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1. Hardy fields

Today we want to define the canonical valuation on a Hardy field H. For
this purpose we observe:

Remark 1.1. (Monotonicity of germs)
Let H be a Hardy field and f ∈ H, f ′ 6= 0. Since f ′ ∈ H is ultimately
strictly positive or negative, it follows that f is ultimately strictly increasing
or decreasing. Therefore

lim
x→+∞

f(x) ∈ R ∪ {−∞,∞}

exists.

Example 1.2.
(i) R and Q are Archimedean Hardy fields (constant germs)

(ii) Consider the set of germs of real rational functions with coefficients
in R (multivariate). By abuse of denation denote it by R(X). Verify
that this is a Hardy field.
Note that with respect to the order defined on a Hardy field, this is
a non-Archimedean field, because the function X is ultimately > N
for all N ∈ N.

2. The natural valuation of a Hardy field

Definition 2.1. (The canonical valuation on a Hardy field H).
Let H be a Hardy field. Define for 0 6= f, g ∈ H

f ∼ g ⇔ lim
x→∞

f(x)

g(x)
= r ∈ R \ {0}.
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This is an equivalence relation, called asymptotic equivalence relation.
Denote the equivalence class of 0 6= f by v(f). Define

v(0) :=∞,
and

v(f) + v(g) := v(fg),

Moreover, define an order on the set {v(f) : f ∈ H} by setting

∞ = v(0) > v(f) for f 6= 0.

and

v(f) > v(g) ⇔ lim
x→∞

f(x)

g(x)
= 0.

Verify that (v(H),+, <) is a totally ordered abelian group.

Lemma 2.2. The map

v : H −→ v(H) ∪ {∞}
0 6= f 7→ v(f)

0 7→ ∞

is a valuation and it is equivalent to the natural valuation.

Remark 2.3.

Rv = {f : lim
x→∞

f(x) ∈ R}.

Iv = {f : lim
x→∞

f(x) = 0}.

Uv = {f : lim
x→∞

f(x) ∈ R \ {0}}.

3. Construction of non-Archimedean real closed fields

Our next goal is to prove the following:

Theorem 3.1. (Main Theorem of chapter 2)
Let k ⊆ R be a subfield, G a totally ordered abelian group and K := k((G)).
Then K is a real closed field if and only if

(i) G is divisible,

(ii) k is a real closed field.
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Remark 3.2. Once the Main Theorem is proved we can proceed as follows
(staring from R) to construct non-Archimedean real closed fields:

(1) Let ∅ 6= Γ be a totally ordered set.

(2) Choose divisible subgroups of (R,+, 0, <), say {Bγ : γ ∈ Γ} (note
that R is a Q-vector space).

(3) Take
⊔
γ∈ΓBγ ⊂ G ⊂ Hγ∈ΓBγ . Note that G is a divisible ordered

abelian group.

(4) Take k ⊂ R a subfield and consider krc = {α ∈ R : α alg. over k}.
Then krc ⊂ R is a real closed field (because R is real closed).

(5) Set K = krc((G)).

In chapter 3 we will show "Kaplansky’s embedding theorem": any real
closed field is a subfield of such a K.

4. Towards the proof of the Main Theorem

Let k ⊂ R and G be an ordered abelian group.

Proposition 4.1. Set K = k((G)) and v = vmin. If K is real closed, then G
is divisible and k is a real closed field.

Proof. We first prove that G is divisble. So let g ∈ G and n ∈ N. We have
to show that g

n ∈ G. Assume without loss of generality g > 0. Consider
K 3 s = tg > 0 in the lex order on K.

(Note that a real closed field R is “root closed for positive elements”: For
some s > 0 consider xn − s. Then 0n − s < 0 and (s + 1)n − s > 0. The
Intermediate Value Theorem gives a root in the interval ]0, s+ 1[).

Since K is real closed take y = n
√
s ∈ K. Then v(s) = g and thus

v(y) = g
n ∈ G.

To show that k is a real closed field let n ∈ N be odd and consider some
polynomial

xn + cn−1x
n−1 + . . .+ c0 ∈ k[X] ⊆ K[X].

Since K is real closed, we find some x ∈ K such that x is a root of this
polynomial, i.e.

xn + cn−1x
n−1 + . . .+ c0 = 0.

Note that the residue field of K is k and the residue map is a homomor-
phism. We want to compute c for c ∈ k. Note that s = c = ct0 ∈ k so
vmin(c) = 0 and c = c. So the residue map is just the identity on k. It
remains to show that v(x) > 0. Assume v(x) < 0. Then

v(xn + . . .+ c0) = v(0) =∞,
a contradiction.
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