exp(0) =o
BY VINCENT BAGAYOKO (IMJ-PRG)

Joint work with L. S. Krapp, S. KuHLMANN, D. C. PaNnAzzoLo & M. SERRA



Introduction of non-commutativity

Question:

a-b=b-a ?



Introduction of non-commutativity

Question:

a-b=b-a ?

Answer: you are wrong.
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Automorphisms, derivations

Let A be the C-algebra of entire functions. For f € A and a € €, we have

f<”> (2) ,

VzeC, f(z+a)= Z

nelN

We have an automorphism o, : g+— go (id 4+ «) of A and a derivation 0, : g— a g’ on A, and

a[n]
Oaq = Z L:exp(aoz)'

|
nelN n:

Furthermore, we have
Vo, 66 @,exp(@a—Fag) :exp(8a+5) =0aq+3=0q003.

The same applies for the algebra C|[z]] D A of formal power series.
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Fix a field & with char(k)=0. Given an algebra A and an endomorphism ¢: A — A, we want
to make sense of the exponential

exp(6) =3 ol

n=>0
and logarithm
(=)
log(Id + gb)zz T(b :
n>0 '

— bijective correspondence between derivations and automorphisms?

— interactions with the algebraic structures on derivations and automorphisms?

Ideas:

e In finite dimensional Lie group theory: notions of convergence, e.g. taking exponentials of
matrices.

e On fields of generalised power series (e.g. Hahn series): notions of summability — formal
axiomatic approach?



Algebras with infinite sums 5/22

Ideal context: an algebra A with a notion of infinite sum such that the formal power series
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Ideal context: an algebra A with a notion of infinite sum such that the formal power series

_1\n—+1
exp(X)::Z i'X” and log(1+X)::Z %X”

n>0 n>0
can be evaluated on A, and satisfy
log(exp(a)) =a and exp(log(l+a))=1+a

whenever the expressions are defined.

Furthermore A should be an algebra of linear maps on another algebra A, such that

exp(ANDer(A))=ANAut(A).



Finite sums in vector spaces 6/22

Fix a vector space V over k. For each set I, we have a vector space V',



Finite sums in vector spaces 6/22

Fix a vector space V over k. For each set I, we have a vector space V',

For v € V!, write suppv:={i€1:v(i)#0}. We have a subspace

V. {veV :suppw is finite },
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Fix a vector space V over k. For each set I, we have a vector space V',

For v € V!, write suppv:={i€1:v(i)#0}. We have a subspace

V. {veV :suppw is finite },

and a linear summation operator

v — v

v — Z v(1).

1Esuppv

What are the properties of the family (Z?H)Ieset?



Properties of finitely supported summation

Let I,.J be sets and let v e V1),



Properties of finitely supported summation

Let I,.J be sets and let v e V1),

Invariance under reindexing. If ¢:.J — I is bijective, then vo p e V(/) and

Xi(vop)=X"v.



Properties of finitely supported summation

Let I,.J be sets and let v e V1),

Invariance under reindexing. If ¢:.J — I is bijective, then vo p e V(/) and
B (vo ) =% 0.

Summation by parts. If [ = |_|j€JIj, then for each j € J, we have

vj:=v| eV and (E?jn'vj)jejgv(I) and E?n(z?jnvj)jEJ:Z?nv.



Properties of finitely supported summation

Let I,.J be sets and let v e V1),

Invariance under reindexing. If ¢:.J — I is bijective, then vo p e V(/) and
(0 ) = T
Summation by parts. If [ = |_|j€JIj, then for each 5 € J, we have
vi:=v]l;€ V) and (E?jn Vj)jcg € V) and E?n(z?jn Vj)jcg = »in g,

Finite pasting. If INJ =& and we V), then v Uw e V),



Properties of finitely supported summation

Let I,.J be sets and let v e V1),

Invariance under reindexing. If ¢:.J — I is bijective, then vo p e V(/) and
B (vo ) =% 0.

Summation by parts. If [ = |_|j€JIj, then for each j € J, we have
vj:=v| eV and (Z?jn v)je;€ VT and Z?n(Z?jn vj)jes=S"v.

Finite pasting. If INJ =& and we V), then v Uw e V),

Ultrafiniteness. If (f;);cs is a family of functions f;:dom f; — k with finite domains dom f;,
then writing

I":={(i,z):i€l Nz edom f;},
we have

(fi@)v(i))i,yer € VI,
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Summability structure: family (3;)7cset of linear operators 37 : dom ¥y — V', where v
dom ¥; C V! is a subspace, ¥; extends E?n on dom 7, and:

Invariance under reindexing. If ¢:.J —— I is bijective, then vo ¢ € dom > ; and
ZJ('U o) gp) = Z[’U.

Summation by parts. If [ = |_|j€JIj, then for each j € J, we have
V; 2:’01 [j € dom Z]j and (E_%n ’Uj)jQJEdOHI >y and ZJ(E[j ’Uj)jeJ:EI’U.

Finite pasting. If INJ =@ and w € dom X7, then v Uw € dom X, .

Ultrafiniteness. If (f;);cs is a family of functions f;:dom f; — k with finite domains dom f;,
then writing

I":={(i,z):i€l Nz edom f;},
we have

(fi(z) ”(i))(z‘,x)ep ¢ dom Xj.

We call (V, (21)7eset) @ summability space. For instance (V, X1%) is a summability space.



Examples of summability spaces 0/22

1) (V,3): summability space; €2: non-empty set; g: ideal in the Boolean algebra P({2) containing
all finite subsets. We have a subspace V[q]:={v € V®:suppwv € q} of V.



Examples of summability spaces 0/22

1) (V,3): summability space; €2: non-empty set; g: ideal in the Boolean algebra P({2) containing
all finite subsets. We have a subspace V[q]:={v € V®:suppwv € q} of V.

We define a summability structure X% on V'[q] by setting v € dom X} if and only if

VpeQ, (v(i)(p))ier € dom Xy, and U supp v (i) € q.



Examples of summability spaces 0/22

1) (V,3): summability space; €2: non-empty set; g: ideal in the Boolean algebra P({2) containing
all finite subsets. We have a subspace V[q]:={v € V®:suppwv € q} of V.

We define a summability structure X% on V'[q] by setting v € dom X} if and only if

VpeQ, (v(i)(p))ier € dom Xy, and U supp v (i) € q.

Then  VpeQ, (£ v)(p):= 1 (v(i)(p)er.



Examples of summability spaces 0/22

1) (V,3): summability space; €2: non-empty set; g: ideal in the Boolean algebra P({2) containing
all finite subsets. We have a subspace V[q]:={v € V®:suppwv € q} of V.

We define a summability structure X% on V'[q] by setting v € dom X} if and only if

VpeQ, (v(i)(p))ier € dom Xy, and U supp v (i) € q.

Then  VpeQ, (£ v)(p):= 1 (v(i)(p)er.

Il) Let A be an algebra, p C A a proper ideal with () _ p" = {0}. Assume that A is complete
in the p-adic topology. We define a summability structure > on A by setting



Examples of summability spaces 0/22

1) (V,3): summability space; €2: non-empty set; g: ideal in the Boolean algebra P({2) containing
all finite subsets. We have a subspace V[q]:={v € V®:suppwv € q} of V.

We define a summability structure X% on V'[q] by setting v € dom X} if and only if

VpeQ, (v(i)(p))ier € dom Xy, and U supp v (i) € q.

Then  VpeQ, (£ v)(p):= 1 (v(i)(p)er.

Il) Let A be an algebra, p C A a proper ideal with () _ p" = {0}. Assume that A is complete
in the p-adic topology. We define a summability structure > on A by setting

domYr:={a€ A:Vn>0,{ic€l:a(i)¢p"} is finite},
and

Sra:=lm( Y a(i))nso.
a(i)¢pn



Examples of summability spaces 0/22

1) (V,3): summability space; €2: non-empty set; g: ideal in the Boolean algebra P({2) containing
all finite subsets. We have a subspace V[q]:={v € V®:suppwv € q} of V.

We define a summability structure X% on V'[q] by setting v € dom X} if and only if

VpeQ, (v(i)(p))ier € dom Xy, and U supp v (i) € q.

Then  VpeQ, (£ v)(p):= 1 (v(i)(p)er.

Il) Let A be an algebra, p C A a proper ideal with () _ p" = {0}. Assume that A is complete
in the p-adic topology. We define a summability structure > on A by setting

domYr:={a€ A:Vn>0,{ic€l:a(i)¢p"} is finite},
and

Sra:=lm( Y a(i))nso.
a(i)¢pn

I11) The category of summability spaces with suitable morphisms is complete and cocomplete.
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Strong linearity

Strongly linear maps

Let (V',3) be a summability space. A linear map ¢:V — V is said strongly linear if for all
sets I and v € dom X;, we have ¢ ov € dom X5 and

ZI(gbo’v) — ¢(Z[’U)

Example: almost everything*.
Summability structure %™ on the space Lin™ (V) of strongly linear maps. Given I € Set:

o dom X} is the set of families ¢ : I — Lin(V') such that for all J € Set and v € dom 3,
(¢(i)(v(j)))(i,j)eIxJGdomZIxJ-
e For ¢ €dom ZF“, define

S ¢ = v— S(¢(i)(v) )ier
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Summability algebras

Definition: summability algebra

Let (A,+,0,.,-) be an algebra over k, and > a summability structure on (A,+,0,.). Then
(A,Y) is asummability algebra if for all sets I, J and all (a,b) € dom Y x dom X5, we have

a-b:=(a(i) b(j))u,jerxs€domXry g,
and
Z[XJ (ab) = (E[a) . (Zjb)

Examples:

e given a summability algebra (A, >), a set {0+ @ and an ideal q of P({)) containg all finite
subsets, the summability space A|q] under pointwise product;

e complete algebras for Hausdorff p-adic topologies;
e given a summability space (V,X), the summability space Lin™ (V') under composition;

e quotients of summability algebras by ideals which are closed under arbitrary sums.
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Strongly linear derivations and automorphisms

Let (A,>) be a summability algebra. Write
Der™(A)={deLin™(A):Va,be A,6(a-b)=6(a)-b+a-d(b)}.
Autt(A):={o e LinT(A)NGL(A):Va,be A,o(a-b)=0c(a)-o(b)}.

Der™(A): Lie subalgebra of Lin™(A) which is closed under sums of summable families

Aut™(A): subgroup of the group of automorphisms of A.

We can now ask: does the exponential
i

5I—>ZW

nc&IN

define an isomorphism

(Dert(A), +) ~ (Autt(A),o) ?
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Finite words: Let / € Set. Write [*:=J  _ I" for the monoid of finite words (including the
empty one &) over [ under concatenation

(il,...,im) . (im+1,...,in) = (Zl,,Zn)

Formal series: Write k(1)) :=k’" =k[P(I*)] with its summability structure. Writing X, =1 (,,}
for each w € I, the family (P(w) Xy)wer+ is summable with

P=Y)  P(w)Xu.
wel*
We have a Cauchy product

P-Qi=(wr 3 P@QE) )= 30 (3 PMQ) ) Xun

U:v=w wel*

Then k() is a unital summability algebra.
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Summability algebras with evaluations

Let (A,>) be a unital summability algebra of the form A =k +m where m is a (two-sided)
proper ideal which is closed under arbitrary sums. Then A has evaluations if:

For all sets I and all families a € dom >; with a(i) € m for all i € I, the family
(a(i1) -~ a(in))neNA(, ... i, eI iS Summable.

We can then define, for each such (7, a), a strongly linear evaluation morphism

evg: k(I) — A
P — | Z P(w)a(iy) - aliy).

k() has evaluations. For J € Set, Q:J — k{I)) summable and P € k{.J)), we have

€V(eva(Q(5))); e s (P) = eval(evg(P)).
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Let A= C + m have evaluations. For 7 € H and ¢ € C lying above —7, we have

jr+8)= = >

neIN

J<”

Given a v € PSLy(Z), we have a I € v- 7+ 2 C[[z]] with - (7 + &) =T1(&) for all such €.
We have j(v-(T+&))=j(r+&) forall &, so J,.-[Is —v-7]=J;in C|[[z]].

For each ¢ € 7 +m, defining j(¢):=

J-[¢p — 71| €A, we can compute

j(v-¢) = j(Tr[p—T1))
Sy el = 7] = 7]
Jyr (L =y 7)[¢ — 7]] (16)
(Jyr[Lr =y 7)) — 7] 17)
Jrlp—T] 18)

= j(9).



A j-variant 15/22

Let A= C + m have evaluations. For 7 € H and ¢ € C lying above —7, we have

Jr+8=J(6)=>_

neIN

J<”

Given a v € PSLy(Z), we have a I'; € y- 7+ 2 C[[z]] with v (74 &) =T(&) for all such &.
We have j(v-(T+&))=j(r+&) forall &, so J,.-[Is —v-7]=J;in C|[[z]].
For each ¢ € 7 +m, defining j(¢):=.J.[¢ — 7] € A, we can compute

J(v-¢) = (T —1))
= Jy Lrlo—7]—7-7]

= Jyr[(Ir =y 7)o —T7]] (19)
= (JyrIr =y 7))o —7] (20)
= Jr[¢p—7] (21)
= j(9).

We get a “modular function” j on H+m ! (maybe)
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Back to exp-log 16/22

Let /={0,1}. In E(I)), we have formal series

1 o
exp(Xy) = ) — Xt ie{0,1} and log(1+ Xo) := »

neN n>0

Given a summability algebra (A, ) with evaluations, with maximal ideal m, define

expom — 14m
e — eve(exp(Xp)) = Z —e".

Routine computations give exp(log(1 + X)) =14 Xy and log(exp(Xy)) = Xo. Thus exp is
bijective with inverse

log:14+m — m

e — evellog(1+Xo) =3 U

n
n>0



The Baker-Campbell-Hausdorff operation

Less routine computations give that the series
Xo# X7 :=log(exp(Xo) - exp(X1)) € k()
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The Baker-Campbell-Hausdorff operation

Less routine computations give that the series
Xo# X7 :=log(exp(Xo) - exp(X1)) € k()

is a sum of elements in the Lie subalgebra of k(1)) generated by X; and X;.

Define a group operation *:m X m — m by
Veo, 1 €M, eg*e1 = evg, ¢, (Xo* X7).

By evaluation, we obtain that

o exp(eo) - exp(e1) =exp(eg*e1)

e co*e1 is a sum of elements in the Lie subalgebra of m generated by £y and £ (in particular
* preserves derivations).

e exp:(m,*)— (1+m,-) is an isomorphism.
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Now assume that k& + m is a summability algebra with evaluations, which is a subalgebra of
(Lin*(A),+,.,0) for a given summability algebra (A, X).
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Now assume that k£ + m is a summability algebra with evaluations, which is a subalgebra of
(Lin*(A),+,.,0) for a given summability algebra (A, X).

A § €m is a derivation on A if and only if exp(0) is an automorphism of A. Therefore

exp: (Dert(A) Nm, %) — (Autt(A)N (1 +m),o)
Is an isomorphism.

As a corollary, the group Aut™(A) N (1+m) is divisible and torsion-free.

How can we find examples of such situations?
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Algebras of Noetherian series

Let (M ,+,0,<) be an ordered monoid. A subset of M is said Noetherian (or w.q.0) if it has
no infinite antichain and no strictly decreasing infinite sequence.

The set n of Noetherian subsets of M is an ideal of P(M). Thus k((M)) := k[n| has a natural
structure of summability space.

This is a summability algebra under the expected Cauchy product

Vme M, (a-b)(m)= Z a(mg) b(mq).

mo+mi=m

e If M is a totally ordered group, then k((M)) is a skew field (e.g. Hahn field if M is Abelian).
o If M=(N,+,0,<)" then k((M))~k[[ X1, ..., X,]].
o If M=(G,+,0,9) for a group (G,+,0), then k((M)) ~k|[G].

e If (I,<) is a Noetherian ordered set and M = (I*,:, &, <*) for Higman's ordering <* on
I*, then k(M) =k{I).
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The case of Noetherian series

Write A =Fk((M)). Given a,be A, b+0, we write
a<b

if for all m,, € supp a, there is an my € supp b with m, > my.

A linear map ¢: A — A is said contracting if ¢(a) < a for each a # 0. We write Lin"(A)
for the set of contracting strongly linear maps A — A.

The subalgebra k1dp +Lin%(A) of Lint(A) has evaluations.

Write 1-Aut; (A) for the space of automorphisms o of A with o(a) —a < a for all a 0.

Corollary

We have an isomorphism

exp: (Dert(A)NLin%(A),*) — (1-Autj(A),o)
L o
o — > mﬁ[ I

neN
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Lie homomorphism theorem

One can study properties of the group 1-Aut; (A) by looking at Der ™’ (/A) instead.

Let ®:Der(A) — Der’(B) be a strongly linear Lie algebra endomorphism. There is a
unique group morphism W : 1-Aut} (A) — 1-Aut} (IB) with exp o ® = W o exp.

Question. The group 1-Aut; (A) can be equipped with infinite ordered products in a precise

sense. If W:1-Aut) (A) — 1-Aut} (IB) preserves infinite products, does it induce a strongly
linear Lie algebra homomorphism?



(don't look at the picture)



