Structure of some subgroups of transseries

(joint work with M. Resman)
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Example of free subgroups in GG: (powers and translations) the group (T, P) C GG generated by

T:-x—x+a, P:x— 2, A€ER<g

is free.  (Question of Higman).

r= (@ +a)™ +ag)™+ - +an)™
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By finite composition of such germs, we can generate a subgroup of the group of germs at
infinity having a convergent transserial expansion
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which we call finitary Dulac series.
The previous theorem gives a complete description of the structure of such group.

But this is not enough for the applications that | will describe in a moment..

We are interested in considering the structure of the general group of Dulac series.
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d(r)=ax+b+ Z pu(x)e H*
oO<u, o0

with a >0, be C, p, € C[z| (itis important to allow complex coefficients here)

Motivation of Dulac: Transition maps near hyperbolic saddles in planar vector fields

(linear saddle: xa—ax — )\ya%: D(z) = 2 <= logarithmic chart:

d(z)=—log D(e™™)= Az
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A Dulac germ is a bounded holomorphic function defined in a standard quadratic domain

{z:]Im(2)] < CRe(2)?*} CQ

and which has an asymptotic expansion as a Dulac series.

(Quasianalyticity) The Taylor expansion map
T:D—7D

is injective. In particular, a germ d € D is real if and only if T(d) € D is a real series.

(Composition) The Dulac germs forms a group under composition, with subgroup

D NHomeo(RR, +00)
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Consider the element 7 € D given by

T:x+—— T+ 207

We say that a Dulac germ d is unramified if [7,d| := 7 'd~'rd =id.

- d is unramified if and only if it has an unramified Dulac series i.e. a series of the form

r+b+ Z cre kT, cr € C
keN*

- d is unramified if and only if there exists a ¢ € C1{z} such d=F ~'fFE, where E(z)=¢"%
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Motivation: Classification of analytic vector fields in the vicinity of hyperbolic polycycles

We can also consider the formal counterpart: classification of elements in D up to U-conjugation

di~pdo=3fel: di=f"'ds f
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The group U is much larger than U (as C[[x]] is much larger than C{z}).

So, we expect that the U-orbit of an element d € D to be much larger than its U/-orbit. ..

Example: Classification of germs in C{x } of the form

f(x) — 21T A 4 0(332)

with given A€ R\ Q.

- formal classification: There is an unique orbit: all such germs are formally conjugated to
the linear germ z — e?™\z.

- holomorphic classification: 7?7 (if A is not a Bryuno number there exists germs which are
formally conjugated but not analytically conjugated)
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We say that a Dulac germ d € D is U-rigid (shortly rigid) if the following property holds
If d,d, €D are U-conjugate then they are /-conjugate

If we denote by U/ -d={f~'df: f €U} the U-orbit of d, then
d isrigid < U-d)ND=U-d

The previous example shows that some unramified d €/ germs cannot be U-rigid.
The following theorem states that ramification generates rigidity (almost...)
Theorem: Let d € D. One of the following conditions hold:

1) d is unramified

2) d lies in D\ U and is formally conjugated to the time 1-flow of e_ma—i, AE éZ.
3) d is rigid.
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The main ingredient of the proof is based Tauberian type result on Gevrey-summability:

If a formal series is k-summable and k’-summable for k = k’ then such series is convergent
Cllz]]s N Cl[z]]rr = C{z}

From a dynamical systems point of view, the idea is to look for a conjugacy between a Dulac
germ of the form

f(@)=z+pa(z)e " +o(e™)

and the translation x — = + 1 (i.e. solve the so-called Abel’s equation)

Such conjugacy is possible in strip-like domains. ..
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