REAL ALGEBRAIC GEOMETRY LECTURE NOTES $(14: 01/06/15)$

SALMA KUHLMANN

CONTENTS

1. Hardy fields

Today we want to define the canonical valuation on a Hardy field H. For this purpose we observe:

Remark 1.1. (Monotonicity of germs)

Let H be a Hardy field and $f \in H$, $f' \neq 0$. Since $f' \in H$ is ultimately strictly positive or negative, it follows that f is ultimately strictly increasing or decreasing. Therefore

$$
\lim_{x \to +\infty} f(x) \in \mathbb{R} \cup \{-\infty, \infty\}
$$

exists.

Example 1.2.

- (i) R and Q are Archimedean Hardy fields (constant germs)
- (ii) Consider the set of germs of real rational functions with coefficients in $\mathbb R$ (multivariate). By abuse of denation denote it by $\mathbb R(X)$. Verify that this is a Hardy field.

Note that with respect to the order defined on a Hardy field, this is a non-Archimedean field, because the function X is ultimately $> N$ for all $N \in \mathbb{N}$.

2. The natural valuation of a Hardy field

Definition 2.1. (The canonical valuation on a Hardy field H). Let H be a Hardy field. Define for $0 \neq f, g \in H$

$$
f \sim g \iff \lim_{x \to \infty} \frac{f(x)}{g(x)} = r \in \mathbb{R} \setminus \{0\}.
$$

This is an equivalence relation, called asymptotic equivalence relation. Denote the equivalence class of $0 \neq f$ by $v(f)$. Define

$$
v(0):=\infty,
$$

and

$$
v(f) + v(g) := v(fg),
$$

Moreover, define an order on the set $\{v(f) : f \in H\}$ by setting

$$
\infty = v(0) > v(f) \text{ for } f \neq 0.
$$

and

$$
v(f) > v(g) \iff \lim_{x \to \infty} \frac{f(x)}{g(x)} = 0.
$$

Verify that $(v(H), +, <)$ is a totally ordered abelian group.

Lemma 2.2. The map

$$
v: H \longrightarrow v(H) \cup \{\infty\}
$$

0 $\neq f \mapsto v(f)$
0 $\mapsto \infty$

is a valuation and it is equivalent to the natural valuation.

Remark 2.3.

$$
R_v = \{f : \lim_{x \to \infty} f(x) \in \mathbb{R}\}.
$$

$$
I_v = \{f : \lim_{x \to \infty} f(x) = 0\}.
$$

$$
\mathcal{U}_v = \{f : \lim_{x \to \infty} f(x) \in \mathbb{R} \setminus \{0\}\}.
$$

3. Construction of non-Archimedean real closed fields

Our next goal is to prove the following:

Theorem 3.1. (Main Theorem of chapter 2) Let $k \subseteq \mathbb{R}$ be a subfield, G a totally ordered abelian group and $\mathbb{K} := k((G)).$ Then K is a real closed field if and only if

- (i) G is divisible,
- (ii) k is a real closed field.

Remark 3.2. Once the Main Theorem is proved we can proceed as follows (staring from R) to construct non-Archimedean real closed fields:

(1) Let $\emptyset \neq \Gamma$ be a totally ordered set.

- (2) Choose divisible subgroups of $(\mathbb{R}, +, 0, <)$, say $\{B_\gamma : \gamma \in \Gamma\}$ (note that $\mathbb R$ is a $\mathbb Q$ -vector space).
- (3) Take $\bigsqcup_{\gamma \in \Gamma} B_{\gamma} \subset G \subset H_{\gamma \in \Gamma} B_{\gamma}$. Note that G is a divisible ordered abelian group.
- (4) Take $k \subset \mathbb{R}$ a subfield and consider $k^{\text{rc}} = \{ \alpha \in \mathbb{R} : \alpha \text{ alg. over } k \}.$ Then $k^{\text{rc}} \subset \mathbb{R}$ is a real closed field (because \mathbb{R} is real closed).
- (5) Set $\mathbb{K} = k^{\text{rc}}((G)).$

In chapter 3 we will show "Kaplansky's embedding theorem": any real closed field is a subfield of such a K.

4. Towards the proof of the Main Theorem

Let $k \subset \mathbb{R}$ and G be an ordered abelian group.

Proposition 4.1. Set $\mathbb{K} = k((G))$ and $v = v_{\text{min}}$. If \mathbb{K} is real closed, then G is divisible and k is a real closed field.

Proof. We first prove that G is divisble. So let $g \in G$ and $n \in \mathbb{N}$. We have to show that $\frac{g}{n} \in G$. Assume without loss of generality $g > 0$. Consider $\mathbb{K} \ni s = t^g > 0$ in the lex order on K.

(Note that a real closed field R is "root closed for positive elements": For some $s > 0$ consider $x^n - s$. Then $0^n - s < 0$ and $(s + 1)^n - s > 0$. The Intermediate Value Theorem gives a root in the interval $[0, s + 1]$.

Since K is real closed take $y = \sqrt[n]{s} \in K$. Then $v(s) = g$ and thus $v(y) = \frac{g}{n} \in G.$

To show that k is a real closed field let $n \in \mathbb{N}$ be odd and consider some polynomial

 $x^{n} + c_{n-1}x^{n-1} + \ldots + c_0 \in k[X] \subseteq K[X].$

Since K is real closed, we find some $x \in K$ such that x is a root of this polynomial, i.e.

$$
x^{n} + c_{n-1}x^{n-1} + \ldots + c_0 = 0.
$$

Note that the residue field of K is k and the residue map is a homomorphism. We want to compute \overline{c} for $c \in k$. Note that $s = c = ct^{0} \in k$ so $v_{\text{min}}(c) = 0$ and $\bar{c} = c$. So the residue map is just the identity on k. It remains to show that $v(x) \geq 0$. Assume $v(x) < 0$. Then

$$
v(x^n + \ldots + c_0) = v(0) = \infty,
$$

a contradiction.