REAL ALGEBRAIC GEOMETRY LECTURE NOTES (09: 07/05/15)

SALMA KUHLMANN

Contents

1.	Ordered abelian groups	1
2.	Archimedean groups	2
3.	Archimedean equivalence	3

1. Ordered Abelian groups

Definition 1.1. (G, +, 0, <) is a (totally) **ordered abelian group** if (G, +, 0) is an abelian group and < a total order on G, such that for all $a, b, c \in G$

$$a \leqslant b \Rightarrow a + c \leqslant b + c \quad (*).$$

Definition 1.2. A subgroup *C* of an ordered abelian group *G* is **convex** if $\forall c_1, c_2 \in C$ and $\forall x \in G$

 $c_1 < x < c_2 \implies x \in C.$

Note that because of (*) this is equivalent to requiring $\forall c \in C$ and $\forall x \in G$

$$0 < x < c \Rightarrow x \in C.$$

Example 1.3. $C = \{0\}$ and C = G are convex subgroups.

Lemma 1.4. Let G be an ordered abelian group and C a convex subgroup of G. Then

- (i) G/C is an ordered abelian group by defining $g_1+C \leq g_2+C$ if $g_1 \leq g_2$.
- (ii) There is a bijective correspondence between convex subgroups $C \subseteq C' \subseteq G$ and convex subgroups of G/C.
- (iii) In particular, if D and C are convex subgroups of G such that $D \subset C$ and there are no further subgroups between D and C, then C/D has no non-trivial convex subgroups.
- (*iv*) If an ordered abelian group has only the trivial convex subgroups, then it is an Archimedean group.

SALMA KUHLMANN

Definition 1.5. Let G be an ordered abelian group, $x \in G$, $x \neq 0$. We define:

$$C_x := \bigcap \{ C : C \text{ is a convex subgroup of } G \text{ and } x \in C \}.$$
$$D_x := \bigcup \{ D : D \text{ is a convex subgroup of } G \text{ and } x \notin D \}.$$

A convex subgroup C of G is said to be **principal** if there is some $x \in G$ such that $C = C_x$.

Lemma 1.6.

- (i) C_x and D_x are convex subgroups of G.
- (*ii*) $D_x \subsetneq C_x$.
- (iii) D_x is the largest proper convex subgroup of C_x , i.e. if C is a convex subgroup such that

$$D_x \subseteq C \subseteq C_x$$

then
$$C = D_x$$
 or $C = C_x$.

(iv) It follows that the ordered abelian group C_x/D_x has no non-trivial proper convex subgroup.

2. Archimedean groups

Definition 2.1. Let (G, +, 0, <) be an ordered abelian group. We say that G is **Archimedean** if for all non-zero $x, y \in G$:

$$\exists n \in \mathbb{N} : \quad n|x| > |y| \quad \text{and} \quad n|y| > |x|,$$

where for every $g \in G$, $|g| := \max\{g, -g\}$.

Proposition 2.2. (Hölder) Every Archimedean group is isomorphic to a subgroup of $(\mathbb{R}, +, 0, <)$.

Proposition 2.3. G is Archimedean if and only if G has no non-trivial proper convex subgroup.

Therefore if G is an ordered group and $x \in G$ with $x \neq 0$, the quotient C_x/D_x is Archimedean (by 2.3) and can be embedded in $(\mathbb{R}, +, 0, <)$ (by 2.2).

Definition 2.4. Let G be an ordered group, $x \in G$, $x \neq 0$. We say that

$$B_x := C_x / D_x$$

is the Archimedean component associated to x.

 $\mathbf{2}$

3. Archimedean equivalence

Definition 3.1. An abelian group G is **divisible** if for every $x \in G$ and for every $n \in \mathbb{N}$ there is some $y \in G$ such that x = ny.

Remark 3.2. Any ordered divisible abelian group G is an ordered \mathbb{Q} -vector space and G can be viewed as a valued \mathbb{Q} -vector space in a natural way.

Definition 3.3. (Archimedean equivalence) Let G be an ordered abelian group. For every $0 \neq x, y \in G$ we define

$$\begin{array}{rcl} x & \sim^+ & y & :\Leftrightarrow & \exists \, n \in \mathbb{N} & n|x| \ge |y| \ \text{ and } n|y| \ge |x|. \\ x & <<^+ & y & :\Leftrightarrow & \forall \, n \in \mathbb{N} & n|x| < |y|. \end{array}$$

Proposition 3.4.

(1) \sim^+ is an equivalence relation.

(2) \sim^+ is compatible with $<<^+$:

Because of the last proposition we can define a linear order $<_{\Gamma}$ on $\Gamma := G/\sim^+$, the set of equivalence classes $\{[x] : x \in G\}$, as follows:

$$\forall x, y \in G \setminus \{0\} : [y] <_{\Gamma} [x] \quad \Leftrightarrow \quad x <<^{+} y \quad (\text{and } \infty > \Gamma)$$

(convention: $[0] = \infty$)

Proposition 3.5.

- (1) Γ is a totally ordered set under $<_{\Gamma}$.
- (2) The map

$$\begin{array}{rcl} v \colon G & \longrightarrow & \Gamma \cup \{\infty\} \\ 0 & \mapsto & \infty \\ x & \mapsto & [x] & (if \ x \neq 0) \end{array}$$

is a valuation on G as a \mathbb{Z} -module, called the **natural valuation**:

For every
$$x, y \in G$$
:
- $v(x) = \infty$ iff $x = 0$,
- $v(nx) = v(x) \quad \forall n \in \mathbb{Z}, n \neq 0$,
- $v(x+y) \ge \min\{v(x), v(y)\}.$

(3) if $x \in G$, $x \neq 0$, $v(x) = \gamma$, then

$$G^{\gamma} := \{a \in G : v(a) \ge \gamma\} = C_x.$$

$$G_{\gamma} := \{a \in G : v(a) > \gamma\} = D_x.$$

So

$$B_x = C_x / D_x = G^{\gamma} / G_{\gamma} = B(\gamma)$$

is the Archimedean component associated to γ . By Hölder's Theorem, the homogeneous components $B(\gamma)$ are all (isomorphic to) subgroups of $(\mathbb{R}, +, 0, <)$.

Example 3.6. Let $[\Gamma, \{B(\gamma) : \gamma \in \Gamma\}]$ be an ordered family of Archimedean groups. Consider $\bigsqcup_{\gamma \in \Gamma} B(\gamma)$ endowed with the lexicographic order $<_{\text{lex}}$: for $0 \neq g \in \bigsqcup_{\gamma \in \Gamma} B(\gamma)$ let $\gamma := \min \text{ support } g$. Then declare $g > 0 :\Leftrightarrow g(\gamma) > 0$.

Then $(\bigsqcup B(\gamma), <_{\text{lex}})$ is an ordered abelian group. Moreover, the natural valuation is the v_{\min} valuation. Similarly for the Hahn product.

Theorem 3.7. (Hahn's embedding theorem for divisible ordered abelian groups) Let G be a divisible ordered abelian group with skeleton $S(G) = [\Gamma, \{B(\gamma) : \gamma \in \Gamma\}]$. Then

$$\left(\bigsqcup B(\gamma), <_{\mathrm{lex}}\right) \hookrightarrow (G, <) \hookrightarrow (\mathrm{H}\, B(\gamma), <_{\mathrm{lex}}).$$

 $\mathbf{4}$