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Abstract

Assume that the random future evolution of values is modelled in continuous time.
Then, a risk measure can be viewed as a functional on a space of continuous-time
stochastic processes. In this paper we study coherent and convex monetary risk mea-
sures on the space of all càdlàg processes that are adapted to a given filtration. We
show that if such risk measures are required to be real-valued, then they can only
depend on a stochastic process in a way that is uninteresting for many applications.
Therefore, we allow them to take values in (−∞,∞]. The economic interpretation
of a value of ∞ is that the corresponding financial position is so risky that no addi-
tional amount of money can make it acceptable. The main result of the paper gives
different characterizations of coherent or convex monetary risk measures on the space
of all bounded adapted càdlàg processes that can be extended to coherent or convex
monetary risk measures on the space of all adapted càdlàg processes. As examples we
discuss a new approach to measure the risk of an insurance company and a coherent
risk measure for unbounded càdlàg processes induced by a so called m-stable set.

Key words: Coherent risk measures, convex monetary risk measures, coherent utility
functionals, concave monetary utility functionals, unbounded càdlàg processes, exten-
sion of risk measures.

1 Introduction

The notion of a coherent risk measure was introduced in [ADEH1] and [ADEH2] and has
been extended to more general setups in [De1], [De2], [De3], [ADEHK1], [ADEHK2] and
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[CDK]. The more general concept of a convex monetary risk measures was established in
[FS1], [FS2] and [FS3]. In [CDK], the future evolution of discounted values is modelled
with essentially bounded càdlàg processes, and a risk measure is a real-valued functional
on the space R∞ of equivalence classes of adapted, essentially bounded, càdlàg processes
on a filtered probability space (Ω,F , (Ft)t∈[0,T ], P ) satisfying the usual assumptions. It
is shown in [CDK] that every convex monetary risk measure on R∞ that is so called
continuous for bounded decreasing sequences can be represented as a supremum of sigma-
additive affine functionals, and the risk measure is coherent if and only if the functionals
are linear. Such a representation can be useful for computational purposes, the verification
of properties or the transformation of risk measures. The space R∞ easily lends itself to
the application of duality theory and is therefore well suited for a functional analytic
treatment of risk measures that depend on continuous-time stochastic processes. On the
other hand, most examples of stochastic processes playing a role in financial models are
unbounded. In this paper, we study coherent and convex monetary risk measures on the
space R0 of equivalence classes of all adapted càdlàg processes on (Ω,F , (Ft)t∈[0,T ], P ).
Our approach is to view them as extensions of risk measures on R∞, and the main result
of this paper is a characterization of coherent and convex monetary risk measures on R∞
that can be extended to a coherent or convex monetary risk measure on R0. Consistent
with the interpretation that a monetary risk measure yields the amount of money that
has to be added to a financial position to make it acceptable (see, for instance [ADEH2],
[De1] or [FS3]), such a risk measure on R∞ is real-valued. On the other hand, we show
that if one requires coherent and convex monetary risk measures on R0 to be real-valued,
one is excluding many interesting examples. Therefore, we allow them to take values in
(−∞,∞]. A value of ∞ then means that the corresponding discounted value process is so
risky that no amount of additional money can make it acceptable.

Instead of starting with real-valued coherent and convex monetary risk measures on
R∞ and then extending them to R0, one could right away consider risk measures on one
of the spaces Rp, p ∈ [1,∞), of equivalence classes of adapted, càdlàg processes (Xt)t∈[0,T ]

such that E
[(

supt∈[0,T ] |Xt|
)p]

< ∞. For instance, it is shown in Proposition 3.8 of
[CDK] that every real-valued convex monetary risk measure onRp is upper semicontinuous
in the norm-topology of Rp and can therefore be represented as a supremum of sigma-
additive affine functionals. However, this approach has several drawbacks. First of all,
for instance, certain claim size distributions faced by insurance companies are believed to
be non-integrable. All the spaces Rp, p ∈ [1,∞) are therefore too small to accommodate
good models for the evolution of the discounted surplus resulting from such claims and
incoming premia payments. On the other hand, since R∞ is the smallest of all the spaces
Rp, p ∈ [1,∞], the set of real-valued convex monetary risk measures on Rp is largest
for p = ∞. Hence, by focusing on real-valued convex monetary risk measures on one of
the spaces Rp, p ∈ [1,∞), one might miss interesting examples of convex monetary risk
measures that are real-valued on R∞ but can also take the value ∞ when extended to R0.
At last, in many situations in risk management it is not clear what probability to assign
to certain future events and a whole set of different probability measures is taken into
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consideration. The spaces R∞ and R0 are invariant if P is changed to another probability
measure as long as it is equivalent to P . This is not the case for the spaces Rp, p ∈ [1,∞).

We emphasize that while we model the evolution of discounted future values over a
whole time interval, the risk measures considered in this paper are, like in [CDK], static,
as we calculate the risk of a value process only at the beginning of the time interval. Of
course, it is also important to study how risk measures should be updated in a consistent
way as more information is becoming available over time. These question is the subject
of a forthcoming paper.

The structure of the paper is as follows: In Section 2, we recall the most important
definitions and results from [CDK] concerning coherent and convex monetary risk measures
on R∞. In Section 3, we prove a theorem which shows that the requirement that coherent
or convex monetary risk measures be real-valued is too much of a restriction and that it
is better to let them take values in (−∞,∞]. This leads to our definition of coherent and
convex monetary risk measures on R0. Then, we state the paper’s main result, which
gives a characterization of coherent and convex monetary risk measures on R∞ that can
be extended to a coherent or convex monetary risk measures on R0. Section 4 contains
the proof of the main result. In Section 5, we give two examples of a coherent risk measure
on R0. The first one is related to the Cramér-Lundberg approach to measuring the risk
of an insurance company. The second one is motivated by results in [De3], where time
consistency properties of dynamic risk measures that depend on one-dimensional random
variables are studied.

2 Preliminaries

Let T ∈ [0,∞) and
(
Ω,F , (Ft)t∈[0,T ], P

)
be a filtered probability space that satisfies the

usual assumptions, that is, the probability space (Ω,F , P ) is complete, the filtration (Ft) is
right-continuous and F0 contains all null-sets of F . We identify indistinguishable stochastic
processes, and statements involving random variables or stochastic processes are under-
stood in the almost sure sense. For instance, by a càdlàg process we mean a stochastic pro-
cess whose paths almost surely are right-continuous and have left limits, and for stochastic
processes (Xt)t∈[0,T ] and (Yt)t∈[0,T ], X ≥ Y means that for almost all ω, Xt(ω) ≥ Yt(ω)
for all t ∈ [0, T ]. For 1 ≤ p ≤ ∞, let

Rp :=
{

X : [0, T ]× Ω → R X càdlàg, (Ft)-adapted
||X||Rp < ∞

}
, (2.1)

where ||X||Rp := ||X∗||p and X∗ := sup0≤t≤T |Xt|. It is easy to see that ||.||p is a norm
on Rp, and Rp equipped with this norm is a Banach space. A stochastic process b :
[0, T ]×Ω → R with right-continuous paths of finite variation, can uniquely be decomposed
into b = b+−b−, where b+ and b− are stochastic processes with right-continuous, increasing
paths, and almost surely, the positive measures induced by b+ and b− on [0, T ] have disjoint
support. The variation of such a process is given by the random variable Var (b) :=
b+(T ) + b−(T ). If b is optional (predictable), both processes b+ and b− are optional
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(predictable). For q ∈ [1,∞], we set

Aq :=





a : [0, T ]× Ω → R2

a = (apr, aop)
apr, aop right continuous, finite variation
apr predictable, apr

0 = 0
aop optional, purely discontinuous
Var (apr) + Var (aop) ∈ Lq





,

It can be shown that Aq with the norm

||a||Aq := ||Var (apr) + Var (aop) ||q , a ∈ Aq ,

is also a Banach space. We set

Aq
+ := {a = (apr, aop) ∈ Aq | apr and aop are non-negative and increasing}

and
Dσ := {a ∈ A1

+ | ||a||A1 = 1} .

It can easily be checked that for all p, q ∈ [1,∞] such that p−1 + q−1 = 1,

〈X, a〉 := E

[∫

]0,T ]
Xt−dapr

t +
∫

[0,T ]
Xtdaop

t

]

is a well-defined bilinear form on Rp ×Aq, and

|〈X, a〉| ≤ ||X||Rp ||a||Aq for all X ∈ Rp and a ∈ Aq .

Note that for T = 0, Rp = Lp(Ω,F0, P ) and Aq = Lq(Ω,F0, P ). Therefore, our framework
includes the one time-step setup, where a risk measures is a functional on a space of random
variables. The space

R0 := {X : [0, T ]× Ω → R |X càdlàg, (Ft)-adapted} . (2.2)

with the metric d(X, Y ) := E [(X − Y )∗ ∧ 1] is complete but not locally convex.
We call any mapping ρ : R∞ → R a risk measure on R∞. We find it more convenient

to work with the negative of a risk measure φ = −ρ. We call φ the utility functional
corresponding to the risk measure ρ.

Definition 2.1 A concave monetary utility functional on R∞ is a a mapping φ : R∞ → R
with the following properties:

(1) φ (λX + (1− λ)Y ) ≥ λφ (X) + (1− λ)φ (Y ), for all X, Y ∈ R∞ and λ ∈ [0, 1]

(2) φ(X) ≤ φ(Y ) for all X, Y ∈ R∞ with X ≤ Y

(3) φ (X + m) = φ (X) + m, for all X ∈ R∞ and m ∈ R.
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We call a concave utility functional φ on R∞ a coherent utility functional on R∞ if it has
the additional property:

(4) φ (λX) = λφ (X), for all X ∈ R∞ and λ ∈ R+.

We call the negative ρ = −φ of a concave monetary utility functional φ on R∞, a convex
monetary risk measure on R∞. If φ is a coherent utility functional on R∞, we call ρ a
coherent risk measure on R∞.

The acceptance set C corresponding to a concave monetary utility functional φ on R∞ is
given by

C := {X ∈ R∞ |φ(X) ≥ 0} .

It is convex and has the following property: If X,Y ∈ R∞, X ∈ C and X ≤ Y , then Y ∈ C
as well. If φ is coherent, then C is a convex cone.

For a concave monetary utility functional φ on R∞, we define its conjugate by

φ∗(a) := inf
X∈R∞

{〈X, a〉 − φ(X)} , a ∈ A1 .

It can be shown (see [FS1]) that for all a ∈ Dσ,

φ∗(a) = inf
X∈C

〈X, a〉 .

We call a function γ : Dσ → [−∞,∞) a penalty function if

−∞ < sup
a∈Dσ

γ(a) < ∞ .

Definition 2.2 We say that a concave monetary utility functional φ on R∞ satisfies the
Fatou property if

lim sup
n→∞

φ (Xn) ≤ φ (X)

for every bounded sequence (Xn)n≥1 ⊂ R∞ and X ∈ R∞ such that (Xn −X)∗ P→ 0.

We say that φ is continuous for bounded decreasing sequences if

lim
n→∞φ(Xn) = φ(X)

for every decreasing sequence (Xn)n≥1 ⊂ R∞ such that (Xn−X)∗ P→ 0 for some X ∈ R∞.

The following theorem and corollary are proved in [CDK].

Theorem 2.3 The following are equivalent:

(1) φ is a mapping defined on R∞ that can be represented as

φ(X) = inf
a∈Dσ

{〈X, a〉 − γ(a)} , X ∈ R∞ , (2.3)

for a penalty function γ : Dσ → [−∞,∞).
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(2) φ is a concave monetary utility functional on R∞ whose acceptance set
C := {X ∈ R∞ |φ(X) ≥ 0} is σ(R∞,A1)-closed.

(3) φ is a concave monetary utility functional on R∞ that satisfies the Fatou property.

(4) φ is a concave monetary utility functional on R∞ that is continuous for bounded
decreasing sequences.

Moreover, if (1)-(4) are satisfied, then the restriction of φ∗ to Dσ is a penalty function,
φ∗(a) ≥ γ(a) for all a ∈ Dσ, and the representation (2.3) also holds if γ is replaced by φ∗.

Corollary 2.4 The following are equivalent:

(1) φ is a mapping defined on R∞ that can be represented as

φ(X) = inf
a∈Qσ

〈X, a〉 , X ∈ R∞ ,

for a non-empty set Qσ ⊂ Dσ.

(2) φ is a coherent utility functional on R∞ whose acceptance set
C := {X ∈ R∞ | φ (X) ≥ 0} is σ

(R∞,A1
)
-closed.

(3) φ is a coherent utility functional on R∞ that satisfies the Fatou property.

(4) φ is a coherent utility functional on R∞ that is continuous for bounded decreasing
sequences.

3 Extension of risk measures from R∞ to R0

In this section we first extend Theorem 5.1 of [De1] and show that real-valued concave
monetary utility functionals on R0 are rather special. Therefore we allow them to take
values in [−∞,∞). Then, we we give conditions for concave monetary utility functionals
on R∞ to be extendable to concave monetary utility functionals on R0.

Assume that the probability space (Ω,F0, P ) is the union of finitely many disjoint
atoms and Pσ is a set of probability measures on (Ω,F0) that are absolutely continuous
with respect to P . Then the map

X 7→ inf
Q∈Pσ

EQ [X0]

is a real-valued coherent utility functional on R0. Hence, there are settings where real-
valued coherent and concave value measures on R0 exist. However, the next theorem
shows that to have interesting coherent and concave monetary utility functionals on R0,
one should not require them to be real-valued.
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Theorem 3.1 Let f : R0 → R be a real-valued, increasing, concave function, S a
[0, T ]-valued stopping time and B ∈ FS such that (B,FB

S , P ) is atomless, where FB
S :=

{A ∩B | A ∈ FS}. Then,

f(X + Y 1B1[S,T ]) = f(X) for all X,Y ∈ R0 . (3.1)

Proof. Assume that (3.1) does not hold. Then there exist X0 ∈ R0 and Y 1, Y 2 in the
subspace

R0
S,B :=

{
X1B1[S,T ] | X ∈ R0

}

such that f̃(Y 1) < f̃(Y 2), where the function f̃ : R0
S,B → R is given by

f̃(Y ) := f(X0 + Y )− f(X0) , Y ∈ R0
S,B .

Observe that f̃ is increasing, concave and f̃(0) = 0. For every n ∈ N, let Cn be the convex
set given by

Cn :=
{

Y ∈ R0
S,B | f̃(Y ) ≥ −n

}
.

By assumption, f is real-valued. Therefore,
⋃

n≥1 C̄n = R0
S,B. Hence, it follows from

Baire’s Theorem that there exists an n0 such that C̄n0 has non-empty interior, that is,
there exists an Y 0 ∈ R0

S,B and an ε > 0 such that

{
Y ∈ R0

S,B | E [
(Y − Y 0)∗ ∧ 1

] ≤ ε
} ⊂ C̄n0 . (3.2)

By concavity, for all j ≥ 1,

f̃((j + 1)Y 1 − jY 2) ≤ (j + 1)f̃(Y 1)− jf̃(Y 2) = f̃(Y 1)− j
[
f̃(Y 2)− f̃(Y 1)

]
,

which shows that there exists a Z0 ∈ R0
S,B such that f̃(Z0) ≤ −1

2(n0+1). Since (B,FB
S , P )

is atomless, there exist finitely many disjoint sets B1, . . . , BJ in FS such that B =
⋃J

j=1 Bj

and P [Bj ] ≤ ε for all j = 1, . . . , J . It follows from (3.2) that for all j = 1, . . . , J ,

Y 0 + J1Bj (2Z
0 − Y 0) ∈ C̄n0 ,

which together with the fact that C̄n0 is convex, implies that

2Z0 =
1
J

J∑

j=1

(
Y 0 + J1Bj (2Z

0 − Y 0)
) ∈ C̄n0 .

Hence, there exists a sequence
{
Zk

}
k≥1

in Cn0 such that (Zk − 2Z0)∗ P→ 0. Then, for all

k ≥ 1, Z̃k := (Zk ∨ 2Z0)− 2Z0 ≥ 0 and (Z̃k)∗ P→ 0. Since f̃ is concave and increasing,

f̃(−Z̃k) ≤ 2f̃(Z0)− f̃(Zk ∨ 2Z0) ≤ 2f̃(Z0)− f̃(Zk) ≤ −1 for all k ≥ 1 .
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By possibly passing to a subsequence, we can assume that for all k ≥ 1,

P
[
(Z̃k)∗ > 2−2k

]
< 2−k .

Then, by the Borel-Cantelli Lemma, Z :=
∑

k≥1 2kZ̃k is a well-defined process in R0
S,B,

and we get for all k ≥ 1,

f̃(−Z) ≤ f̃(−2kZ̃k) ≤ 2kf̃(−Z̃k) ≤ −2k ,

which contradicts f̃(−Z) ∈ R. Hence, (3.1) must be true. ¤

Corollary 3.2 If (Ω,F0, P ) is atomless, then there exist no real-valued concave monetary
utility functionals on R0.

Proof. If φ : R0 → R were a concave monetary utility functional, it would have to be
constant by Theorem 3.1. But this cannot be. ¤

Theorem 3.1 shows that it is a rather strong restriction to require coherent and concave
utility functionals on R0 to be real-valued. Therefore, we allow them to take values in
[−∞,∞). If the coherent or concave monetary utility functional of a process X ∈ R0

is −∞, this means that X is so risky that no additional amount of money can make it
acceptable.

Definition 3.3 We call a mapping φ : R0 → [−∞,∞) a concave monetary utility func-
tional on R0, if for all X, Y ∈ R∞,

(0) φ(X) ∈ R for all X ∈ R∞

(1) φ (λX + (1− λ)Y ) ≥ λφ (X) + (1− λ)φ (Y ) for all λ ∈ [0, 1]

(2) φ(X) ≤ φ(Y ) for X ≤ Y

(3) φ (X + m) = φ (X) + m, for all m ∈ R
We call a concave monetary utility functional φ on R0 a coherent utility functional if it
satisfies the additional property:

(4) φ (λX) = λφ (X), for all λ ∈ R+.

We call the negative ρ = −φ of a concave monetary utility functional φ on R0, a convex
monetary risk measure on R0. If φ is a coherent utility functional on R0, we call ρ a
coherent risk measure on R0.

Obviously, the restriction of a concave monetary utility functional φ on R0 to R∞ is a
concave monetary utility functional on R∞. In the following we are going to investigate
when a concave monetary utility functionals onR∞ can be extended to a concave monetary
utility functional on R0.
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Definition 3.4 For a function φ : R∞ → R, we define its extension φext to R0 by

φext(X) := lim
n→∞ lim

m→−∞φ((X ∧ n) ∨m) , X ∈ R0 .

It can easily be checked that the extension φext of a concave monetary utility functional
φ on R∞ to R0 is an increasing, translation invariant function from R0 to [−∞,∞]. The
following proposition shows that it is also concave.

Proposition 3.5 Let φ : R∞ → R be increasing and concave. Then, with the convention
∞+−∞ = −∞, also the extension φext : R0 → [−∞,∞] is concave.

Proof. Let X, Y ∈ R0 and λ ∈ (0, 1). Set µ := λ ∧ (1− λ). It can easily be checked that
for all n > 0 and m < 0,

λ[(X ∧ n) ∨m] + (1− λ)[(Y ∧ n) ∨m] ≤ [λ(X ∧ n) + (1− λ)(Y ∧ n)] ∨ [n + µm]
≤ [(λX + (1− λ)Y ) ∧ n] ∨ [n + µm] .

Hence,

φext(λX + (1− λ)Y ) = lim
n→∞ lim

m→−∞φ([(λX + (1− λ)Y ) ∧ n] ∨m)

= lim
n→∞ lim

m→−∞φ([(λX + (1− λ)Y ) ∧ n] ∨ [n + µm])

≥ lim
n→∞ lim

m→−∞φ (λ[(X ∧ n) ∨m] + (1− λ)[(Y ∧ n) ∨m])

≥ lim
n→∞ lim

m→−∞ {λφ([X ∧ n] ∨m) + (1− λ)φ([Y ∧ n] ∨m)}
= λφext(X) + (1− λ)φext(Y ) .

¤
It follows from Proposition 3.5 and the three lines before it that the extension φext of a
concave monetary utility functional φ on R∞ is a concave monetray utility functional on
R0, if and only if φext(X) < ∞ for all X ∈ R0.

Note that φext need not be the only possible extension of a concave monetary utility
functional φ from R∞ to R0, that is, it is possible that there exists a concave monetary
utility functional ψ on R0 such that ψ = φ on R0 but ψ 6= φext on R0.

In the following we will focus our attention on the extension of concave monetary
utility functionals φ on R∞ that are continuous for bounded decreasing sequences and, by
Theorem 2.3, can therefore be represented as

φ(X) = inf
a∈Dσ

{〈X, a〉 − γ(a)} , X ∈ R∞ ,

for a penalty function γ : Dσ → [−∞,∞).
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Definition 3.6 For a penalty function γ and a constant K ∈ R, we denote

Qγ,K
σ := {a ∈ Dσ | γ(a) ≥ −K} and

〈Qγ,K
σ

〉
:= conv(Qγ,K

σ )
σ(A1,R∞)

,

where conv(Qγ,K
σ )

σ(A1,R∞)
is the σ(A1,R∞)-closure of the convex hull of Qγ,K

σ . Further-
more,

Qγ
σ :=

⋃

K>0

Qγ,K
σ = {a ∈ Dσ | γ(a) > −∞} and 〈Qγ

σ〉 := conv(Qγ
σ)

σ(A1,R∞)
.

Remark 3.7 If γ is concave and σ(A1,R∞)-upper semicontinuous, then for all K ∈ R,
〈Qγ,K

σ

〉
= Qγ,K

σ ,

and φ∗ is always concave and σ(A1,R∞)-upper semicontinuous.

Proposition 3.8 Let γ1, γ2 : Dσ → [−∞,∞) be two penalty functions that induce the
same concave monetary utility functional on R∞, that is,

inf
a∈Dσ

{〈X, a〉 − γ1(a)} = inf
a∈Dσ

{〈X, a〉 − γ2(a)} , for all X ∈ R∞ .

Then, 〈Qγ1
σ 〉 = 〈Qγ2

σ 〉.

Proof.
Suppose that 〈Qγ1

σ 〉 6= 〈Qγ2
σ 〉. By symmetry, we can assume that there exists an a ∈

Qγ1
σ such that a /∈ 〈Qγ2

σ 〉. Since 〈Qγ2
σ 〉 is σ(A1,R∞)-closed and convex, the separating

hyperplane theorem yields an X ∈ R∞, such that

〈X, a〉 < inf
b∈〈Qγ2

σ 〉
〈X, b〉 .

Note that supb∈Qγ2
σ

γ2(b) < ∞ and γ1(a) ∈ R. Therefore, there exists a λ > 0 such that

〈λX, a〉+ sup
b∈Qγ2

σ

γ2(b)− γ1(a) < inf
b∈〈Qγ2

σ 〉
〈λX, b〉 ,

and therefore,

φ(λX) = inf
b∈Qγ2

σ

{〈λX, b〉 − γ2(b)} ≥ inf
b∈〈Qγ2

σ 〉
〈λX, b〉 − sup

b∈Qγ2
σ

γ2(b)

> 〈λX, a〉 − γ1(a) ≥ inf
b∈Qγ1

σ

{〈λX, b〉 − γ1(b)} = φ(λX) ,

which is absurd. ¤
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Theorem 3.9 Let φ : R∞ → R be a concave monetary utility functional on R∞ of the
form (2.3). Then the following five properties are equivalent:
(1) φext(X) < ∞ for all X ∈ R0.
(2) There exists a δ > 0 such that for every [0, T ]-valued stopping time S and all B ∈ FS

with P [B] ≤ δ, there exists a K > 0 such that

inf
a∈Qγ,K

σ

〈
1B1[S,T ], a

〉
= 0 .

(3) There exists a K > 0 such that for every [0, T ]-valued stopping time S and all B ∈ FS

with P [B] ≤ K−1,
inf

a∈Qγ,K
σ

〈
1B1[S,T ], a

〉
= 0 .

(4) There exists a δ > 0 such that for every [0, T ]-valued stopping time S and all B ∈ FS

with P [B] ≤ δ, there exists a K > 0 and an a ∈
〈
Qγ,K

σ

〉
such that

〈
1B1[S,T ], a

〉
= 0 and Var (apr) + Var (aop) ≤ K .

(5) There exists a K > 0, such that for every [0, T ]-valued stopping time S and all B ∈ FS

with P [B] ≤ K−1, there exists an a ∈
〈
Qγ,K

σ

〉
such that

〈
1B1[S,T ], a

〉
= 0 and Var (apr) + Var (aop) ≤ K .

It is obvious that if a function φ : R∞ → R satisfies condition (4) of Definition 2.1, then
so does φext. Moreover, if φ is a coherent utility functional on R∞ with representation

φ(X) := inf
a∈Qσ

〈X, a〉 , X ∈ R∞ (3.3)

for some subset Qσ ⊂ Dσ, then φ∗ on Dσ is given by

φ∗(a) =
{

0 if a ∈ 〈Qσ〉
−∞ if a ∈ Dσ \ 〈Qσ〉 .

Hence, the following is an immediate consequence of Theorem 3.9.

Corollary 3.10 Let φ be a coherent utility functional on R∞ with representation (3.3).
Then, the following four properties are equivalent:

(1) φext(X) < ∞ for all X ∈ R0.

(2) There exists a δ > 0 such that for every [0, T ]-valued stopping time S and all B ∈ FS

with P [B] ≤ δ, we have
inf

a∈Qσ

〈
1B1[S,T ], a

〉
= 0 .
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(3) There exists a δ > 0, such that for every [0, T ]-valued stopping time S and all B ∈ FS

with P [B] ≤ δ, there exists a K > 0 and an a ∈ 〈Qσ〉 such that
〈
1B1[S,T ], a

〉
= 0 and Var (apr) + Var (aop) ≤ K .

(4) There exists a K > 0, such that for every [0, T ]-valued stopping time S and all
B ∈ FS with P [B] ≤ K−1, there exists an a ∈ 〈Qσ〉 such that

〈
1B1[S,T ], a

〉
= 0 and Var (apr) + Var (aop) ≤ K .

4 Proof of Theorem 3.9

In the proof of Theorem 3.9 we will make use of the subsequent lemma. In the proof
of the lemma we need the spaces R̂p and Âq that are defined like Rp and Aq but with
respect to the filtration (F̂t)t∈[0,T ], given by F̂t := F for all t ∈ [0, T ]. The dual projection
Π∗ : Â1 → A1 is defined as follows: for a = (al, ar) ∈ Â1 let ãl be the dual predictable
projection of al with respect to the filtration (Ft) and ãr the dual optional projection of ar.
The process ãr can be split into a purely discontinuous, optional finite variation process ãd

and a continuous finite variation process ãc such that ãc
0 = 0. We set Π∗a := (ãl + ãc, ãd).

Then 〈X, Π∗a〉 = 〈X, a〉 for all X ∈ R∞ (see [CDK]).

Lemma 4.1 Let K be a positive constant, S a [0, T ]-valued stopping time and B ∈ FS.
Then the set

HK,S,B =
{
a ∈ A1 | 〈

1B1[S,T ], a
〉

= 0 , Var (apr) + Var (aop) ≤ K
}

is σ(A1,R∞)-compact.

Proof. It follows from Theorem VII.67 on page 255 of [DM] (see also Variant (a) of The-
orem VII.2 on page 189 of [DM]) that Â∞ is the dual space of R̂1. Therefore, Alaoglu’s
Theorem implies that

{
a ∈ Â∞ | Var (apr) + Var (aop) ≤ K

}
is σ(Â∞, R̂1)-compact. The

image
{

a ∈ Â1 | Var (apr) + Var (aop) ≤ K
}

of{
a ∈ Â∞ | Var (apr) + Var (aop) ≤ K

}
under the σ(Â∞, R̂1)/σ(Â1, R̂∞)-continuous map

id : Â∞ → Â1 is σ(Â1, R̂∞)-compact. It can easily be checked that the dual projection Π∗ :
Â1 → A1 discussed above is σ(Â1, R̂∞)/σ(A1,R∞)-continuous. Hence, the image H̃K :={

Π∗a | a ∈ Â1 , Var (apr) + Var (aop) ≤ K
}

of
{

a ∈ Â1 | Var (apr) + Var (aop) ≤ K
}

un-

der Π∗ is σ(A1,R∞)-compact. Now, let (bλ)λ∈Λ be a net in HK,S,B and b ∈ A1 such
that

bλ → b in σ(A1,R∞) . (4.1)

Obviously, for all X ∈ R̂∞,
〈
X, bλ − b

〉
=

〈
ΠopX, bλ − b

〉
→ 0 ,
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that is, bλ → b also in σ(Â1, R̂∞). Since R̂∞ separates points in Â1, the σ(Â1, R̂∞)-
compact set

{
a ∈ Â1 | Var (apr) + Var (aop) ≤ K

}
is closed in Â1. Therefore, Var (bpr) +

Var (bop) ≤ K. Moreover, it follows from (4.1) that
〈
1B1[S,T ], b

〉
= 0. Hence, b ∈ HK,S,B.

This shows that HK,S,B is a σ(A1,R∞)-closed subset of the σ(A1,R∞)-compact set H̃K ,
which implies the assertion of the lemma. ¤

Proof of Theorem 3.9:
(1)⇒ (3): If there is no K > 0 satisfying (3), there exists for every j ≥ 1, a [0, T ]-valued

stopping time Sj and Bj ∈ FSj such that

P [Bj ] ≤ 2−j and εj := inf
a∈Qγ,j

σ

〈
1Bj1[Sj ,T ], a

〉
> 0 .

The Borel-Cantelli Lemma guarantees that

X :=
∑

j≥1

j

εj
1Bj1[Sj ,T ]

is a well-defined process in R0. Denote γ := supa∈Qγ
σ

γ(a) < ∞, fix j and set n = j
εj

.
Then,

φ(X ∧ n) ≥ inf
a∈Qγ

σ

{〈
j

εj
1Bj1[Sj ,T ], a

〉
− γ(a)

}

= min

{
inf

a∈Qγ,j
σ

〈
j

εj
1Bj1[Sj ,T ], a

〉
− γ(a) ; inf

a∈Qγ
σ\Qγ,j

σ

〈
j

εj
1Bj1[Sj ,T ], a

〉
− γ(a)

}

≥ min {j − γ ; j} ,

and it follows that
φext(X) = lim

n→∞φ(X ∧ n) = ∞ ,

which contradicts (1).
(3) ⇒ (5): Choose a K > 0 that fulfils (3) and set K̃ = 2K. Let S be a [0, T ]-valued

stopping time and B ∈ FS such that P [B] ≤ K̃−1. By Lemma 4.1, the convex set

HK̃,S,B :=
{

a ∈ A1
∣∣∣

〈
1B1[S,T ], a

〉
= 0 , Var (apr) + Var (aop) ≤ K̃

}
,

is σ(A1,R∞)-compact. Assume that HK̃,S,B and the convex, σ(A1,R∞)-closed set
〈
Qγ,K̃

σ

〉

are disjoint. Then, it follows from the separating hyperplane theorem that there exists an
X ∈ R∞ such that

sup
a∈HK̃,S,B

〈X, a〉 < inf
a∈
D
Qγ,K̃

σ

E 〈X, a〉 . (4.2)

Modify the process X as follows:

X̃t :=





Xt , t < S
Xt on Bc for t ≥ S
0 on B for t ≥ S

.
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Let Θ be the set of all stopping times with values in [0, T ] and set

M := sup
θ∈Θ

||X̃θ||1 .

For every ε > 0, there exists a ρ ∈ Θ such that ||X̃ρ||1 > M − ε. Define

bt :=
{

(0, K̃1{t≥ρ}) for X̃ρ ≥ 0
(0,−K̃1{t≥ρ}) for X̃ρ < 0

and

b̃t :=





bt , t < S
bt on Bc for t ≥ S
bS− on B for t ≥ S

.

This yields for the left hand side of (4.2),

sup
a∈HK̃,S,B

〈X, a〉 ≥
〈
X, b̃

〉
=

〈
X̃, b̃

〉
= K̃||X̃ρ||1 > K̃(M − ε) ,

and therefore,
sup

a∈HK̃,S,B

〈X, a〉 ≥ K̃M . (4.3)

To obtain a contradiction, we introduce the stopping time

τ := inf
{

t ≥ 0 | |Xt| ≥ K̃M
}

with inf ∅ = ∞ .

By Markov’s inequality,

P [τ ≤ T ] = P
[
{τ ≤ T} ∩

{
|Xτ | ≥ K̃M

}]

≤ P
[
{τ ≤ T} ∩

{
|X̃τ | ≥ K̃M

}]
+ K̃−1

≤ K̃−1 ||X̃τ ||1
M

+ K̃−1 ≤ 2K̃−1 = K−1 .

Hence, it follows from (3) that

inf
a∈
D
Qγ,K̃

σ

E 〈
X1[τ,T ], a

〉 ≤ ||X||R∞ inf
a∈〈Qγ,K

σ 〉
〈
1[τ,T ], a

〉
= 0 ,

and we obtain for the right hand side of (4.2),

inf
a∈
D
Qγ,K̃

σ

E 〈X, a〉 ≤ sup
a∈
D
Qγ,K̃

σ

E 〈
X1[0,τ), a

〉
+ inf

a∈
D
Qγ,K̃

σ

E 〈
X1[τ,T ], a

〉 ≤ K̃M .

This is in contradiction to (4.2) and (4.3). Therefore, HK̃,S,B ∩
〈
Qγ,K̃

σ

〉
6= ∅, which proves

(5).
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(5) ⇒ (4) is trivial.
(4) ⇒ (2): Assume (4) holds with δ > 0 and let S be a [0, T ]-valued stopping time and

B ∈ FS such that P [B] ≤ δ. Then, there exists a K > 0 and an a ∈
〈
Qγ,K

σ

〉
such that

〈
1B1[S,T ], a

〉
= 0 .

Hence, for all ε > 0, there exists a convex combination
∑J

j=1 λjaj of elements a1, . . . , aJ

in Qγ,K
σ such that 〈

1B1[S,T ],

J∑

j=1

λjaj

〉
≤ ε ,

which implies that for at least one of the aj ’s,
〈
1B1[S,T ], aj

〉 ≤ ε .

This proves (2).
(2) ⇒ (1): Assume that (2) holds for δ > 0 and let X ∈ R0. Let N > 0 be so large

that P [X∗ ≥ N ] ≤ δ, and introduce the stopping time

τ := inf {t | |Xt| ≥ N} with the convention inf ∅ = ∞ .

Then, P [τ ≤ T ] ≤ δ. By assumption, there exists a K > 0 such that

inf
a∈Qγ,K

σ

〈
1[τ,T ], a

〉
= 0 .

Hence, for all n > 0 and m < 0,

inf
a∈Qγ

σ

{〈(X ∧ n) ∨m, a〉 − γ(a)}

≤ inf
a∈Qγ,K

σ

{〈
(1[0,τ)X ∧ n) ∨m, a

〉
+

〈
(1[τ,T ]X ∧ n) ∨m, a

〉− γ(a)
} ≤ N + K .

¤

5 Examples

5.1 The risk measure AVaRα(inf0≤t≤T Xt) and its application to the Cramér–
Lundberg process

Assume that the riskless interest rate is zero and the surplus of an insurance company
resulting from incoming premia payments and settlements of claims is modelled with an
adapted càdlàg process (Xt)t≥0. One of the concepts that has received the most attention
in insurance mathematics is the ruin probability (see for instance [As] or [RSST] and the
references therein). Denote for m ∈ R and T > 0,

ψ(m,X, T ) := P [m + inf
t∈[0,T ]

Xt < 0]
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and
ψ(m,X) := P [m + inf

t≥0
Xt < 0] = lim

T→∞
ψ(m,X, T ) .

Note that for α ∈ (0, 1),

inf {m | ψ(m,X, T ) ≤ α} = VaRα( inf
t∈[0,T ]

Xt) ,

and
inf {m | ψ(m,X) ≤ α} = VaRα(inf

t≥0
Xt) ,

where VaRα denotes value at risk at the level α, given by

VaRα(Z) := inf {m | P [m + Z < 0] ≤ α} , Z ∈ L0 .

If X is equal to the Cramér–Lundberg process

Ct = ct−
Nt∑

j=1

Yj ,

where c > 0, (Nt)t≥0 is a Poisson process with intensity λ > 0 and {Yj}j≥1 are positive
random variables that are i.i.d., independent of (Nt)t≥0 and such that there exists an
R > 0 with

λ (E [exp(RY1)− 1]) = cR ,

then ψ(m,X) can be estimated as follows: It can easily be checked that the process
Mt := (e−RCt)t≥0 is a positive martingale. Introduce the stopping time

τm := inf {t ≥ 0 | m + Ct < 0} , with the convention inf ∅ := ∞ .

It follows from the optional sampling theorem that

ψ(m,C) = P [τm < ∞] < E
[
exp {−R(m + Cτm)} 1{τm<∞}

]

= lim
t→∞E

[
exp {−R(m + Cτm∧t)} 1{τm≤t}

] ≤ lim
t→∞E [exp {−R(m + Cτm∧t)}]

= exp(−Rm) .

This implies that for all T > 0,

VaRα( inf
t∈[0,T ]

Ct) ≤ VaRα(inf
t≥0

Ct) ≤ − log α

R
. (5.4)

For certain distributions of the Yj ’s, ψ(m,C) can even be calculated exactly. Since (Ct)t≥0

is a strong Markov process, ψ(m,C) satisfies the integral equation

c

λ

(
ψ(m, C)− ψ(0, C)

)
=

∫ m

0
[ψ(m− u,C)− 1] [1−G(u)] du ,
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where G is the cumulative distribution function of Y1 (see, for instance, equation 5.3.10
in [RSST]). If Y1 is exponentially distributed with parameter γ > λ

c , ψ(m,C) can be
calculated as

ψ(m,C) =
λ

γc
exp

{
−

(
γ − λ

c

)
m

}
.

Hence, for all T > 0,

VaRα( inf
t∈[0,T ]

Ct) ≤ VaRα(inf
t≥0

Ct) = − log
(γc

λ α
)

γ − λ
c

. (5.5)

However, value at risk has two major shortcomings. First, it does not take into account the
size of the loss if a ruin occurs. Secondly, even as a risk measure on L∞, it is not subadditive
(that is, there exist Z1, Z2 ∈ L∞ such that VaRα(Z1 + Z2) > VaRα(Z1) + VaRα(Z2), see
[ADEH2]), nor convex (see [FS3]). That value at risk is not subadditive can be a problem if
X is a sum X =

∑n
j=1 Xj of other processes and one wants to measure the risk contribution

of the Xj ’s to the risk of X (see [ADEH2]).
An alternative to value at risk is average value at risk (also called conditional value at

risk). The average value at risk at the level α ∈ (0, 1) is given by

AVaRα(Z) :=
1
α

∫ α

0
VaRu(Z)du , Z ∈ L0 .

It can be shown (see [FS3]) that for all Z ∈ L∞,

AVaRα(Z) = −φ(Z) ,

where φ is the coherent utility functional on L∞ given by

φ(Z) := inf
Q∈Pσ

EQ [Z] ,

with Pσ :=
{

Q ¿ P | dQ
dP ≤ 1

α

}
. It is easy to see that Pσ satisfies condition (2) of Corollary

3.10 (remember that for T = 0, R∞ = L∞ and R0 = L0). Hence, φext is a coherent utility
functional on L0. It can easily be checked that

φext(Z) = −AVaRα(Z) for all Z ∈ L0 .

Hence, AVaRα is a coherent risk measure on L0. From there it is easy to see that

X 7→ AVaRα( inf
t∈[0,T ]

Xt)

is a coherent risk measure on R0. For the classical Cramér–Lundberg process (Ct)t≥0 we
get from (5.4) that for all T ≥ 0,

AVaRα( inf
t∈[0,T ]

Ct) ≤ AVaRα(inf
t≥0

Ct) ≤ 1
α

∫ α

0
− log u

R
du =

1− log α

R
.

If Y1 is exponentially distributed with parameter γ > λ
c , then by (5.5), for all T > 0,

AVaRα( inf
t∈[0,T ]

Ct) ≤ AVaRα(inf
t≥0

Ct) ≤ 1
α

∫ α

0
− log

(γc
λ u

)

γ − λ
c

du =
1− log

(γc
λ α

)

γ − λ
c

.
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5.2 A coherent utility functional induced by an m-stable set

In [De3], time-consistency properties of coherent risk measures are studied that depend
on one-dimensional random variables. Central in this context is the notion of m-stability,
also called fork-convexity. In the following we identify probability measures on (Ω,F , P )
that are absolutely continuous with respect to P with their Radon–Nikodym derivatives
dQ
dP .

Definition 5.1 We call a subset S ⊂ L1 m-stable if the L1-closure 〈S〉 of the convex hull
of S has the following properties:

(i) 〈S〉 contains all F0-measurable non-negative functions f such that E [f ] = 1
(ii) LT (f, g, τ) ∈ 〈S〉 for every f, g ∈ 〈S〉, and all [0, T ]-valued stopping times τ , where

(Lt(f, g, τ))t∈[0,T ] is the martingale defined by

Lt(f, g, τ) = E [f | Ft] for t ∈ [0, τ ]
Lt(f, g, τ) = E [f | Fτ ]

E[g|Ft]
E[g|Fτ ] for t ∈ [τ, T ]

,

and E[g|Ft]
E[g|Fτ ] is understood to be 1 for all t ∈ [τ, T ] if E [g | Fτ ] = 0.

In this example we assume that the filtration (Ft)t∈[0,T ] is generated by a standard Brow-
nian motion (Wt)t∈[0,T ] on (Ω,F , P ). It can be shown as in [De3] that the set

S :=
{E(

∫
qudWu)T | (qt)t∈[0,T ] predictable , −1 ≤ q ≤ 1

}
(5.6)

is m-stable. For every [0, T ]-valued stopping time τ , let Θτ be the set of all stopping times
θ such that τ ≤ θ ≤ T and define

φτ (X) := essinf Q∈S, θ∈Θτ EQ [Xθ | Fτ ] , X ∈ R∞ .

Then, φ0 is a coherent utility functional on R∞, and, as shown in Section 8 of [De3], it
follows from the m-stability of S that the following Bellman principle holds true:

φ0(X) = φ0

(
X1[0,τ) + φτ (X)1[τ,T ]

)
for all X ∈ R∞ .

In the remainder of this subsection we show that φ := φ0 can be extended to a coherent
utility functional on R0 and give a simple application. φ can be written as

φ(X) = inf
a∈Qσ

〈X, a〉 ,

where
Qσ :=

{
(0, E[f | Fθ]1{θ≤t}) | θ ∈ Θ0 , f ∈ S}

.

Since F0 is trivial, it is obvious that Qσ satisfies condition (2) of Corollary 3.10. Therefore,
φext is a coherent utility functional on R0. By Girsanov’s theorem, for all predictable
processes q such that −1 ≤ q ≤ 1,

W q
t := Wt −

∫ t

0
qudu , t ∈ [0, T ] ,

18



is a standard Brownian motion under E(
∫

qudWu)T · P . This shows that inft∈[0,T ] Wt is
Q-integrable for all Q ∈ S, from which it follows by Lebesgue’s dominated convergence
theorem that

φext(W ) = inf
Q∈S, θ∈Θ0

EQ[Wθ] .

Hence,

φext(W ) = inf
q predictable ,−1≤q≤1 ; θ∈Θ0

E
[E(

∫
qudWu)T Wθ

]

= inf
q predictable ,−1≤q≤1 ; θ∈Θ0

E
[
E(

∫
qudWu)T

(
W q

θ +
∫ θ

0
qudu

)]

= −T .

References

[ADEH1] Artzner, Ph., Delbaen, F., Eber, J.M., Heath, D. (1997). Thinking coherently,
RISK 10, November, 68-71.

[ADEH2] Artzner, Ph., Delbaen, F., Eber, J.M., Heath, D. (1999). Coherent Measures of
Risk, Mathematical Finance 9, 203-228.

[ADEHK1] Artzner, Ph., Delbaen, F., Eber, J.M., Heath, D., Ku, H. (2002). Coherent
Multiperiod Risk Measurement, Preprint, www.math.ethz.ch/∼ delbaen/

[ADEHK2] Artzner, Ph., Delbaen, F., Eber, J.M., Heath, D., Ku, H. (2003). Coherent
multiperiod risk adjusted values and Bellman‘s principle, submitted.

[As] Asmussen, S. (1990). Ruin Probability.

[CDK] Cheridito, P., Delbaen F., Kupper M. (2003). Coherent and convex risk measures
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