REAL ALGEBRAIC GEOMETRY LECTURE NOTES (08: 04/05/15)

SALMA KUHLMANN

Contents

1

1. Pseudo-completeness

1. Pseudo-completeness

In the last lecture we showed that pseudo complete implies maximally valued. Today, we prove the converse implication.

Proposition 1.1. The Hahn product $(H_{\gamma \in \Gamma} B(\gamma), v_{\min})$ is pseudo-complete.

Proof. Let $\{a_{\rho}\}_{{\rho}\in\lambda}$ be pseudo-Cauchy. Recall that $\gamma_{\rho}=v(a_{\rho}-a_{\rho+1})$ is a strictly increasing sequence. Define $x\in H_{\gamma\in\Gamma} B(\gamma)$ by

$$x(\gamma) = \begin{cases} a_{\rho}(\gamma) & \text{if } \gamma < \gamma_{\rho} \text{ for some } \rho. \\ 0 & \text{otherwise.} \end{cases}$$

This is well-defined because if $\rho_1 < \rho_2 \in \lambda$, $\gamma < \gamma_{\rho_1}$ and $\gamma < \gamma_{\rho_2}$, then $v(a_{\rho_1} - a_{\rho_2}) = \gamma_{\rho_1}$

and therefore

$$a_{\rho_1}(\gamma) = a_{\rho_2}(\gamma)$$

(note that $v_{\min}(a-b)$ is the first spot where a and b differ).

Now we show that support(x) is well-ordered.

Let $A \subseteq \text{support}(x)$, $A \neq \emptyset$ and $\gamma_0 \in A$. Then $\exists \rho$ such that $\gamma_0 < \gamma_\rho$ and $x(\gamma_0) = a_\rho(\gamma_0)$ with $\gamma_0 \in \text{support}(a_\rho)$. Consider

$$A_0 := \{ \gamma \in A : \gamma \leqslant \gamma_0 \}.$$

Note that since $x(\gamma) = a_{\rho}(\gamma)$ for $\gamma \leqslant \gamma_0$ it follows that $A_0 \subseteq \text{support}(a_{\rho})$ which is well-ordered, so min A_0 exists in A_0 and it is the least element of A.

We conclude by showing that x is a pseudo-limit. By definition of x follows

$$v(x - a_{\rho}) \geqslant \gamma_{\rho} = v(a_{\rho+1} - a_{\rho}) \quad \forall \rho \in \lambda.$$

If $v(x - a_{\rho}) > v(a_{\rho} - a_{\rho+1})$, then

$$v(x - a_{\rho+1}) = v(x - a_{\rho} + a_{\rho} - a_{\rho+1}) = v(a_{\rho} - a_{\rho+1}) = \gamma_{\rho},$$

but on the other hand we have

$$v(x - a_{\rho+1}) \geqslant \gamma_{\rho+1} > \gamma_{\rho}$$

a contradiction.

Corollary 1.2. Let (V, v) be a valued vector space with $S(V) = [\Gamma, \{B(\gamma), \gamma \in \Gamma\}]$. Then there exists a valuation preserving embedding

$$(V, v) \hookrightarrow (H_{\gamma \in \Gamma} B(\gamma), v_{\min})$$

Proof. The picture is the following:

Let \mathcal{B} be a maximal valuation independent set in V and set $V_1 = \langle \mathcal{B} \rangle_Q$. Then V_1 has a valuation basis and therefore h exists and $V|V_1$ is immediate.

Hilfslemma 1.3. Let (V_1, v_1) be maximally valued, (V_2, v_2) a valued vector space and $h: V_1 \to V_2$ a valuation preserving isomorphism. Then (V_2, v_2) is maximally valued.

Proof. Let $S(V_1) = [\Gamma, \{B(\gamma) : \gamma \in \Gamma\}]$. Assume that V_2 is not maximally valued, so $\exists V_2'$ a proper immediate extension. By our main theorem there exists an embedding h' of immediate extensions V_2' into $H_{\gamma \in \Gamma} B(\gamma)$. This is impossible, since h' cannot be injective.

Corollary 1.4. Let (V, v) be a maximally valued vector space. Then it is pseudo complete. In fact

$$(V,v) \simeq (\mathcal{H}_{\gamma \in \Gamma} \, B(\gamma), v_{\min}),$$
 where $S(V) = [\Gamma, \{B(\gamma) : \gamma \in \Gamma\}].$

Proof. By the first corollary, the picture is the following

$$\begin{array}{c|c} & HB(\gamma) \\ & & | \text{ immediate} \\ V & \xrightarrow{\quad n \quad \longrightarrow \quad} V_2. \end{array}$$

Since V is maximally valued, it follows from the Hifslemma that V_2 is maximally valued. Therefore the extension $\operatorname{H} B(\gamma)|V_2$ is not proper, i.e. $V_2 = \operatorname{H} B(\gamma)$. Thus h is surjective, i.e. h is an isomorphism of valued vector spaces $V \to \operatorname{H}_{\gamma \in \Gamma} B(\gamma)$.