1 Script zur Vorlesung: Lineare Algebra II

Prof. Dr. Salma Kuhlmann

Kapitel 0: Präliminarien § 1 Annihilatoren

Definition 1.1.

Sei V ein K-Vektorraum dim $V = n, S \subseteq V$.

Der Annihilator von S ist bezeichnet mit $S^0 \subseteq V^*$ und definiert als $S^0 = \{ f \in V^* \mid S \subseteq \ker(f) \} = \{ f \in V^* \mid f(\alpha) = 0 \text{ für alle } \alpha \in S \}.$

Bemerkung 1.2.

- (i) $S_1 \subseteq S_2 \Rightarrow S_2^0 \subseteq S_1^0$
- (ii) $S^0 = (\text{span}(S))^0$
- (iii) $S^0 \subseteq V^*$ ist immer ein Unterraum.
- (iv) span $(S) = \{0\} \Leftrightarrow S^0 = V^*$
- $(v) S = V \Rightarrow S^0 = \{0\}$
- (vi) Also span $(S) = V \Leftrightarrow S^0 = \{0\}$

Beweis von (iv)

" \Rightarrow " ist klar.

Für " \Leftarrow ": Sei $S^0 = V^*$. Zu zeigen span $(S) = \{0\}$. Zum Widerspruch sei $\alpha \neq 0$ und $\alpha \in \text{span}(S)$.

 $\{\alpha\}$ ist linear unabhängig \Rightarrow ergänze zu einer geord. Basis $\mathcal B$ für V:

$$\mathcal{B}=(\alpha=\alpha_1,\ldots,\alpha_n).$$

Sei
$$\mathcal{B}^*$$
 die Dualbasis: $\mathcal{B}^* = (f_1, \dots, f_n)$. Es gilt $f_1(\alpha_1) = 1$, also $f_1 \notin S^0$.

Beweis von (vi)

" \Rightarrow " folgt aus (ii) und (v).

" \Leftarrow " Sei $S^0 = \{0\}$. Zu zeigen span(S) = V.

Zum Widerspruch setze $W := \operatorname{span}(S)$ und sei

 $\alpha \in V \setminus W$ und $(\alpha_1, \dots, \alpha_k) \subseteq W$ eine geord. Basis für W. Dann ist $\{\alpha_1, \dots, \alpha_k, \alpha\}$ linear unabhängig.

Ergänze zu einer geord. Basis für $V: \mathcal{B} = (\alpha_1, \dots, \alpha_k, \alpha = \alpha_{k+1}, \alpha_{k+2}, \dots, \alpha_n).$

Sei
$$(f_1, \ldots, f_k, f_{k+1}, \ldots, f_n) = \mathcal{B}^*$$
 die Dualbasis. Es gilt $f_{k+1}(\alpha_j) = 0$ für alle $j = 1, \ldots, k$ und $f_{k+1}(\alpha_{k+1}) = 1$. Also $f_{k+1} \not\equiv 0$ und $f_{k+1} \in S^0$.

Korollar 1.3.

(Trennungseigenschaft)

Sei $W \subseteq V$ ein Unterraum und $\alpha \notin W$. Es existiert ein $f \in V^*$ mit $f(W) = \{0\}$ und $f(\alpha) \neq 0$.

Beweis

Sei $(\alpha_1, \ldots, \alpha_k)$ eine geord. Basis für W. Nun ist $\alpha \notin \text{span}(\{\alpha_1, \ldots, \alpha_k\})$, also ist $\{\alpha_1, \ldots, \alpha_k, \alpha\}$ linear unabhängig.

Ergänze zu einer geord. Basis für
$$V: \mathcal{B} = (\alpha_1, \dots, \alpha_k, \alpha = \alpha_{k+1}, \dots, \alpha_n)$$
 und sei $\mathcal{B}^* = (f_1, \dots, f_k, f_{k+1}, \dots, f_n)$ die Dualbasis. Setze $f := f_{k+1}$.

Satz 1.4.

(Dimensionsformel für Annihilatoren)

Sei V ein endlich dimensionaler Vektorraum über K und $W\subseteq V$ ein Unterraum. Es gilt: $\dim W+\dim W^0=\dim V.$

Beweis

Sei $\{\alpha_1, \ldots, \alpha_k\}$ eine geord. Basis für W. Ergänze zu einer geord. Basis für V: $\mathcal{B} = (\alpha_1, \ldots, \alpha_k, \alpha_{k+1}, \ldots, \alpha_n)$. Sei $\mathcal{B}^* = (f_1, \ldots, f_n)$ die Dualbasis.

Behauptung

 $\{f_{k+1},\ldots,f_n\}$ ist eine Basis für W^0 .

Beweis

Es ist klar, dass $f_i \in W^0$ für alle $i \geq k+1$, weil $f_i(\alpha_j) = \delta_{ij} = 0$, falls $i \geq k+1$ und $j \leq k$. Also wenn $\alpha \in W$, ist α eine lineare Kombination von $\alpha_1, \ldots, \alpha_k$ und $f_i(\alpha) = 0$ für alle $i \geq k+1$. Also $f_i \in W^0$ für alle $i \geq k+1$ wie behauptet.

Nun ist $\{f_{k+1},\ldots,f_n\}$ linear unabhängig (Teil einer Basis). Also genügt es zu zeigen, dass span $(\{f_{k+1},\ldots,f_n\})=W^0$.

Sei
$$f \in V^*$$
. Es gilt $f = \sum_{i=1}^n f(\alpha_i) f_i$ (allgemein). Ist aber $f \in W^0$, dann gilt $f(\alpha_i) = 0$ für alle $i \leq k$. Also gilt $f = \sum_{i=k+1}^n f(\alpha_i) f_i$.

Korollar 1.5.

 W_1, W_2 sind Unterräume von V. Es gilt: $W_1^0 = W_2^0 \Rightarrow W_1 = W_2$.

Beweis

Zum Widerspruch sei $W_1 \neq W_2$, zum Beispiel $\alpha \in W_2, \alpha \notin W_1$. Nach Korollar 1.3 existiert $f \in V^*$ mit $f(W_1) = \{0\}$ und $f(\alpha) \neq 0$. Also $f \in W_1^0$, aber $f \notin W_2^0$, ein Widerspruch.