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Real exponential fields.

K = (K,+, ·, 0, 1, <, exp) real field endowed with an
exponential map

exp : (K,+, <)� (K>0, ·, <)

Possibly with a derivation:

∂ : (K,+, <)→ (K,+, <)

∂(a · b) = ∂(a) · b + a · ∂(b)

∂(exp(a)) = ∂(a) · exp(a)
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Key objects:

Archimedean: (R, exp), its prime model

Non archimedean: exponential Hardy fields,
exponential (sub)fields of generalized series

Universal domain: surreal numbers
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Mickaël Matusinski Hardy fields and generalized power series with exponential.



Introduction
Hardy fields

Generalized series
Surreal numbers

Real exponential fields.

Key objects:

Archimedean: (R, exp), its prime model

Non archimedean: exponential Hardy fields,
exponential (sub)fields of generalized series

Universal domain: surreal numbers
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Hardy fields.

G = ring of germs at +∞ of real functions

Definition (Bourbaki 76)

A Hardy field K is a subring of G which is a field
and which is closed under derivation.

⇒ strongly non-oscillating: K ordered subfield of⋂
k∈N0
Ck
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Hardy fields.

Example

• R ⊆ R(t) ⊆ R(log(t), t, exp(t)) ⊆ · · ·

• Log-exp functions = ”L-functions” (Hardy 12)

• Unary definable functions in an o-minimal
structure expanding R: e.g. Rexp (Wilkie 96),
Ran,exp (van den Dries-Miller 94),. . .
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The natural valuation.

Definition

Valuation v with valuation ring Ov = Conv(Q)

• value group Γ := {archimedean ∼ classes of K}

• residue field ⊆ R

• rank Φ := {archimedean ∼ classes of Γ}

Dominance relation: a 4 b :⇔ v(a) ≥ v(b)
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Extensions of Hardy fields

Still get a Hardy field by:

• Passing to the real closure (Bourbaki, A. Robinson 72)

• Closing under real powers (Rosenlicht 83)

• Adjoining solutions of certain differential equations
(Boshernitzan, Rosenlicht, Singer 80’s)

→ (linear) order 1: Liouville closure: integration,
exp and log; other e.g. P(y)y ′ = Q(y)

→ certain linear order 2 diff equ

and much more: DIVP (Aschenbrenner-van den
Dries-van der Hoeven preprint 2023)
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Extensions of Hardy fields

• O-minimal expansions of R: adjoining quasi-analytic
classes (Rolin-Speissegger-Wilkie 2003); passing to the
pfaffian closure (Speissegger 2018)

• Adjoining quasianalytic IlYashenko algebras (link with
Hilbert 16: Speissegger, Galal-Kaiser-Speissegger 2020 )

• Adjoining certain solutions of functional equations:
transexponential function (Boshernitzan 86)

• Maximal Hardy fields = no proper Hardy field extension...
(Boshernitzan, Aschenbrenner-van den Dries-van der Hoeven
preprint 2023)
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Hardy fields as differential valued fields

Hardy type derivation (Rosenlicht 79-83, Kuhlmann-M. 2011):

• (HD1) R = ker ∂

• (HD2) l’Hospital’s rule:

∀v(a), v(b) 6= 0, v(a) ≥ v(b)⇔ v(∂(a)) 4 v(∂(b))

• (HD3) logarithmic derivative:

|v(a)| � |v(b)| > 0⇔ v(∂(a)/a) < v(∂(b)/b)

H-field (Aschenbrenner-van den Dries 2002):

• (HF1) = (HD1)

• a > R⇒ a′ > 0

Mickaël Matusinski Hardy fields and generalized power series with exponential.
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Exponential Hardy fields

Valuative properties:

• Natural valuation ⇒ Poincaré asymptotic
expansions (Rosenlicht 83)

• Exponential rank (Kuhlmann-Kuhlmann 2000)

• Levels (Rosenlicht 87, Marker-Miller 97,
Kuhlmann-Kuhlmann 2003)
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Exponential Hardy fields

Differential and ”analytic” properties:

• Compatibility

∂(exp(a)) = ∂(a) · exp(a) ∂(log(a)) =
∂(a)

a

• ”Strong” morphism

exp(
∑

αu) =
∏

exp(u)α log(
∏

uα) =
∑

α log(u)

 Composition...
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Generalized series
R((tΓ)) where :

• Γ = (Γ,+, <) ordered abelian group of exponents

• R as ordered field of coefficients.

Definition (Hahn 07)

A generalized series is

a : Γ→ R

with well-ordered support:

supp(a) := {γ ∈ Γ : a(γ) 6= 0}

Notation: a =
∑

γ∈Γ aγt
γ
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The natural valuation.

Definition (Baer 27)

Ordering: a > 0⇔ aγ0 > 0 where γ0 := min(supp a).

⇒ natural valuation on R((Γ)) is:

v : R((Γ)) → Γ ∪ {∞}
a 7→ min(supp a)
0 7→ ∞

The order type of Φ is called the rank of Γ, and as well the rank
of R((Γ)).

•Kaplansky 42: Universal domain for valued fields
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Hardy type derivations

Lifting principle (Kuhlmann-M. 2011-12):

Field: series a =
∑
γ∈Γ

aγt
γ 7→ d(a) =

∑
γ∈Γ

aγd(tγ)
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Hardy type derivations

Lifting principle (Kuhlmann-M. 2011-12):

Field: series a =
∑
γ∈Γ

aγt
γ 7→ d(a) =

∑
γ∈Γ

aγd(tγ)

∪ ∪

Val group: monomials tγ =
∏
φ∈Φ

t
rφ
φ 7→ d(tγ) = tγ

∑
φ∈Φ

rφ
d(tφ)

tφ
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Hardy type derivations

Lifting principle (Kuhlmann-M. 2011-12):

Field: series a =
∑
γ∈Γ

aγt
γ 7→ d(a) =

∑
γ∈Γ

aγd(tγ)

∪ ∪

Val group: monomials tγ =
∏
φ∈Φ

t
rφ
φ 7→ d(tγ) = tγ

∑
φ∈Φ

rφ
d(tφ)

tφ

∪ ∪
Rank: fundam. mon. tφ 7→ d(tφ) ∈ R((tΓ))
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Generalized series and exponentiation

We would like:

R((tΓ<0))⊕R⊕R((tΓ>0))
exp

�
log

tΓ⊗R>0⊗(1+R((tΓ>0)))
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Generalized series and exponentiation

For:

R⊕ R((tΓ>0))
exp

�
log

R>0 ⊗ (1 + R((tΓ>0)))

use the analytic formulas (Alling 87):

exp(r+ε) = er ·
∑
n

εn

n!
log(r ·(1+ε)) = ln(r)+

∑
n>0

εn

n
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Generalized series and exponentiation

For

? R((tΓ<0))
exp

�
log

tΓ ?

Kuhlmann-Kuhlmann-Shelah 97: R((tΓ<0)) 6' tΓ,
hence R((tΓ)) cannot be an exponential field.
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Generalized series and exponentiation

Kuhlmann-Kuhlmann-Shelah 97: R((tΓ)) cannot be an
exponential field.

BUT a subfield of an extended R((t Γ̃)) may be! (Dahn-Göring
86):

• Exp-log series (Kuhlmann-Kuhlmann 97, Kuhlmann-M.
2011), κ-bounded series (Kuhlmann-Shelah )

• Log-exp series (van den Dries-Macintyre-Marker 97)

• Transseries (Ecalle 92, van der Hoeven 97)
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Exponential and logarithmic closure of a series field

A two-complementary-steps procedure:

• To get a pre-logarithmic series field:

• To get a pre-exponential series field:
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Exponential and logarithmic closure of a series field

A two-complementary-steps procedure:

• To get a pre-logarithmic series field: e.g. by integration:

→ asymptotic integration:

∀a, ∃b, ∂(b) ∼ a

→ ultrametric fixed point theorem: holds in spherically
complete fields (Priess-Crampe-Ribenboim 93), in unions of spher.
compl. fields (vdD-M.M., vdH., K., K.-M., B.M., B.K.M.M., ...)

• To get a pre-exponential series field:
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Exponential and logarithmic closure of a series field

A two-complementary-steps procedure:

• To get a pre-logarithmic series field:
• To get a pre-exponential series field: e.g. by exponential
closure

→ exponential extension:

tΓ] l]−−−−−−→ R((tΓ]<0))
∪ ←− '

∪

tΓ l−−−−−−→ R((tΓ<0))

→ inductive limite procedure
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Differential valued exponential fields

Exponential Differential exponential

Hardy fields subfields of series
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Differential valued exponential fields

Exponential Differential exponential

Hardy fields
?

↪−−→ subfields of series

e.g. H(Ran,exp) ↪→ T
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Differential valued exponential fields

Exponential Differential exponential

Hardy fields
?

↪−−→ subfields of series

↘ ↙
Surreal numbers
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Surreal numbers (Conway 76, Gonshor 86)

Dedekind-von Neumann Full binary
numbers tree

a =< aL|aR > a = + +−−−+− · · ·

↖ ↗
Surreal numbers NO

↓
ON-bounded series

a =
∑
α<λ

rαt
aα ∈ R((tNO))ON
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As (analytic) exponential fields

Language L = {+, ·, 0, 1, <, exp}

Theorem (Gonshor 86, van den Dries-Ehrlich 2001,
Ehrlich-Kaplan 2021)

With Gonshor’s exponential:

(NO, exp) < (R, exp)

Moreover, NO is a canonical monster model for
Th(Rexp).

NB: Same statement with Th(Ran,exp).
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As (analytic) exponential fields

Language L = {+, ·, 0, 1, <, exp}

• Exponential Hardy field ↪→ NO

• (Differential) exponential subfield of series ↪→ NO
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Omega-fields

Definition (Berarducci-Kuhlmann-Mantova-M. 2023)

An ordered field endowed with an omega map:

Ω : (K,+, <)� (tΓ, ·, <)

where Γ is the value group.

Example

• Surreal numbers NO (Conway 76)

• κ-bounded series, transseries T, etc. (BKMM.
2023, Berarducci-Freni 2021)

Mickaël Matusinski Hardy fields and generalized power series with exponential.
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As ordered valued differential fields

Language L = {+, ·, 0, 1, <,4, ∂}

Theorem (Aschenbrenner-van den Dries-van der Hoeven
2017-19)

NO |= Th(T), the latter being model complete.

• Hardy fields ↪→ NO
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As ordered valued differential fields

Language L = {+, ·, 0, 1, <,4, ∂}
Maximal Hardy fields = no proper Hardy field
extension

Theorem (Aschenbrenner–van den Dries–van der Hoeven
preprint 2023)

Maximal Hardy fields |= Th(T).

DIVP: P(a)P(b) < 0⇒ ∃c ∈ (a, b), P(c) = 0.
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Questions

• Model theory of differential exponential fields, e.g.
T, NO etc ? (AvdDvdH, Kaplan)

• Model theory of transexponential Hardy fields?
O-minimality? Hyperseries? (Bagayoko-van der
Hoeven, Kuhlmann-Krapp, Padgett)
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Questions

• Differential Kaplansky embedding theorem for
Hardy fields? (Kuhlmann-M.)

• Hardy omega-fields? As e.g. maximal Hardy
fields? (BKMM.)

• Composition and compatible derivation on NO?
(BKMM., Bagayoko-van der Hoeven)
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Thanks for your attention...

... and have a nice workshop!
Mickaël Matusinski Hardy fields and generalized power series with exponential.
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