REAL ALGEBRAIC GEOMETRY LECTURE NOTES (11: 18/05/15)

SALMA KUHLMANN

Contents

1. The field of generalized power series

1

1. The field of generalized power series

Let $k \subseteq \mathbb{R}$ be an Archimedean field and G an ordered abelian group. Recall that we have defined a (totally) ordered abelian group, namely the Hahn product

$$\mathbb{K} := \mathrm{H}_G(k, +, 0, <),$$

i.e. take the Hahn product over the family $S := [G, \{k : g \in G\}]$ with the lexicographic ordering, i.e.

 $\mathbb{K} := \{ s : G \to k : \text{support } s \text{ is well-ordered in } G \},\$

where support $s := \{g \in G : s(g) \neq 0\}$. Endow this set with pointwise addition of functions, i.e. $\forall s, r \in \mathbb{K}$

$$(s+r)(g) := s(g) + r(g) \in k,$$

and the lexicographic order:

$$s > 0 : \Leftrightarrow s(\min \operatorname{support}(s)) > 0 \text{ in } k \ \forall s \in \mathbb{K} \setminus \{0\}.$$

We have verified that $(K, +, <_{\text{lex}})$ is an ordered abelian group. Our first goal of today is to make K into a (totally) ordered field. We need to define multiplication.

Notation 1.1. For $s \in \mathbb{K}$ write

$$s = \sum_{g \in G} s(g)t^g = \sum_{g \in \text{support } s} s(g)t^g.$$

Definition 1.2. For $r, s \in \mathbb{K}$ define

$$(rs)(g) := \sum_{h \in G} r(g-h)s(h),$$

i.e.

$$sr = \sum_{g \in G} \left(\sum_{h \in G} r(g-h)s(h) \right) t^g.$$

We now address the following problem: Let $\mathfrak{F} := \{s_i : i \in I\} \subseteq \mathbb{K}$. Can we "make sense" of $\sum_{i \in I} s_i$ as an element of \mathbb{K} ?

Definition 1.3.

- (i) The family \mathfrak{F} is said to be summable, if

 - (1) support $\mathfrak{F} := \bigcup_{i \in I}$ support s_i is well-ordered in G, (2) $\forall g \in$ support \mathfrak{F} , the set $S_g := \{i \in I : g \in$ support $s_i\}$ is finite.
- (*ii*) Assume that \mathfrak{F} is summable. Write

$$\sum_{i \in I} s_i := \sum_{g \in \text{support}\,\mathfrak{F}} \left(\sum_{i \in S_g} s_i(g) \right) t^g.$$

We now prove that this multiplication is well-defined. For $h \in G$ define

$$\rho_h := t^h r := \sum_{g \in G} r(g) t^{g+h}$$
$$= \sum_{g \in \text{support } r} r(g) t^{g+h},$$

i.e. $\rho_h(g) = r(g-h) \ \forall g \in G$. Note that $\rho_h \in \mathbb{K}$ because

upport
$$\rho_h = \text{support } r \oplus \{h\} = \{g + h : g \in \text{support } r\},\$$

which is again well-ordered (ÜA).

We now consider

$$\mathfrak{F} := \{ s(h)\rho_h : h \in \text{support } s \}.$$

Lemma 1.4. \mathfrak{F} is summable.

Note that once the lemma is established we define

$$sr = \sum_{h \in \text{support } s} s(h)\rho_h = \sum_{g \in \text{support } \mathfrak{F}} \left(\sum_{h \in S_g} s(h)\rho_h(g) \right) t^g,$$

and comparing, we see that this is the product.

(1) Show that support $\mathfrak{F} = \bigcup_{h \in \text{support } s} \text{support}(\rho_h(s(h)))$ is well-Proof. ordered. Indeed

$$\bigcup_{h \in \text{support } s} \text{support}(\rho_h s(h)) = \bigcup_{h \in \text{support } s} (\text{support } r \oplus \{h\})$$
$$= \text{support } s + \text{support } r.$$

ÜA: If A, B are well-ordered, then $A \oplus B$ is well-ordered.

(2) Show that $S_g = \{h \in \text{support } s : g \in \text{support}(\rho_h s(h))\}$ is finite for $g \in \operatorname{support} \mathfrak{F}$. We have

$$S_g := \{h \in \text{support } s : g \in \text{support } r \oplus \{h\}\}$$
$$= \{h \in \text{support } s : g = g' + h, g' \in \text{support } r\}$$
$$= \{h \in \text{support } s : g - h \in \text{support } r\}.$$

 $\mathbf{2}$

Assume S_g is infinite. Since S_g is well-ordered, take an infinite strictly increasing sequence in it, say a sequence of h's in it. But then g - h's is an infinite strictly decreasing sequence in support r, contradicting that support r is well-ordered.

Note we have shown that $\operatorname{support}(rs) \subseteq \operatorname{support} r \oplus \operatorname{support} s$.

Notation 1.5. $\mathbb{K} = k((G))$.

Our next goal is to show that k((G)) with the convolution multiplication is a field. We give two proofs:

- (1) Follows from "Neumann's lemma" (now)
- (2) From S. Prieß-Crampe: k((G)) is pseudo-complete (later)

Lemma 1.6. (Neumann's lemma)

Let $\varepsilon \in k((G))$ such that support $\varepsilon \subseteq G^{>0}$ (written $\varepsilon \in k((G^{>0}))$) and $\{c_n\}_{n\in\mathbb{N}} \subset k^*$. Then the family $\mathfrak{F} = \{c_n\varepsilon^n : n \in \mathbb{N}\}$ is summable, i.e. $\sum_{n\in\mathbb{N}}c_n\varepsilon^n \in k((G))$.

Corollary 1.7. k((G)) is a field.

Proof. Let $s \in k((G)), s \neq 0$. Set $g_0 := \min \operatorname{support} s$ and $c_0 = s(g_0) \neq 0$. Write

$$s = c_0 t^{g_0} (1 - \varepsilon),$$

where

$$\varepsilon = -\sum_{\substack{g > g_0 \\ g \in \text{ support } s}} \frac{s(g)}{c_0} t^{g-g_0} \in k((G^{>0})),$$

 \mathbf{so}

$$s^{-1} := c_0^{-1} t^{-g_0} \left(\sum_{i=0}^{\infty} \varepsilon^i \right).$$

Verify that

$$\left(\sum_{i=0}^{\infty} \varepsilon^{i}\right) (1-\varepsilon) = 1,$$
$$(1-\varepsilon)^{-1} = \sum_{i=0}^{\infty} \varepsilon^{i}.$$

i.e.