lower bound a, so it has a minimum b. Since φm(a) 6= φl(a), b > a. Set
c := φm(b). c is a root of Pb, so we can apply IFT’ at the point (b, c) and
we get an open neighborhood I ×U of (b, c) and a map φ : I → U satisfying
(∗). Since U is a neighborhood of c, and since c = φm(b) = φl(b), φ−1l (U)
and φ−1m (U) are neighborhoods of b, so

J := I ∩ (a,∞) ∩ φ−1l (U) ∩ φ−1m (U)

is a neighborhood of b. Let x ∈ J such that x < b; (x, φl(x)) and (x, φm(x))
both belong to I × U and we have Px(φm(x)) = Px(φl(x)) = 0; since φ
satisfies (∗) on I × U , this implies φl(x) = φ(x) = φm(x), so x ∈ E, which
contradicts the minimality of b. Thus, E = ∅. �
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Proposition 2.6. Let k be a Hardy field,

K := {f ∈ G | f continuous and ∃P ∈ k[X] with P 6= 0 ∧ P (f) = 0}
and

L := {f ∈ F | f continuous and ∃P ∈ k[X] with P 6= 0 ∧ P (f) = 0}.
Then K is a Hardy field, L is a complex Hardy field, L is the algebraic closure
of k and K is the real closure of k.

Proof. Obviously, k ⊆ K ⊆ L. Now let f, g ∈ K. By Proposition 2.3, k[f ]
is a Hardy field. Since g is continuous and g is canceled by a polynomial in
k[f ][X], we can once again use Proposition 2.3 and we obtain that k[f, g] is
a Hardy field, and since it is algebraic over k, it is contained in K. Since
k[f, g] is a Hardy field, we have

0, 1, f − g, f
g
, δ(f), δ(g) ∈ k[f, g],

hence

0, 1, f − g, f
g
, δ(f), δ(g) ∈ K.

This proves that K is Hardy field. The same proof shows that L is a complex
Hardy field.

Now let us show that L is algebraically closed. Let P ∈ k[x] irreducible
of degree n > 1. Since char(k) = 0, gcd(P, P ′) = 1. By Lemma 2.5 there
exists some a ∈ R and C1 functions φ1, . . . , φn : (a,∞) → C, such that for
any x > a, Z(Px) = {φ1(x), . . . , φn(x)}. This means that φ1, . . . , φn are n
distinct roots of P . Since φ1, . . . , φn are continuous functions from (a,∞) to
C and φ1, . . . , φn are canceled by P ∈ k[X], we have φ1, . . . φn ∈ L.

Thus, any polynomial with coefficients in k splits in L. Since L/k is an
algebraic extension, this proves that L is algebraically closed, and thus L
is the algebraic closure of k. Finally note that L = K(i). Since K(i) is
algebraically closed, K is real closed, and it is the real closure of k. �

Corollary 2.7. The real closure of a Hardy field is again a Hardy field.
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1. Baer-Krull Representation Theorem

Recall that an ordering6 and a valuation v on a �eldK are called compatible
if

0 6 x 6 y ⇒ v(y) 6 v(x).

In Proposition 2.3 of lecture 17 we �xed an ordered �eld (K,6) and charac-
terized the 6-compatible valuations on K. Today, we �x a valued �eld (K, v)
and describe the v-compatible orderings on K.

Notation 1.1. Let (K, v) be a valued �eld. Let Γ be the value group of
v. The quotient group Γ = Γ/2Γ becomes in a canonical way an F2-vector
space. We denote by γ = γ + 2Γ the residue class of γ ∈ Γ.
Let {πi : i ∈ I} ⊆ K∗ such that {v(πi) : i ∈ I} is an F2-basis of Γ. Then
{πi : i ∈ I} is called a quadratic system of representatives of K with
respect to v.

Theorem 1.2. (Baer-Krull Representation Theorem)
Let (K, v) be a valued �eld. Let X (K) and X (Kv) denote the set of all
orderings of K and Kv, respectively. Fix some quadratic system {πi : i ∈ I}
of representatives of K with respect to v.
Then there is a bijective correspondence

{P ∈ X (K) : Kv is P -convex} ←→ {−1, 1}I ×X (Kv)

described as follows: given an ordering P on K such that Kv is P -convex,
let ηP : I → {−1, 1}, where ηP (i) = 1⇔ πi ∈ P. Then the map

P 7→ (ηP , P )

is the above bijective correspondence.

Proof. Given a mapping η : I → {−1, 1} and an ordering Q on Kv, we
will de�ne an ordering P (η,Q) on K, such that Kv is P (η,Q)-convex and
P (η,Q) is mapped to (η,Q) by the map described in the claim.

Let a ∈ K∗. As {v(πi) : i ∈ I} is a basis of Γ, there exist uniquely determined
indices i1, . . . , ir such that

v(a) = v(πi1) + . . .+ v(πir).
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Thus, for some b ∈ K, one has
v(a) = v(πi1) + . . .+ v(πir) + 2v(b)

= v(πi1 . . . πirb
2).

Hence, we �nd some u ∈ Uv such that

a = uπi1 · · ·πirb2.
Note that since b is only determined up to a unit, u is only determined up to
a unit square. Let η : I → {−1, 1} be a mapping and Q ∈ X (Kv) a positive
cone on Kv. We de�ne P (η,Q) ⊂ K by 0 ∈ P (η,Q) and for each a ∈ K∗
with a = uπi1 · . . . · πirb2 as above,

a ∈ P (η,Q) :⇔ η(i1) · · · η(ir)u ∈ Q.
Note that P (η,Q) is well-de�ned, as u and hence u is determined up to a
unit square and i1, . . . , ir are completely determined. We have to show that
P (η,Q) is an ordering such thatKv is P (η,Q)-convex, and that P (η,Q) = Q.
We �rst show that P (η,Q) is additively closed. Let a, a′ ∈ P (η,Q) with
a, a′ 6= 0. Moreover, let u, u′ ∈ Uv, b, b′ ∈ K and i1, . . . , ir, j1, . . . , js ∈ I such
that

a = uπi1 · · ·πirb2,
a′ = u′πj1 · · ·πjs(b′)2.

If v(a) 6= v(a′), say v(a) < v(a′), then v(a + a′) = v(a). Hence, a + a′ = ca

for some c ∈ Uv. Note that a′

a ∈ Iv. Thus, from 1 + a′

a = c follows c = 1. We

obtain a+ a′ = cuπi1 · · ·πirb2.
As a ∈ P (η,Q) we have

Q 3 η(i1) · · · η(ir)u = η(i1) · · · η(ir)1u

= η(i1) · · · η(ir)cu.

Hence, a+ a′ ∈ P (η,Q).
If v(a) = v(a′), then {i1, . . . , ir} = {j1, . . . , js}. Furthermore, b′ = bu′′ for
some u′′ ∈ Uv. Hence,

a+ a′ = (u+ u′(u′′)2)b2πi1 · · ·πir .
If η(πi1) · · · η(πir) = 1, then u, u′ ∈ Q and hence

u+ u′ + (u′′)2 = η(πi1) · · · η(πir)u+ u′ + (u′′)2 ∈ Q,
i.e. a+ a′ ∈ P (η,Q).
If η(πi1) · · · η(πir) = −1, then −u,−u′ ∈ Q. Hence

−u+ u′(u′′)2 = η(πi1) · · · η(πir)u+ u′(u′′)2 ∈ Q,
and therefore a+ a′ ∈ P (η,Q).
In order to prove that P (η,Q) is closed under multiplication, we extend η

to an F2-linear map from Γ to {−1, 1}. We de�ne η(v(πi)) = η(i), which

determines the map completely, since the elements v(πi) form a basis for Γ.
By composing

K∗
v−→ Γ→ Γ

η−→ {−1, 1}
we obtain a group homomorphism K∗ → {−1, 1}, which we also denote by
η. We have a ∈ P (η,Q) if and only if η(a)u ∈ Q for all a ∈ K∗. From this it
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follows at once that aa′ ∈ P (η,Q) for a, a′ ∈ P (η,Q).
As Q ∪ −Q = Kv, it is clear from the de�nition that

P (η,Q) ∪ −P (η,Q) = K

and as −1 /∈ Q, it is clear that −1 /∈ P (η,Q).
Further note that 1 + Iv ⊆ P (η,Q). Indeed, if x ∈ Iv, then v(1 + x) = 0, i.e.
1 + x = ub2. Thus,

ub2 = 1 + x = 1 ∈ Q,
which implies that 1 + x ∈ P (η,Q). Hence, by Proposition 2.3 of lecture 17,
Kv is P (η,Q)-convex. This shows that P (η,Q) is a positive cone of K and
that Kv is P (η,Q)-convex.
We still have to prove that the mapping from the claim is bijective. Let
u ∈ Uv ∩ P (η,Q). Then it follows from the de�nition that u ∈ Q. Hence,

P (η,Q) ⊆ Q. As P (η,Q) and Q are both positive cones, P (η,Q) = Q.
Moreover, πi ∈ P (η,Q)⇔ η(πi) = 1 is clear from the de�nition. This proves
surjectivity of the map described in the claim.
Injectivity: Assume P is mapped to (η,Q). It is clear from the de�nition
that P (η,Q) ⊆ P, and threfore P (η,Q) = P.

�

Remark 1.3. Under additional assumptions, either factor of the cartesian
product in the Baer-Krull Theorem may vanish.

(1) If Γ is 2-divisible, then Γ = {0}, and therefore I = ∅. Thus, there is
a bijective correspondence

{P ∈ X (K) : Kv is P -convex} ←→ X (Kv)

(2) If
∑

(Kv)2 is an ordering, then Kv is uniquely ordered (see RAG I).
Thus, there is a bijective correspondence

{P ∈ X (K) : Kv is P -convex} ←→ {−1, 1}I .

Remark 1.4. If (K,6) is an ordered �eld, then

Z(6) := {x ∈ K : x,−x 6 a for some a ∈ Z}
is called the 6-convex hull of Z in K. It is a valuation ring on K which is
non-trivial (i.e. 6= K) if and only if 6 is non-Archimedean.

Corollary 1.5. A �eld K admits a non-Archimedean ordering if and only
if K carries a non-trivial valuation with real residue class �eld.

Proof. Let P be a non-Archimedean ordering on K. Then Z(P ) corresponds
to a non-trivial valuation v on K, and Kv = Z(P ) is P -convex. Applying
the Baer-Krull Theorem to (K, v) yields that P corresponds to (ηP , P ). In
particular, P is an ordering on Kv, i.e. Kv is real.
Conversely, let v be a non-trivial valuation on K (i.e. Kv ( K) with real
residue class �eld Kv. Let Q be an ordering on Kv and choose η = 1 (i.e.
η(i) = 1 for all i). By the Baer-Krull Theorem, there exists an ordering P
of K for which Kv is P -convex. Note that Z(P ) ⊆ Kv ( K, since Z(P ) is
the smallest P -convex subring of K. Thus, P is non-Archimedean. �
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Review

1. Chapter I: Valued vector spaces

Let us summarize:

Theorem 1.1. (Hahnsandwiching Theorem)
Let V be a valued Q-vector space with skeleton S(V ) = [Γ, {B(γ) : γ ∈ Γ}].
Then ⋃

Γ

B(γ) ↪→ V ↪→ HΓB(γ).

Two big steps:
(1)

⋃
ΓB(γ) ↪→ V.

• we developed the notion of B ⊂ (V, v) to be a valuation basis.

• we showed the existence of a maximal valuation independent
subset B0 of (V, v) and proved that (< B0 >Q, v >) ⊆ (V, v) is
an immediate extension.

• we noted that
⋃

ΓB(γ) admits a valuation basis and that the
converse is true, i.e. whenever (V, v) admits a valuation basis,
then (V, v) ∼= (

⋃
ΓB(γ), vmin) .

(S(V ) = [Γ, {B(γ) : γ ∈ Γ}])

• so in general we proceeded as follows:
– Given (V, v), choose some maximal valuation independent

subset B0.
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– Set V0 =< B0 >Q . Then V0 admits a valuation basis,
namely B0.

–
⋃

ΓB(γ) ∼= V0, so
⋃

ΓB(γ) ↪→ V.

(2) V ↪→ HΓB(γ).

• we first showed that maximally valued ⇔ pseudo complete.

• we showed that HΓB(γ) is pseudo complete.

• we proved that if V ′1 |V1 is immediate and y ∈ V ′1\V1, then y
is a pseudo-limit of a pseudo-Cauchy sequence in V1 with no
pseudo-limit in V1.

2. Chapter II: Valuations on ordered fields

Theorem 2.1. (Kaplansky’s Sandwich Theorem)
Let K be a real closed field with v(K∗) = G and K = k. Then

k(G)rc ↪→ K ↪→ k((G)).

This was again proved in 2 steps:
(1) We showed G ↪→ (K>0, ·, 1, <) and k ↪→ K.

(2) We proved the theorem that if k is real closed and G is divisible,
then k((G)) is real closed. For this we first proved the same theorem
with “real closed” replaced with “algebraically closed”. Then (Mac
Lane) if k is algebraically closed and G is divisible, then k((G)) is
algebraically closed.

• k((G)) is pseudo-complete.

• the value group of an algebraic extension is contained in the di-
visible hull of the value group.

• the residue field of an algebraic extension is contained in the
algebraic closure of the residue field of the original field.

With these results, one can prove that every algebraic extension must
be immediate.

3. Chapter III: Convex valuations on ordered fields

We studied the (under inclusion) linearly ordered set of convex valuations
in an ordered field, i.e. the rank R of K. We characterized it via the rank of
v(K∗) and the rank of the value set of v(K∗), respectively,

K
v−→ v(K∗)

vG−→ Γ.
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Theorem 3.1. (Characterization of valuations compatible with the order 6
of K)
For a valuation w on an ordered field (K,6), the following are equivalent:

• w is compatible with 6,

• Kw is convex,

• Iw is convex

• Iw < 1,

• the residue map K → Kw induces canonically a total order on Kw
(P 7→ P ).

Moreover, in the addendum, we proved the Baer-Krull Representation
Theorem:

{P ∈ X (K) : Kv is P -convex} ∼−→ X (Kv)× {−1, 1}I ,
where X (K) and X (Kv) denote the set of all orderings of K and Kv,

respectively, and I := dimF2 G/2G.

4. Chapter IV: Ordered exponentials fields

Consider (K,+, 0, <)
∼−→ (K>0, ·, 1, <).

Theorem 4.1. (Main Theorem)

(i) (K,+, 0, <) = A t (K,+, 0, <)
⋃
Iv,

(ii) (K>0, ·, 1, <) = B t (K
>0
, ·, 1, <) t 1 + Iv.

Recall that expL : A ∼−→ B, expM : (K,+, 0, <)
∼−→ (K>0, ·, 1, <) and

expR : Iv
∼−→ 1 + Iv, the left, middle and right exponential functions.

Discussion of necessary valuation-theoretic conditions:

Theorem 4.2. If (K,+, 0, 1, <) admits a v-compatible exponential, then

(i) exp : (K,+, 0, 1, <)→ (K
>0
, ·, 1, <), so K is an exponential field.

(ii) S(v(K∗)) = [G<0 : {(K,+, 0, <)}].

Example 4.3.
• Constructing real closed fields which do not admit an exponential
function.
Countable case: a countable divisible ordered abelian group (non-
Archimedean) is an exponential group ⇔∼=

⋃
QA, where A is a

countable Archimedean divisible ordered abelian group.

• exp is defined on Iv by Neumann’s lemma, exp(ε) =
∑ εi

i! . So K =
k((G)) always admit expR .
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Theorem 4.4. K never admits an expL .

Question: Does every real closed field admit expR?

• True for countable fields.

• True for fields of power series.

• Otherwise?


