REAL ALGEBRAIC GEOMETRY LECTURE NOTES (09: 07/05/15)

SALMA KUHLMANN

CONTENTS

1. Ordered abelian groups

Definition 1.1. $(G, +, 0, <)$ is a (totally) **ordered abelian group** if $(G, +, 0)$ is an abelian group and \lt a total order on G, such that for all $a, b, c \in G$

$$
a \leq b \Rightarrow a + c \leq b + c \quad (*)
$$

Definition 1.2. A subgroup C of an ordered abelian group G is **convex** if $\forall c_1, c_2 \in C$ and $\forall x \in G$

 $c_1 < x < c_2 \Rightarrow x \in C$. Note that because of (*) this is equivalent to requiring $\forall c \in C$ and $\forall x \in G$

$$
0 < x < c \Rightarrow x \in C.
$$

Example 1.3. $C = \{0\}$ and $C = G$ are convex subgroups.

Lemma 1.4. Let G be an ordered abelian group and C a convex subgroup of G. Then

- (i) G/C is an ordered abelian group by defining $g_1+C \leq g_2+C$ if $g_1 \leq g_2$.
- (ii) There is a bijective correspondence between convex subgroups $C \subseteq$ $C' \subseteq G$ and convex subgroups of G/C .
- (iii) In particular, if D and C are convex subgroups of G such that $D \subset C$ and there are no further subgroups between D and C , then C/D has no non-trivial convex subgroups.
- (iv) If an ordered abelian group has only the trivial convex subgroups, then it is an Archimedean group.

2 SALMA KUHLMANN

Definition 1.5. Let G be an ordered abelian group, $x \in G$, $x \neq 0$. We define:

$$
C_x := \bigcap \{ C : C \text{ is a convex subgroup of } G \text{ and } x \in C \}.
$$

$$
D_x := \bigcup \{ D : D \text{ is a convex subgroup of } G \text{ and } x \notin D \}.
$$

A convex subgroup C of G is said to be **principal** if there is some $x \in G$ such that $C = C_x$.

Lemma 1.6.

- (i) C_x and D_x are convex subgroups of G .
- (*ii*) $D_x \subseteq C_x$.
- (iii) D_x is the largest proper convex subgroup of C_x , i.e. if C is a convex subgroup such that

$$
D_x \subseteq C \subseteq C_x
$$

then
$$
C = D_x
$$
 or $C = C_x$.

(iv) It follows that the ordered abelian group C_x/D_x has no non-trivial proper convex subgroup.

2. Archimedean groups

Definition 2.1. Let $(G, +, 0, <)$ be an ordered abelian group. We say that G is **Archimedean** if for all non-zero $x, y \in G$:

$$
\exists n \in \mathbb{N}: \quad n|x| > |y| \text{ and } n|y| > |x|,
$$

where for every $g \in G$, $|g| := \max\{g, -g\}.$

Proposition 2.2. *(Hölder)* Every Archimedean group is isomorphic to a subgroup of $(\mathbb{R}, +, 0, <)$.

Proposition 2.3. G is Archimedean if and only if G has no non-trivial proper convex subgroup.

Therefore if G is an ordered group and $x \in G$ with $x \neq 0$, the quotient C_x/D_x is Archimedean (by 2.3) and can be embedded in $(\mathbb{R}, +, 0, <)$ (by 2.2).

Definition 2.4. Let G be an ordered group, $x \in G$, $x \neq 0$. We say that

$$
B_x := C_x/D_x
$$

is the Archimedean component associated to x .

3. Archimedean equivalence

Definition 3.1. An abelian group G is **divisible** if for every $x \in G$ and for every $n \in \mathbb{N}$ there is some $y \in G$ such that $x = ny$.

Remark 3.2. Any ordered divisible abelian group G is an ordered $\mathbb{Q}\text{-vector}$ space and G can be viewed as a valued $\mathbb Q$ -vector space in a natural way.

Definition 3.3. (Archimedean equivalence) Let G be an ordered abelian group. For every $0 \neq x, y \in G$ we define

$$
x \sim^+ y \quad \Leftrightarrow \quad \exists n \in \mathbb{N} \quad n|x| \ge |y| \quad \text{and} \quad n|y| \ge |x|.
$$

$$
x \ll^+ y \quad \Leftrightarrow \quad \forall n \in \mathbb{N} \quad n|x| \le |y|.
$$

Proposition 3.4.

- (1) \sim ⁺ is an equivalence relation.
- (2) \sim^+ is compatible with $<<^+$:

 $x \ll^+ y$ and $x \sim^+ z \Rightarrow z \ll^+ y$, $x \ll^+ y$ and $y \sim^+ z \Rightarrow x \ll^+ z$.

Because of the last proposition we can define a linear order $<_{\Gamma}$ on Γ := G/\sim^+ , the set of equivalence classes $\{[x]: x \in G\}$, as follows:

$$
\forall x, y \in G \setminus \{0\} : [y] <_{\Gamma} [x] \quad \Leftrightarrow \quad x < <^+ y \quad (\text{and } \infty > \Gamma)
$$
\n
$$
\text{equation: } [0] = \infty
$$

(convention: $[0] = \infty$)

Proposition 3.5.

- (1) Γ is a totally ordered set under \leq_{Γ} .
- (2) The map

$$
v: G \longrightarrow \Gamma \cup \{\infty\}
$$

\n
$$
0 \rightarrow \infty
$$

\n
$$
x \rightarrow [x] \quad (if \ x \neq 0)
$$

is a valuation on G as a \mathbb{Z} -module, called the **natural valuation**:

```
For every x, y \in G:
v(x) = \infty iff x = 0,
v(nx) = v(x) \quad \forall n \in \mathbb{Z}, n \neq 0.v(x + y) \geqslant \min\{v(x), v(y)\}.
```
(3) if $x \in G$, $x \neq 0$, $v(x) = \gamma$, then

$$
G^{\gamma} := \{ a \in G : v(a) \ge \gamma \} = C_x.
$$

$$
G_{\gamma} := \{ a \in G : v(a) > \gamma \} = D_x.
$$

So

$$
B_x = C_x/D_x = G^{\gamma}/G_{\gamma} = B(\gamma)
$$

is the Archimedean component associated to γ . By Hölder's Theorem, the homogeneous components $B(\gamma)$ are all (isomorphic to) subgroups of $(\mathbb{R}, +, 0, <)$.

Example 3.6. Let $[\Gamma, {B(\gamma) : \gamma \in \Gamma}]$ be an ordered family of Archimedean groups. Consider $\bigsqcup_{\gamma \in \Gamma} B(\gamma)$ endowed with the lexicographic order \lt_{lex} : for $0 \neq g \in \bigsqcup_{\gamma \in \Gamma} B(\gamma)$ let $\gamma := \min \text{support } g$. Then declare $g > 0 : \Leftrightarrow g(\gamma) > 0$.

Then $(\Box B(\gamma), \leq_{\text{lex}})$ is an ordered abelian group. Moreover, the natural valuation is the v_{min} valuation. Similarly for the Hahn product.

Theorem 3.7. (Hahn's embedding theorem for divisible ordered abelian groups) Let G be a divisible ordered abelian group with skeleton $S(G) = [\Gamma, \{B(\gamma)\}$: $\gamma \in \Gamma$ }. Then

$$
\left(\bigsqcup B(\gamma), <_{\text{lex}}\right) \hookrightarrow (G, <) \hookrightarrow (\text{H } B(\gamma), <_{\text{lex}}).
$$