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Introduction of non-commutativity 2/22

Question:

a � b= b � a ?

Answer: you are wrong .
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Automorphisms, derivations 3/22

Let A be the C-algebra of entire functions. For f 2A and �2C, we have

8z 2C; f(z+�)=
X
n2N

f (n)(z)
n!

�n:

We have an automorphism �� : g 7! g � (id+�) of A and a derivation @� : g 7!�g 0 on A, and

��=
X
n2N

@�
[n]

n!
= exp(@�):

Furthermore, we have

8�; � 2C; exp(@�+ @�)= exp(@�+�)=��+�=�� ���:

The same applies for the algebra C[[x]]�A of formal power series.
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Exp-Log 4/22

Fix a field k with char(k)=0. Given an algebra A and an endomorphism � :A¡!A, we want
to make sense of the exponential

exp(�)=
X
n>0

1
n!
�[n]

and logarithm

log(Id+ �)=
X
n>0

(¡1)n+1
n!

�[n]:

! bijective correspondence between derivations and automorphisms?

! interactions with the algebraic structures on derivations and automorphisms?

Ideas:

� In finite dimensional Lie group theory: notions of convergence, e.g. taking exponentials of
matrices.

� On fields of generalised power series (e.g. Hahn series): notions of summability ! formal
axiomatic approach?
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Algebras with infinite sums 5/22

Ideal context: an algebra A with a notion of infinite sum such that the formal power series

exp(X) :=
X
n>0

1
n!
Xn and log(1+X) :=

X
n>0

(¡1)n+1
n

Xn

can be evaluated on A, and satisfy

log(exp(a))= a and exp(log(1+ a))= 1+ a

whenever the expressions are defined.

Furthermore A should be an algebra of linear maps on another algebra A, such that

exp(A\Der(A))=A\Aut(A):
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Finite sums in vector spaces 6/22

Fix a vector space V over k. For each set I, we have a vector space V I.

For v 2V I, write supp v := fi2 I :v(i)=/ 0g. We have a subspace

V (I) := fv 2V : suppv is finiteg;

and a linear summation operator

�Ifin :V (I) ¡! V

v 7¡!
X

i2suppv
v(i):

What are the properties of the family (�Ifin)I2Set?

.
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Properties of finitely supported summation 7/22

Let I ; J be sets and let v 2V (I).

Invariance under reindexing. If ' : J ¡! I is bijective, then v � '2V (J) and

�Jfin(v � ')=�Ifinv:

Summation by parts. If I =
F
j2J Ij, then for each j 2J , we have

vj :=v � Ij 2V (Ij) and (�Ij
finvj)j2J 2V (I) and �Jfin(�Ij

finvj)j2J =�Ifinv.

Finite pasting. If I \J =? and w 2V (J), then v tw2V (ItJ).

Ultrafiniteness. If (fi)i2I is a family of functions fi :dom fi¡!k with finite domains dom fi,
then writing

I 0 := f(i; x) : i2 I ^x2dom fig;

we have

(fi(x)v(i))(i;x)2I 02V (I 0):
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Arbitrary sums 8/22

SSSSSSSSSuuuuuuuuummmmmmmmmmmmmmmmmmaaaaaaaaabbbbbbbbbiiiiiiiiillllllllliiiiiiiiitttttttttyyyyyyyyy ssssssssstttttttttrrrrrrrrruuuuuuuuuccccccccctttttttttuuuuuuuuurrrrrrrrreeeeeeeee::::::::: family (�I)I2Set of linear operators �I :dom�I¡!V , where V (I)�
dom�I �V I is a subspace, �I extends �Ifin on dom�I, and:

Invariance under reindexing. If ' : J ¡! I is bijective, then v � '2 dom�J and

�J(v � ')=�Iv:
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We call (V ; (�I)I2Set) a sssssssssuuuuuuuuummmmmmmmmmmmmmmmmmaaaaaaaaabbbbbbbbbiiiiiiiiillllllllliiiiiiiiitttttttttyyyyyyyyy ssssssssspppppppppaaaaaaaaaccccccccceeeeeeeee. For instance (V ;�fin) is a summability space.
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Examples of summability spaces 9/22

I) (V ;�): summability space; 
: non-empty set; q: ideal in the Boolean algebra P(
) containing
all finite subsets. We have a subspace V [q] := fv 2V 
 : supp v 2 qg of V 
.

We define a summability structure �q on V [q] by setting v 2dom�I
q if and only if

8p2
; (v(i)(p))i2I 2dom�I, and
[
i2I

suppv(i)2 q.

Then 8p2
; (�I
qv)(p) :=�I (v(i)(p))i2I:

II) Let A be an algebra, p�A a proper ideal with
T
n>0 p

n= f0g. Assume that A is complete
in the p-adic topology. We define a summability structure � on A by setting

dom�I := fa2AI :8n> 0; fi2 I :a(i)2/ png is finiteg;

and

�Ia := lim (
X

a(i)2/pn
a(i))n>0:

III) The category of summability spaces with suitable morphisms is complete and cocomplete.
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qv)(p) :=�I (v(i)(p))i2I:

II) Let A be an algebra, p�A a proper ideal with
T
n>0 p

n= f0g. Assume that A is complete
in the p-adic topology. We define a summability structure � on A by setting

dom�I := fa2AI :8n> 0; fi2 I :a(i)2/ png is finiteg;

and

�Ia := lim (
X

a(i)2/pn
a(i))n>0:

III) The category of summability spaces with suitable morphisms is complete and cocomplete.
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Strong linearity 10/22

Let (V ;�) be a summability space. A linear map � :V ¡!V is said ssssssssstttttttttrrrrrrrrrooooooooonnnnnnnnnggggggggglllllllllyyyyyyyyy llllllllliiiiiiiiinnnnnnnnneeeeeeeeeaaaaaaaaarrrrrrrrr if for all
sets I and v 2dom�I, we have � � v 2dom�I and

�I(� �v)= �(�Iv):

Strongly linear maps

Example: almost everything*.

Summability structure �Lin on the space Lin+(V ) of strongly linear maps. Given I 2Set:

� dom�ILin is the set of families � : I ¡!Lin(V ) such that for all J 2Set and v 2dom�J,

(�(i)(v(j)))(i;j)2I�J 2dom�I�J:

� For �2dom�ILin, define

�ILin � := v 7¡!�I(�(i)(v))i2I:
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Summability algebras 11/22

Let (A;+; 0; :; �) be an algebra over k, and � a summability structure on (A;+; 0; :). Then
(A;�) is a sssssssssuuuuuuuuummmmmmmmmmmmmmmmmmaaaaaaaaabbbbbbbbbiiiiiiiiillllllllliiiiiiiiitttttttttyyyyyyyyy aaaaaaaaalllllllllgggggggggeeeeeeeeebbbbbbbbbrrrrrrrrraaaaaaaaa if for all sets I ;J and all (a;b)2dom�I�dom�J, we have

a � b := (a(i) � b(j))(i;j)2I�J 2dom�I�J ;

and

�I�J (a � b)= (�Ia) � (�J b):

Definition: summability algebra

Examples:

� given a summability algebra (A;�), a set 
=/ ? and an ideal q of P(
) containg all finite
subsets, the summability space A[q] under pointwise product;

� complete algebras for Hausdorff p-adic topologies;

� given a summability space (V ;�), the summability space Lin+(V ) under composition;

� quotients of summability algebras by ideals which are closed under arbitrary sums.
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Strongly linear derivations and automorphisms 12/22

Let (A;�) be a summability algebra. Write

Der+(A)= f� 2Lin+(A) :8a; b2A; �(a � b)= �(a) � b+ a � �(b)g:

Aut+(A) := f� 2Lin+(A)\GL(A) :8a; b2A; �(a � b)=�(a) ��(b)g:

Der+(A): Lie subalgebra of Lin+(A) which is closed under sums of summable families

Aut+(A): subgroup of the group of automorphisms of A.

We can now ask: does the exponential

� 7!
X
n2N

�[n]

n!

define an isomorphism

(Der+(A);+)' (Aut+(A); �) ?
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Formal series in non-commuting variables 13/22

Finite words: Let I 2Set. Write I? :=
S
n2N I

n for the monoid of finite words (including the
empty one ?) over I under concatenation

(i1; : : : ; im) : (im+1; : : : ; in) := (i1; : : : ; in):

Formal series:Write khhIii :=kI?=k[P(I?)] with its summability structure. WritingXw=1fwg
for each w 2 I?, the family (P (w)Xw)w2I? is summable with

P =
X
w2I?

P (w)Xw:

We have a Cauchy product

P �Q :=
�
w 7!

X
u:v=w

P (u)Q(v)
�
=

X
w2I?

� X
u:v=w

P (u)Q(v)
�
Xw:

Then khhIii is a unital summability algebra.
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Evaluating formal power series in summability algebras 14/22

Let (A;�) be a unital summability algebra of the form A= k+m where m is a (two-sided)
proper ideal which is closed under arbitrary sums. Then A has eeeeeeeeevvvvvvvvvaaaaaaaaallllllllluuuuuuuuuaaaaaaaaatttttttttiiiiiiiiiooooooooonnnnnnnnnsssssssss if:

For all sets I and all families a 2 dom �I with a(i) 2 m for all i 2 I, the family
(a(i1) � � � a(in))n2N^(i1; : : : ;in)2In is summable.

Summability algebras with evaluations

We can then define, for each such (I ;a), a strongly linear evaluation morphism

eva : khhIii ¡! A

P 7¡!
X

w=(i1; : : : ;in)2I?
P (w)a(i1) � � � a(in):

khhIii has evaluations. For J 2Set, Q : J ¡! khhIii summable and P 2 khhJii, we have

P [Q[a]] = (P [Q])[a]:
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A j-variant 15/22

Let A=C+m have evaluations. Note that PSL2(Z) acts on H+m.

Given a 
 2PSL2(Z), we have a ¡� 2 
 � � + zC[[z]] with 
 � (� + �)=¡�(�) for all such �.

We have j(
 � (� + �))= j(� + �) for all �, so in C[[z]].

For each �2 � +m, defining ĵ(�) := J�[�¡ � ]2A, we can compute

ĵ(
 � �) = ĵ(¡�[�¡ � ])
= J
 ��[¡�[�¡ � ]¡ 
 � � ]
= J
 ��[(¡� ¡ 
 � �)[�¡ � ]] (1)
= (J
 ��[¡� ¡ 
 � � ])[�¡ � ] (2)
= J�[�¡ � ] (3)
= ĵ(�):

We get a �modular function� ĵ on H+m ! (maybe)
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= ĵ(�):

We get a �modular function� ĵ on H+m ! (maybe)
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Back to exp-log 16/22

Let I = f0; 1g. In khhIii, we have formal series

:=
X
n2N

1
n!
Xi
n; i2f0; 1g and :=

X
n>0

(¡1)n+1
n

X0
n.

Given a summability algebra (A;�) with evaluations, with maximal ideal m, define

exp:m ¡! 1+m

" 7¡! ev"(exp(X0))=
X
n2N

1
n!
"n:

Routine computations give exp(log(1 +X0)) = 1+X0 and log(exp(X0)) =X0. Thus exp is
bijective with inverse

log : 1+m ¡! m

1+ " 7¡! ev"(log(1+X0))=
X
n>0

(¡1)n+1
n

"n:
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The Baker-Campbell-Hausdorff operation 17/22

Less routine computations give that the series

:= log(exp(X0) � exp(X1))2 khhIii

is a sum of elements in the Lie subalgebra of khhIii0 generated by X0 and X1.

Define a group operation � :m�m¡!m by

8"0; "12m; "0 � "1 := ev"0;"1(X0 �X1):

By evaluation, we obtain that

� exp("0) � exp("1)= exp("0 � "1)

� "0 � "1 is a sum of elements in the Lie subalgebra of m generated by "0 and "1 (in particular
� preserves derivations).

� exp : (m; �)¡! (1+m; �) is an isomorphism.
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exp(@)=� 18/22

Now assume that k +m is a summability algebra with evaluations, which is a subalgebra of
(Lin+(A);+; :; �) for a given summability algebra (A;�).

A � 2m is a derivation on A if and only if exp(�) is an automorphism of A. Therefore

exp : (Der+(A)\m; �)¡! (Aut+(A)\ (1+m); �)

is an isomorphism.

Theorem A

As a corollary, the group Aut+(A)\ (1+m) is divisible and torsion-free.

How can we find examples of such situations?
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Algebras of Noetherian series 19/22

Let (M;+; 0; <) be an ordered monoid. A subset of M is said NNNNNNNNNoooooooooeeeeeeeeettttttttthhhhhhhhheeeeeeeeerrrrrrrrriiiiiiiiiaaaaaaaaannnnnnnnn (or w.q.o) if it has
no infinite antichain and no strictly decreasing infinite sequence.

The set n of Noetherian subsets of M is an ideal of P(M). Thus k((M)) :=k[n] has a natural
structure of summability space.

This is a summability algebra under the expected Cauchy product

8m2M; (a � b)(m)=
X

m0+m1=m

a(m0) b(m1):

� IfM is a totally ordered group, then k((M)) is a skew field (e.g. Hahn field ifM is Abelian).

� If M =(N;+; 0; <)n, then k((M))' k[[X1; : : : ; Xn]].

� If M =(G;+; 0;?) for a group (G;+; 0), then k((M))' k[G].

� If (I ;<) is a Noetherian ordered set and M =(I?; : ;?;<?) for Higman's ordering <? on
I?, then k((M))= khhIii.

Examples
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The case of Noetherian series 20/22

Write A= k((M)). Given a; b2A; b=/ 0, we write

a� b

if for all ma2 supp a, there is an mb2 supp b with ma>mb.

A linear map � :A¡!A is said contracting if �(a)� a for each a=/ 0. We write Lin�
+(A)

for the set of contracting strongly linear maps A¡!A.

The subalgebra k IdA+Lin�
+(A) of Lin+(A) has evaluations.

Theorem B

Write 1-Autk
+(A) for the space of automorphisms � of A with �(a)¡ a� a for all a=/ 0.

We have an isomorphism

exp : (Der+(A)\Lin�
+(A); �) ¡! (1-Autk

+(A); �)

@ 7¡!
X
n2N

1
n!
@[n]:

Corollary
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Lie homomorphism theorem 21/22

One can study properties of the group 1-Autk
+(A) by looking at Der�

+(A) instead.

Let � :Der�
+(A)¡!Der�

+(B) be a strongly linear Lie algebra endomorphism. There is a
unique group morphism 	 : 1-Autk

+(A)¡! 1-Autk
+(B) with exp ��=	 � exp.

Theorem C

Question. The group 1-Autk
+(A) can be equipped with infinite ordered products in a precise

sense. If 	 : 1-Autk
+(A)¡! 1-Autk

+(B) preserves infinite products, does it induce a strongly
linear Lie algebra homomorphism?
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