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ABSTRACT

We study supersolutions of a backward stochastic differential equa-
tion, the control processes of which are constrained to be continu-
ous semimartingales of the form dZ = ∆dt + ΓdW . The generator
may depend on the decomposition (∆, Γ ) and is assumed to be pos-
itive, jointly convex and lower semicontinuous, and to satisfy a su-
perquadratic growth condition in ∆ and Γ . We prove the existence of
a supersolution that is minimal at time zero and derive stability prop-
erties of the non-linear operator that maps terminal conditions to the
time zero value of this minimal supersolution such as monotone con-
vergence, Fatou’s lemma and L1-lower semicontinuity. Furthermore,
we provide duality results within the present framework and thereby
give conditions for the existence of solutions under constraints.
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1 Introduction

On a filtered probability space, the filtration of which is generated by a d-dimensional Brownian
motion, we are interested in quadruplets (Y,Z,∆, Γ ) of processes such that, for all 0 ≤ s ≤ t ≤
T , the system

Ys −
t∫
s

gu(Yu, Zu,∆u, Γu)du+

t∫
s

ZudWu ≥ Yt , YT ≥ ξ ,

Zt = z +

t∫
0

∆udu+

t∫
0

ΓudWu (1.1)

is satisfied. Here, for ξ a terminal condition, Y is the càdlàg value process and Z the continuous
control process with decomposition (∆, Γ ). The generator g is assumed to be jointly convex
and may depend on the decomposition of the continuous semimartingale Z. It is our objective
to give conditions ensuring that the set A(ξ, g, z), consisting of all admissible pairs (Y,Z) sat-
isfying (1.1), henceforth called supersolution of the backward stochastic differential equation
(BSDE) under gamma and delta constraints, contains elements (Ŷ , Ẑ) that are minimal at time
zero. Furthermore, we give conditions relying on BSDE duality for the existence of solutions
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under constraints.

Finding the minimal initial value of a supersolution under constraints is closely related to the
superreplication problem in a financial market under gamma constraints, first studied in Soner
and Touzi [21]. Indeed, the classical gamma constraints can be incorporated into our more
general framework by setting the generator to +∞ whenever the diffusion part Γ is outside a
predetermined interval.

In a nutshell, inspired by the methods first used in Drapeau et al. [9] and then later in Heyne
et al. [13], we begin by considering the operator Eg0 (ξ, z) := inf{Y0 : (Y, Z) ∈ A(ξ, g, z)}
where z ∈ R1×d is the initial value of controls. We then show that the set of supersolutions
(Ŷ , Ẑ) satisfying Ŷ0 = Eg0 (ξ, z) is non-empty. In order to do so, we impose a superquadratic
growth condition in the decomposition parts (∆, Γ ) of controls on the generator g, reflecting a
penalization of rapid changes in control values and accounting for the expression “Delta- and
Gamma-Constraints”. The consequence is twofold. First, it ensures that the sequence of stochas-
tic integrals (

∫
ZndW ) corresponding to the minimizing sequence Y n

0 ↓ E
g
0 (ξ, z) is bounded in

H2. Drawing from compactness results for the space of martingales H2 given in Delbaen and
Schachermayer [7], we obtain our candidate control process Ẑ as the limit of a sequence in the
asymptotic convex hull of (Zn). At this point it is crucial to preserve the continuous semimartin-
gale structure of the limit object, that is Ẑ = z+

∫
∆̂du+

∫
Γ̂ dW , possible by using once more

the aforementioned growth condition on g.
In a next step, we provide stability results of ξ 7→ Eg0 (ξ, z), the non-linear operator that maps

a terminal condition to the value of the minimal supersolution at time zero, such as monotone
convergence, Fatou’s lemma or L1-lower semicontinuity. This, together with convexity, gives
way to a dual representation of Eg0 as a consequence of the Fenchel-Moreau theorem. We char-
acterize the conjugate E∗0 in terms of the decomposition parts of the controls and show that E∗0
is always attained. In particular, for the case of a quadratic generator we show that it is possible
to explicitly compute the conjugate by means of classical calculus of variations methods, giving
additional structural insight into the problem. If we assume in turn the existence of an optimal
subgradient such that Eg0 (ξ, z) is attained in its dual representation, we can prove that the asso-
ciated BSDE with parameters (ξ, g) admits a solution under constraints. This extends results of
Delbaen et al. [8] and Drapeau et al. [10] obtained in the unconstrained case.

Before we continue, let us briefly discuss the existing literature on the subject. Ever since the
seminal paper Pardoux and Peng [18], an extensive amount of work has been done in the field
of BSDEs, resulting in such important contributions as for instance El Karoui et al. [11], Koby-
lanski [17] or Briand and Hu [1]. We refer the reader to Peng [19] or Drapeau et al. [9] for a
more thourough treatment of the literature concerning solutions and in particular supersolutions
of BSDEs. There are many works dealing with optimization or (super-)replication under con-
straints, see for instance Cvitanic and Karatzas [5], Jouini and Kallal [14] or Broadie et al. [2]
and references therein, but the notion of gamma constraints in the context of superhedging was
introduced in Soner and Touzi [21]. Therein, the authors identify the superreplication cost as the
solution to a variational inequality. In Cheridito et al. [3], the aforementioned problem is solved
in a multi-dimensional setting and the superreplication price is characterized as the unique vis-
cosity solution of a nonstandard partial differential equation, whereas in Cheridito et al. [4] the

2



authors treat the related system of BSDEs and SDEs in a more abstract fashion. Compare also
the more recent work Soner et al. [22] for a dual characterization of the superreplication problem.

The remainder of this paper is organized as follows. Setting and notations are specified in
Section 2. A precise definition of supersolutions under gamma and delta constraints is then
given in Section 3, along with existence and stability results. We conclude this work with duality
results in Section 4.

2 Setting and notations

We consider a filtered probability space (Ω,F , (Ft)t≥0, P ), where the filtration (Ft) is generated
by a d-dimensional Brownian motionW and is assumed to satisfy the usual conditions. For some
fixed time horizon T > 0 the set of FT -measurable random variables is denoted by L0, where
random variables are identified in the P -almost sure sense. Let furthermore denote Lp the set of
random variables in L0 with finite p-norm, for p ∈ [1,+∞]. Inequalities and strict inequalities
between any two random variables or processes X1 and X2 are understood in the P -almost sure
or in the P⊗dt-almost everywhere sense, respectively. We denote by T the set of stopping times
with values in [0, T ] and hereby call an increasing sequence of stopping times (τn) such that
P [
⋃
n{τn = T}] = 1 a localizing sequence of stopping times. Form,n ∈ N we denote by |·| the

Euclidean norm on Rm×n, that is |x| = (
∑

i,j x
2
ij)

1
2 . By S := S(R) we denote the set of càdlàg

progressively measurable processes Y with values in R. For p ∈ [1,+∞[, we further denote
by Hp the set of càdlàg local martingales M with finite Hp-norm on [0, T ], that is ‖M‖Hp :=

E[〈M,M〉p/2T ]1/p < ∞. By Lp := Lp (W ) we denote the set of R1×d-valued, progressively
measurable processes Z such that

∫
ZdW ∈ Hp, that is, ‖Z‖Lp := E[(

∫ T
0 |Zs|

2 ds)p/2]1/p is
finite. For Z ∈ Lp, the stochastic integral

∫
ZdW is well defined, see [20], and is by means of

the Burkholder-Davis-Gundy inequality [20, Theorem 48] a continuous martingale. We further
denote by L := L (W ) the set of R1×d-valued, progressively measurable processes Z such that
there exists a localizing sequence of stopping times (τn) with Z1[0,τn] ∈ L1, for all n ∈ N.
For Z ∈ L, the stochastic integral

∫
ZdW is well defined and is a continuous local martingale.

Finally, for a given sequence (xn) in some convex set, we say that a sequence (x̃n) is in the
asymptotic convex hull of (xn) if x̃n ∈ conv{xn, xn+1, . . . }, for all n ∈ N.

3 Minimal supersolutions of BSDEs under delta and gamma
constraints

3.1 Definitions

Throughout this work, a generator is a jointly measurable function g from Ω × [0, T ] × R ×
R1×d × R1×d × Rd×d to R ∪ {+∞} where Ω× [0, T ] is endowed with the progressive σ-field.
A control Z ∈ L with initial value z ∈ R1×d is said to have the decomposition (∆, Γ ) if it is
of the form Z = z +

∫
∆du +

∫
ΓdW , for progressively measurable (∆, Γ ) taking values in
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R1×d × Rd×d.1 A control is said to be admissible if the continuous local martingale
∫
ZdW is

a supermartingale. Let us collect all these processes in the set Θ defined by

Θ :=

{
Z ∈ L :

there exists z ∈ R1×d and progressively measurable (∆, Γ ) such that
Z = z +

∫
∆du+

∫
ΓdW and

∫
ZdW is a supermartingale

}
.

Whenever we want to stress the dependence of controls on a fixed initial value z ∈ R1×d, we
make use of the set Θ(z) := {Z ∈ Θ : Z0 = z}. Given a generator g and a terminal condition
ξ ∈ L0, a pair (Y, Z) ∈ S ×Θ is a supersolution of a BSDE under gamma and delta constraints
if, for 0 ≤ s ≤ t ≤ T , it holds

Ys −
t∫
s

gu(Yu, Zu,∆u, Γu)du+

t∫
s

ZudWu ≥ Yt and YT ≥ ξ . (3.1)

For a supersolution (Y, Z), we call Y the value process andZ its corresponding control process.2

Given z ∈ R1×d, we are now interested in the set

A(ξ, g, z) := {(Y,Z) ∈ S ×Θ(z) : (3.1) holds} .

Throughout this paper a generator g is said to be

(LSC) if (y, z, δ, γ) 7→ g(y, z, δ, γ) is lower semicontinuous.

(POS) positive, if g(y, z, δ, γ) ≥ 0, for all (y, z, δ, γ) ∈ R× R1×d × R1×d × Rd×d.

(CON) convex, if (y, z, δ, γ) 7→ g(y, z, δ, γ) is jointly convex.

(DGC) delta- and gamma-compatible, if there exist c1 ∈ R and c2 > 0 such that, for all
(δ, γ) ∈ R1×d × Rd×d,

g(y, z, δ, γ) ≥ c1 + c2

(
|δ|2 + |γ|2

)
holds for all (y, z) ∈ R× R1×d.

Remark 3.1.

(i) Note that (DGC) reflects a penalization of rapid changes in control values. In contrast
to [3] or [4], where the single decomposition parts ∆ and Γ were demanded to satisfy
certain boundedness, continuity or growth properties, we embed this in (DGC) so that
suitable L2-bounds emerge naturally from the problem (3.1).

1 In order to be compatible with the dimension of Z, actually the transpose (
∫
ΓdW )T of

∫
ΓdW needs to be

considered. However, we suppress this operation for the remainder in order to keep the notation simple.
2Note that the formulation in (3.1) is equivalent to the existence of a càdlàg increasing process K, with K0 = 0,

such that Yt = ξ +
∫ T

t
gu(Yu, Zu,∆u, Γu)du + (KT −Kt) −

∫ T

t
ZudWu for all t ∈ [0, T ], see for example

[11, 19].
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(ii) An example of a generator that excludes values of Γ exceeding a certain level by penal-
ization and fits into our setting is given by

g(y, z, δ, γ) =

{
g̃(y, z, δ) if |γ| ≤M
+∞ else

,

where M > 0 and g̃ is any positive, jointly convex and lower semicontinuous generator
satisfying g̃(y, z, δ) ≥ c1 + c2|δ|2 for constants c1 ∈ R and c2 > 0. This particular choice
of g is closely related to the kind of gamma constraints studied in [3].

(iii) Setting the generator g(·, z, ·, ·) equal to +∞ outside a desired subset of R1×d shows for
instance that our framework is flexible enough to comprise shortselling constraints. �

3.2 General properties

The proof of the ensuing Lemma 3.2 can be found in [9, Lemma 3.2].

Lemma 3.2. Let g be a generator satisfying (POS). Assume further that A(ξ, g) 6= ∅ and that
for the terminal condition ξ holds ξ− ∈ L1. Then ξ ∈ L1 and, for any (Y,Z) ∈ A(ξ, g),
the control Z is unique and the value process Y is a supermartingale such that Yt ≥ E[ξ|Ft].
Moreover, the unique canonical decomposition of Y is given by

Y = Y0 +M −A , (3.2)

where M =
∫
ZdW and A is an increasing, predictable, càdlàg process with A0 = 0.

The joint convexity of the generator g immediately yields the following lemma.

Lemma 3.3. Let g be a generator satisfying (CON). Then, for each z ∈ R1×d, the setA(ξ, g, z)
is convex. Furthermore, from A(ξ, g, z1) 6= ∅ and A(ξ, g, z2) 6= ∅ follows A(ξλ, g, zλ) 6= ∅, for
zλ := λz1 + (1− λ)z2 and ξλ := λξ1 + (1− λ)ξ2 where λ ∈ [0, 1].

Proof. The first assertion is a direct implication of (CON). As to the latter, it follows from (CON)
that λ(Y 1, Z1) + (1 − λ)(Y 2, Z2) ∈ A(ξλ, g, zλ) whenever (Y 1, Z1) and (Y 2, Z2) belong to
A(ξ1, g, z1) and A(ξ2, g, z2), respectively. �

For the proof of our main existence theorem we will need an auxiliary result concerning the
stability of the set Θ(z) under convergence in L2, given that the decomposition parts can be
uniformly bounded in L2.

Lemma 3.4. For any M > 0 and z ∈ R1×d, the set

ΘM (z) = {Z ∈ Θ(z) : max {‖∆‖L2 , ‖Γ‖L2} ≤M}

is closed under convergence in L2. If a sequence (Zn) ⊂ ΘM (z) with Zn = z +
∫

∆ndt +∫
ΓndW converges inL2 to someZ = z+

∫
∆dt+

∫
ΓdW , then there is a sequence ((∆̃n, Γ̃n))

in the asymptotic convex hull of ((∆n, Γn)) converging in L2 × L2 to (∆, Γ ).

5



Proof. First observe that for Z ∈ Θ(z) we have

|Zt|2 ≤ 4

|z|2 +

t∫
0

|∆s|2 ds+

∣∣∣∣
t∫

0

ΓsdWs

∣∣∣∣2
 .

Hence, for Z ∈ ΘM (z), this in turn yields E[|Zt|2] ≤ 4(|z|2 + ‖∆‖2L2 + ‖Γ‖2L2) ≤ 4(|z|2 +
2M2) := C < ∞, and hence ΘM (z) is a bounded subset of L2, since by Fubini’s theorem we
obtain that ‖Z‖L2 ≤

√
TC. Consider a sequence Zn = z +

∫
∆ndu +

∫
ΓndW in ΘM (z)

converging in L2 to some process Z. Since ((∆n, Γn)) are bounded in L2 × L2, we can find a
sequence (∆̃n, Γ̃n) ∈ conv{(∆n, Γn), (∆n+1, Γn+1), . . . } converging in L2×L2 to (∆, Γ ) ∈
L2×L2. Furthermore, it holds that ‖∆‖L2 ∨‖Γ‖L2 ≤M . Let us denote by (Z̃n) the respective
sequence in the asymptotic convex hull of (Zn). From Jensen’s inequality we deduce that

E

 T∫
0

∣∣∣∣
t∫

0

(∆̃n
s −∆s)ds

∣∣∣∣2dt
 ≤ TE

 T∫
0

∣∣∣∆̃n
s −∆s

∣∣∣2 ds
→ 0 ,

and thus (
∫

∆̃nds) converges to
∫

∆ds in L2. Applying Fubini’s theorem and using the Itô
isometry yield that

E

 T∫
0

∣∣∣∣
t∫

0

Γ̃ns dWs −
t∫

0

ΓsdWs

∣∣∣∣2dt
 ≤ TE

 T∫
0

∣∣∣Γ̃ns − Γs∣∣∣2 ds
 ,

where the term on the right-hand side tends to zero by means of the L2-convergence of (Γ̃n)
to Γ . Hence, (

∫
Γ̃ndW ) converges to

∫
ΓdW in L2. (Z̃n) inheriting the L2-convergence to

Z from (Zn) together with the P ⊗ dt-uniqueness of L2-limits finally allows us to write the
process Z as Z = z +

∫
∆ds+

∫
ΓdW , we are done. �

Lemma 3.4 yields the following compactness result.

Lemma 3.5. Assume that A(ξ, g, z) is non-empty for some z ∈ R1×d. Let ξ− be in L1 and g
satisfy (POS), (CON) and (DGC). Then, for any sequence ((Y n, Zn)) ⊂ A(ξ, g, z) of supersolu-
tions satisfying supn Y

n
0 <∞, the following holds: There is a sequence (Z̃n) in the asymptotic

convex hull of (Zn) that converges in L2 to some process Ẑ ∈ Θ(z).

Proof. Step 1: Existence of ((Ỹ n, Z̃n)). L2-convergence of (Z̃n) to Ẑ. First observe that (3.1)
and the supermartingale property of all

∫
ZndW imply that

E

 T∫
0

gt(Y
n
t , Z

n
t ,∆

n
t , Γ

n
t )dt

 ≤ Y n
0 + E

[
ξ−
]
≤ C + E

[
ξ−
]
<∞ , (3.3)
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where we put C := supn Y
n

0 . Now, using (3.3) together with (DGC) we estimate

‖∆n‖2L2 + ‖Γn‖2L2 = E

 T∫
0

|∆n
t |

2 dt

+ E

 T∫
0

|Γnt |
2 dt


≤ 1

c2
E

 T∫
0

gt(Y
n
t , Z

n
t ,∆

n
t , Γ

n
t )dt

− c1

c2
T ≤ 1

c2

(
C + E

[
ξ−
]
− c1T

)
<∞ .

Since the right-hand above is independent of n, we obtain that (Zn) ⊂ ΘM (z) with M :=

[ 1
c2

(C + E [ξ−] − c1T )]
1
2 and the arguments within the proof of Lemma 3.4 show that the se-

quence (Zn) is uniformly bounded in L2. This in turn guarantees the existence of a sequence
(Z̃n) in the asymptotic convex hull of (Zn) that converges to some process Ẑ in L2 and, up to a
subsequence, P ⊗ dt-almost everywhere.

Step 2: The process Ẑ belongs to Θ(z). The sequence ((Ỹ n, Z̃n)) lies in A(ξ, g, z), due to
(CON). Moreover, the linearity of the integrals within the Itô decompositions of (Zn) yields
that Z̃n = z +

∫
∆̃ndu +

∫
Γ̃ndW where ((∆̃n, Γ̃n)) denotes the corresponding convex com-

binations of the decomposition parts. In addition, ((∆̃n, Γ̃n)) inherits the uniform bound from
((∆n, Γn)), that is max{supn ‖∆̃n‖L2 , supn ‖Γ̃n‖L2} ≤ M . Hence, Lemma 3.4 ensures that
Ẑ is of the form

Ẑ = z +

∫
∆̂du+

∫
Γ̂ dW ,

with suitable L2-convergence of the decomposition parts by possibly passing to yet another
subsequence in the respective asymptotic convex hull. This finishes the proof. �

3.3 Minimality under constraints

Within the current setup of admissible controls constrained to follow certain dynamics, we are
interested in supersolutions (Ŷ , Ẑ) ∈ A(ξ, g, z) minimal at time zero, that is Ŷ0 ≤ Y0 for all
(Y,Z) ∈ A(ξ, g, z). In the remainder of this work, a major role is thus played by the operator

Eg0 (ξ, z) := inf {Y0 : (Y,Z) ∈ A(ξ, g, z)} , (3.4)

since any (Ŷ , Ẑ) satisfying Ŷ0 = Eg0 (ξ, z) naturally exhibits the property of being minimal
at time zero. Note that the definition of a supersolution directly yields that A(ξ1, g, z) ⊆
A(ξ2, g, z) whenever ξ1 ≥ ξ2. Hence, we immediately obtain monotonicity of the opera-
tor E0(·, z), that is ξ1 ≥ ξ2 implies Eg0 (ξ1, z) ≥ Eg0 (ξ2, z). The ensuing Theorem 3.7 pro-
vides existence of supersolutions minimal at time zero making use of the fact that the set
{Y0 : (Y,Z) ∈ A(ξ, g, z)} is directed downwards. Parts of it rely on a version of Helly’s theo-
rem which we state here for the sake of completeness. In order to keep this work self-contained,
we include the proof given in [12, Lemma 1.25].
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Lemma 3.6. Let (An) be a sequence of increasing positive processes such that the sequence
(AnT ) is bounded in L1. Then, there is a sequence (Ãn) in the asymptotic convex hull of (An)
and an increasing positive integrable process Ã such that

lim
n→∞

Ãnt = Ãt , for all t ∈ [0, T ], P -almost surely .

Proof. Let (tj) be a sequence running through I := ([0, T ] ∩ Q) ∪ {T}. Since (Ant1) is an
L1-bounded sequence of positive random variables, due to [6, Lemma A1.1] there exists a se-
quence (Ã1,k) in the asymptotic convex hull of (An) and a random variable Ãt1 such that (A1,k

t1
)

converges P -almost surely to Ãt1 . Moreover, Fatou’s lemma yields Ãt1 ∈ L1. Let (Ã2,k) be a
sequence in the asymptotic convex hull of (Ã1,k) such that (Ã2,k

t2
) converges P -almost surely to

Ãt2 ∈ L1 and so on. Then, for s ∈ I , it holds Ãk,ks → Ãs on a set Ω̂ ⊂ Ω satisfying P (Ω̂) = 1.
The process Ã is positive, increasing and integrable on I . Thus we may define

Ât := lim
r↓t,r∈I

Ãr , t ∈ [0, T ) , ÂT := ÃT .

We now show that (Ãk,k), henceforth named (Ãk), converges P -almost surely on the continuity
points of Â. To this end, fix ω ∈ Ω̂ and a continuity point t ∈ [0, T ) of Â(ω). We show that
(Ãkt (ω)) is a Cauchy sequence in R. Fix ε > 0 and set δ = ε

11 . Since t is a continuity point of
Â(ω), we may choose p1, p2 ∈ I such that p1 < t < p2 and Âp1(ω)−Âp2(ω) < δ. By definition
of Â, we may choose r1, r2 ∈ I such that p1 < r1 < t < p2 < r2 and |Âp1(ω) − Ãr1(ω)| < δ
and |Âp2(ω) − Ãr2(ω)| < δ. Now choose N ∈ N such that |Ãmr1(ω) − Ãnr1(ω)| < δ, for all
m,n ∈ N withm,n ≥ N , and |Ãjr2(ω)−Ãr2(ω)| < δ and |Ãr1(ω)−Ãjr1(ω)| < δ for j = m,n.
We estimate

|Ãmt (ω)− Ãnt (ω)| ≤ |Ãmt (ω)− Ãmr1(ω)|+ |Ãmr1(ω)− Ãnr1(ω)|+ |Ãnr1(ω)− Ãnt (ω)| .

For the first and the third term on the right hand side, since A and A are increasing, we deduce
that |Ãmt (ω) − Ãmr1(ω)| ≤ |Ãmr2(ω) − Ãmr1(ω)| and |Ãnt (ω) − Ãnr1(ω)| ≤ |Ãnr2(ω) − Ãnr1(ω)|.
Furthermore,

|Ãjr2(ω)− Ãjr1(ω)| ≤ |Ãjr2(ω)− Ãr2(ω)|+ |Ãr2(ω)− Âp2(ω)|
+ |Âp2(ω)− Âp1(ω)|+ |Âp1(ω)− Ãr1(ω)|+ |Ãr1(ω)− Ãjr1(ω)| ,

for j = m,n. Combining the previous inequalities yields |Ãmt (ω) − Ãnt (ω)| ≤ ε, for all
m,n ≥ N . Hence, (Ãk(ω)) converges for all continuity points t ∈ [0, T ) of Â(ω), for all
ω ∈ Ω̂. We denote the limit by Ã.

It remains to be shown that (Ãk) also converges for the discontinuity points of Â. To this
end, note that Â is càdlàg and adapted to our filtration which fulfills the usual conditions. By
a well-known result, see for example [15, Proposition 1.2.26], this implies that the jumps of Â
may be exhausted by a sequence of stopping times (ρj). Applying once more [6, Lemma A1.1]
iteratively on the sequences (Ãk

ρj
)k∈N, j = 1, 2, 3 . . . , and diagonalizing yields the result. �
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Theorem 3.7. Assume that A(ξ, g, z) 6= ∅ for some ξ− ∈ L1 and z ∈ R1×d and let g satisfy
(LSC), (POS), (CON) and (DGC). Then, the set {(Ŷ , Ẑ) ∈ A(ξ, g, z) : Ŷ0 = Eg0 (ξ, z)} is
non-empty.

Proof. Step 1: The candidate control Ẑ. We extract a sequence ((Y n, Zn)) ⊂ A(ξ, g, z) such
that

lim
n→∞

Y n
0 = Eg0 (ξ, z) .

Because supn Y
n

0 ≤ Y 1
0 < ∞, Lemma 3.5 assures the existence of a sequence (Z̃n) in the

asymptotic convex hull of (Zn) that converges in L2 to some admissible process Ẑ ∈ Θ(z),
including L2-convergence of the corresponding decomposition parts. In particular, we obtain
that

t∫
0

Z̃nudWu −→
n→∞

t∫
0

ẐudWu , for all t ∈ [0, T ] , P -almost surely . (3.5)

Moreover, up to a subsequence, ((Z̃n, ∆̃n, Γ̃n)) converges P ⊗ dt-almost everywhere towards
(Ẑ, ∆̂, Γ̂ ).

Step 2: The candidate value process Ŷ . If we denote by (Ỹ n) the sequence in the asymptotic
convex hull of (Y n) corresponding to (Z̃n), then all (Ỹ n, Z̃n) satisfy (3.1) due to (CON). Let Ãn

denote the increasing, predicable process of finite variation stemming from the decomposition
of Ỹ n = Ỹ n

0 + M̃n− Ãn given in Lemma 3.2. Since (Z̃n) is uniformly bounded in L2 and thus
all
∫
Z̃ndW are true martingales, and g satisfies (POS), the decomposition (3.2) yields

E
[
ÃnT

]
≤ Y 1

0 + E
[
ξ−
]
<∞ ,

as we assumed ξ− to be an element of L1. Now a version of Helly’s theorem, see Lemma 3.6,
yields the existence of a sequence in the asymptotic convex hull of (Ãn), again denoted by the
previous expression, and of an increasing positive integrable process Ã such that limn→∞ Ã

n
t =

Ãt, for all t ∈ [0, T ], P -almost surely. We pass to the corresponding sequence on the side of
(Ỹ n) and (Z̃n), define the process Ỹ pointwise for all t ∈ [0, T ] by Ỹt := limn→∞ Ỹ

n
t =

Eg0 (ξ, z) +
∫ t

0 ẐudWu − Ãt, and observe that it fulfills Ỹ0 = Eg0 (ξ, z) by construction. How-
ever, since Ỹ is not necessarily càdlàg, we define our candidate value process Ŷ by Ŷt :=
lims↓t,s∈Q Ỹs, for all t ∈ [0, T ) and ŶT := ξ. The continuity of

∫
ẐdW yields that

Ŷt = Eg0 (ξ, z) +

t∫
0

ẐudWu − lim
s↓t,s∈Q

Ãs . (3.6)

Since jump times of càdlàg processes3 can be exhausted by a sequence of stopping times (σj) ⊂
T , compare [15, Proposition 1.2.26], which coincide with the jump times of Ã, we conclude that

Ŷ = Ỹ , P ⊗ dt-almost everywhere . (3.7)
3Note that as an increasing process, Ã is in particular a submartingale and thus its right- and left-hand limits exist,

compare [15, Proposition 1.3.14]. Consequently, the process lims↓·,s∈Q Ãs is càdlàg.
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Furthermore, Ã increasing implies that Ât := lims↓t,s∈Q Ãs ≥ Ãt, for all t ∈ [0, T ] which,
together with (3.6), in turn yields that

Ŷt ≤ Ỹt , for all t ∈ [0, T ] . (3.8)

Given that (Ŷ , Ẑ) satisfies (3.1), we could conclude that (Ŷ , Ẑ) ∈ A(ξ, g, z) and thus Ŷ0 ≥
Eg0 (ξ, z) = Ỹ0 which, combined with (3.8), would imply Ŷ0 = Eg0 (ξ, z) and thereby finish the
proof.

Step 3: Verification. As to the remaining verification, we deduce from (3.7) the existence of a
set A ∈ FT , P (A) = 1 with the following property. For all ω ∈ A, there exists a Lebesgue
measurable set I(ω) ⊂ [0, T ] of measure T such that Ỹ n

t (ω) −→ Ŷt(ω), for all t ∈ I(ω). We
suppress the dependence of I on ω and recall however that in the following s and t may depend
on ω. For s, t ∈ I with s ≤ t holds

Ŷs −
t∫
s

gu(Ŷu, Ẑu, ∆̂u, Γ̂u)du+

t∫
s

ẐudWu

≥ lim sup
n

Ỹ n
s −

t∫
s

gu(Ỹ n
u , Z̃

n
u , ∆̃

n
u, Γ̃

n
u )du+

t∫
s

Z̃nudWu

 (3.9)

by means of (3.5), the P ⊗ dt-almost-everywhere convergence of ((Ỹ n, Z̃n, ∆̃n, Γ̃n)) towards
(Ŷ , Ẑ, ∆̂, Γ̂ ), the property (LSC) and Fatou’s lemma. Using ((Ỹ n, Z̃n)) ⊂ A(ξ, g, z), for all
n ∈ N, (3.9) can be further estimated by

Ŷs −
t∫
s

gu(Ŷu, Ẑu, ∆̂u, Γ̂u)du+

t∫
s

ẐudWu ≥ lim sup
n

Ỹ n
t = Ŷt . (3.10)

Whenever s, t ∈ Ic with s ≤ t, we approximate both times from the right by sequences (sn) ⊂ I
and (tn) ⊂ I, respectively, such that sn ≤ tn. Since (3.10) holds for all sn and tn, the claim
follows from the right-continuity of Ŷ and the continuity of all appearing integrals, which finally
concludes the proof. �

Convexity of the mapping (ξ, z) 7→ Eg0 (ξ, z) is provided by the following lemma.

Lemma 3.8. Under the assumptions of Theorem 3.7, the operator Eg0 (·, ·) is jointly convex.

Proof. For z1, z2 ∈ R1×d and ξ1, ξ2 ∈ L0, the negative parts of which are integrable, assume
that A(ξ1, g, z1) 6= ∅ and A(ξ2, g, z2) 6= ∅, as otherwise convexity trivially holds. For λ ∈
[0, 1] we set zλ := λz1 + (1 − λ)z2 and ξλ := λξ1 + (1 − λ)ξ2 so that Lemma 3.3 implies
A(ξλ, g, zλ) 6= ∅. By Theorem 3.7, there exist (Y 1, Z1) and (Y 2, Z2) in A(ξ1, g, z1) and
A(ξ2, g, z2), respectively, such that Y 1

0 = Eg0 (ξ1, z1) and Y 2
0 = Eg0 (ξ2, z2). Since (Ȳ , Z̄) :=

λ(Y 1, Z1) + (1−λ)(Y 2, Z2) is an element ofA(ξλ, g, zλ) due to (CON), it holds Eg0 (ξλ, zλ) ≤
Ȳ0 by definition of the operator Eg0 . �
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3.4 Stability results

Next, we show that the non-linear operator ξ 7→ Eg0 (ξ, z) exhibits stability properties such as
monotone convergence, the Fatou property or L1-lower semicontinuity. The following theorem
establishes monotone convergence and the Fatou property of Eg0 (·, z). Similar results in the
unconstrained case have been obtained in [9, Theorem 4.7].

Theorem 3.9. For z ∈ R1×d and g a generator fulfilling (LSC), (POS), (CON) and (DGC), and
(ξn) a sequence in L0 such that (ξ−n ) ⊂ L1, the following holds.

• Monotone convergence: If (ξn) is increasing P -almost surely to ξ ∈ L0, then it holds
limn→∞ Eg0 (ξn, z) = Eg0 (ξ, z).

• Fatou’s lemma: If ξn ≥ η, for all n ∈ N, where η ∈ L1, then it holds Eg0 (lim infn ξn, z) ≤
lim infn Eg0 (ξn, z).

Proof. Monotone convergence: First, note that by monotonicity of the operator under consider-
ation the limit Ȳ0 := limn Eg0 (ξn, z) exists and satisfies Ȳ0 ≤ Eg0 (ξ, z). Other than in the trivial
case of +∞ = Ȳ0 ≤ Eg0 (ξ, z) we have A(ξn, g, z) 6= ∅, for all n ∈ N, which, together with
(ξ−n ) ⊂ L1 implies (ξn) ⊂ L1. Furthermore, Theorem 3.7 yields the existence of supersolutions
(Y n, Zn) ∈ A(ξn, g, z) fulfilling Y n

0 = Eg0 (ξn, z), for all n ∈ N. In particular, we have that
Y n

0 ≤ Ȳ0 and ξ−n ≤ ξ−1 , for all n ∈ N. Arguments analogous to the ones used in Lemma 3.5
and the proof of Theorem 3.7 directly translate to the present setting and provide both a can-
didate control Ẑ ∈ Θ(z) to which (Z̃n) converges and a corresponding Ỹt := limn Ỹ

n
t , and

ensure that (Ŷ , Ẑ) belongs to A(ξ, g, z), where Ŷ := lims∈Q,s↓· Ỹs on [0, T ) and ŶT := ξ. In
particular, we obtain Ŷ0 ≤ Ỹ0 = Ȳ0. Hence, as A(ξ, g, z) 6= ∅ and ξ− ∈ L1, there exists
(Y, Z) ∈ A(ξ, g, z) such that Y0 = Eg0 (ξ, z). By minimality of (Y, Z) at time zero, however,
this entails Y0 ≤ Ŷ0 ≤ Ȳ0 and we conclude that limn→∞ Eg0 (ξn, z) = Eg0 (ξ, z).

Fatou’s lemma: If we define ζn := infk≥n ξk, then ξk ≥ η for all k ∈ N implies ζn ≥ η for
all n ∈ N which in turn gives (ζ−n ) ⊂ L1, and thus the monotone convergence established above
can be used exactly as in [9, Theorem 4.7] to obtain the assertion. �

As a consequence of the monotone convergence property we obtain the ensuing theorem pro-
viding L1-lower semicontinuity of the operator Eg0 (·, z). The proof goes along the lines of [9,
Theorem 4.9] and is thus omitted here.

Theorem 3.10. Let z ∈ R1×d and g be a generator fulfilling (LSC), (POS), (CON) and (DGC).
Then Eg0 (·, z) is L1-lower semicontinuous.

4 Duality under constraints

The objective of this section is to construct a solution of constrained BSDEs via duality and, for
the case of a quadratic generator, to obtain an explicit form for E∗0 , the Fenchel-Legendre trans-
form of Eg0 . Let us assume for the rest of this section that our generator g is independent of y, that
is gu(y, z, δ, γ) = gu(z, δ, γ), and that it satisfies (LSC), (POS), (CON) and (DGC). Let us further
fix some z ∈ R1×d as initial value of the controls and set Eg0 (·) := Eg0 (·, z) for the remainder
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of this section. Whenever we say that the BSDE(ξ, g) has a solution (Y,Z), we mean that there
exists (Y,Z) ∈ A(ξ, g, z) such that (3.1) is satisfied with equalities instead of inequalities. Ob-
serve that Eg0 (·), being convex and L1-lower semicontinuous, is in particular σ(L1, L∞)-lower
semicontinuous, and thus, by classical duality results admits the Fenchel-Moreau representation

Eg0 (ξ) = sup
v∈L∞

{E[vξ]− E∗0 (v)} , ξ ∈ L1 , (4.1)

where for v ∈ L∞ the convex conjugate is given by

E∗0 (v) := sup
ξ∈L1

{E[vξ]− Eg0 (ξ)} .

It is proved in the next lemma that the domain of E∗0 is concentrated on non-negative v ∈ L∞+
satisfying E[v] = 1.

Lemma 4.1. Within the representation (4.1), that is Eg0 (ξ) = supv∈L∞{E[vξ] − E∗0 (v)}, the
supremum might be restricted to those v ∈ L∞+ satisfying E[v] = 1.

Proof. First, we assume without loss of generality that Eg0 (0) < +∞. Indeed, a slight modifica-
tion of the argumentation below remains valid using any ξ ∈ L1 such that Eg0 (ξ) < +∞.4 We
show that E∗0 (v) = +∞ as soon as v ∈ L∞\L∞+ or E[v] 6= 1. For v ∈ L∞\L∞+ , L1

+ being the
polar of L∞+ yields the existence of ξ̄ ∈ L1

+ such that E[vξ̄] < 0. Monotonicity of Eg0 then gives
Eg0 (−nξ̄) ≤ Eg0 (0) for all n ∈ N. Hence,

E∗0 (v) ≥ sup
n

{
nE[−vξ̄]− Eg0 (−nξ̄)

}
≥ sup

n

{
nE[−vξ̄]

}
− Eg0 (0) = +∞ .

Furthermore, since the generator does not depend on y, the function Eg0 is cash additive, compare
[9, Proposition 3.3.5], and we deduce that, for all n ∈ N it holds

E∗0 (v) ≥ E[vn]− Eg0 (0)− n = n(E[v]− 1)− Eg0 (0) .

Thus, if E[v] > 1, then E∗0 (v) = +∞. A reciprocal argument with ξ = −n finally gives
E∗0 (v) = +∞ whenever E[v] < 1. �

By the previous result, we may use v ∈ L∞+ , E[v] = 1, in order to define a measure Q that is
absolutely continuous with respect to P by setting dQ

dP := v. Thereby (4.1) may be reformulated
as

Eg0 (ξ) = sup
Q�P

{EQ[ξ]− E∗0 (Q)} , ξ ∈ L1 , (4.2)

where
E∗0 (Q) := sup

ξ∈L1

{EQ[ξ]− Eg0 (ξ)} . (4.3)

Note thatA(ξ, g, z) = ∅ implies Eg0 (ξ) = +∞ and hence such terminal conditions are irrelevant
for the supremum in (4.3). Let us denote by Q the set of all probability measures equivalent

4Note that the case Eg0 ≡ +∞ on L1 immediately yields E∗0 ≡ −∞ on L∞ and is thus neglected.
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to P with bounded Radon-Nikodym derivative. For each Q ∈ Q, there exists a progressively
measurable process q taking values in R1×d such that for all t ∈ [0, T ]

dQ

dP
|Ft = exp

 t∫
0

qudWu −
1

2

t∫
0

|qu|2du

 .

By Girsanov’s theorem, the process WQ
t := Wt −

∫ t
0 qudu is a Q-Brownian motion. The

following lemma is a valuable tool regarding the characterization of E∗0 .

Lemma 4.2. The supremum in (4.3) can be restricted to random variables ξ ∈ L1 for which the
BSDE with parameters (ξ, g) has a solution with value process starting in Eg0 (ξ). More precisely,
for any Q ∈ Q holds

E∗0 (Q) = sup
ξ∈L1

{EQ [ξ]− Eg0 (ξ) : BSDE(ξ, g) has a solution (Y, Z) with Y0 = Eg0 (ξ)} .

Proof. It suffices to show that

E∗0 (Q)

≤ sup
ξ∈L1

{EQ[ξ]− Eg0 (ξ) : BSDE(ξ, g) has a solution (Y,Z) with Y0 = Eg0 (ξ)} , (4.4)

since the reverse inequality is satisfied by definition of E∗0 (·). Consider to this end a terminal
condition ξ ∈ L1 with associated minimal supersolution (Y,Z) ∈ A(ξ, g, z), that is Y0 = Eg0 (ξ).
Put, for all t ∈ [0, T ],

Y 1
t = Eg0 (ξ)−

t∫
0

gu (Zu,∆u, Γu) du+

t∫
0

ZudWu .

Relation (3.1) implies Y 1
T ≥ YT ≥ ξ and thus Eg0 (Y 1

T ) ≥ Eg0 (ξ) and (Y 1
T )− ∈ L1. Furthermore,

observe that

(Y 1
T )+ =

Eg0 (ξ)−
T∫

0

gu (Zu,∆u, Γu) du+

T∫
0

ZudWu

+

≤

Eg0 (ξ) +

T∫
0

ZudWu

+

due to the positivity of the generator. But since the right-hand side is in L1 by means of the
martingale property of

∫
ZdW , we deduce that (Y 1

T )+ ∈ L1, allowing us to conclude that
Y 1
T ∈ L1. On the other hand, (Y 1, Z) ∈ A(Y 1

T , g, z) holds by definition of Y 1. Hence, we
conclude Eg0 (Y 1

T ) ≤ Y 1
0 = Eg0 (ξ). Thus, Eg0 (Y 1

T ) = Eg0 (ξ), and (Y 1, Z) is a solution of the
BSDE with parameters (Y 1

T , g). Observe further that Eg0 (Y 1
T )− Eg0 (ξ) = 0 ≤ Y 1

T − ξ which, by
taking expectation under Q, implies

EQ[ξ]− Eg0 (ξ) ≤ EQ[Y 1
T ]− Eg0 (Y 1

T ) .

Taking the supremum yields (4.4), the proof is done. �
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By means of the preceding lemma it holds

E∗0 (Q) = sup
ξ∈L1

{EQ[ξ]− Eg0 (ξ)}

= sup
ξ∈L1

EQ
Eg0 (ξ)−

T∫
0

gu(Zu,∆u, Γu)du+

T∫
0

ZudWu

− Eg0 (ξ)


= sup

(∆,Γ )∈Π

EQ
− T∫

0

gu(Zu,∆u, Γu)du+

T∫
0

ZudWu

 (4.5)

where

Π :=

{
(∆, Γ ) ∈ L2 × L2 :

∃ξ ∈ L1 : BSDE(ξ, g) has a solution (Y,Z)
with Y0 = Eg0 (ξ) and Z = z +

∫
∆du+

∫
ΓdW

}
. (4.6)

Whenever Q ∈ Q, Girsanov’s theorem applies and we may exploit the decomposition of Z and
use that

∫
ZdWQ and

∫
ΓdWQare Q-martingales in order to express the right-hand side of

(4.5) without Brownian integrals. More precisely,

E∗0 (Q) = sup
(∆,Γ )∈Π

EQ
 T∫

0

−gu(Zu,∆u, Γu) + qu

u∫
0

(∆s + qsΓs)ds

 du


+ zEQ

[ T∫
0

qudu

]
. (4.7)

We continue with two lemmata that allow us to restrict the set of measures in the representation
(4.2) to a sufficiently nice subset of Q on the one hand, and to change the set Π appearing in
(4.5) to the whole space L2 × L2 on the other hand.

Lemma 4.3. Assume there exists some ξ ∈ L1 such that A(ξ, g, z) 6= ∅. Then it is sufficient to
consider measures with densities that are bounded away from zero, that is

Eg0 (ξ) = sup
v∈L∞b

{E[vξ]− E∗0 (v)} (4.8)

where L∞b := {v ∈ L∞ : v > 0 and ‖ 1
v‖∞ <∞}.

Proof. The assumption of A(ξ, g, z) being non-empty for some ξ ∈ L1 implies the existence
of (∆, Γ ) ∈ Π and corresponding Z such that EP [

∫ T
0 gu(Zu,∆u, Γu)du] < ∞ which together

with (POS), (4.5) and the martingale property of all occurring
∫
ZdW under P immediately

yields that E∗0 (P ) < ∞. For any Q � P with dQ
dP = v ∈ L∞+ and λ ∈ (0, 1) we define a

measure Qλ by its Radon-Nikodym derivative vλ := (1 − λ)v + λ where naturally dP
dP = 1.

Observe that λ > 0 implies vλ ∈ L∞b . Next, we show that limλ↓0 E∗0 (vλ) = E∗0 (v). Indeed,
convexity of E∗0 (·) together with E∗0 (P ) = E∗0 (1) < ∞ yields lim infλ↓0 E∗0 (vλ) ≤ E∗0 (v),
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whereas the reverse inequality is satisfied by means of the lower semicontinuity. On the other
hand, dominated convergence gives limλ↓0E[vλξ] = E[vξ], since |vλξ| ≤ |vξ| + |ξ| which is
integrable. Consequently, the expression {E[vξ]−E∗0 (v)} is the limit of a sequence (E[vλnξ]−
E∗0 (vλn))n where (vλn) ⊂ L∞b and λn ↓ 0. Since Eg0 (ξ) can be expressed as the supremum of
{E[vξ] − E∗0 (v)} over all v, it suffices to consider the supremum over v ∈ L∞b , the proof is
done. �

Lemma 4.4. For each Q ∈ Q such that dQdP ∈ L
∞
b it holds

E∗0 (Q) = sup
(∆,Γ )∈L2×L2

EQ
− T∫

0

gu(Zu,∆u, Γu)du+

T∫
0

ZudWu

 . (4.9)

Proof. Since Π defined in (4.6) is a subset of L2 × L2, “≤” certainly holds in (4.9). As to
the reverse inequality, observe first that, since we consider a supremum in (4.9) and Z ∈ L2

whenever (∆, Γ ) ∈ L2 × L2, those (∆, Γ ) such that EQ[
∫ T

0 gu(Zu,∆u, Γu)du] = +∞ can
be neglected in the following. In particular, since v = dQ

dP ∈ L∞b , we can restrict our focus
to those elements satisfying E[

∫ T
0 gu(Zu,∆u, Γu)du] ≤ ‖ 1

v‖L∞EQ[
∫ T

0 gu(Zu,∆u, Γu)du] <

+∞. Thus, given such a pair (∆, Γ ), the terminal condition ξ := −
∫ T

0 gu(Zu,∆u, Γu)du +∫ T
0 ZudWu fulfills ξ− ∈ L1 due to the martingale property of

∫
ZdW . Furthermore, the pair

(−
∫ ·

0 gu(Zu,∆u, Γu)du+
∫ ·

0 ZudWu, Z) is an element of A(ξ, g, z) by construction and hence
Theorem 3.7 yields the existence of (Ȳ , Z̄) ∈ A(ξ, g, z) satisfying Ȳ0 = Eg0 (ξ) ≤ 0. Now,
using the same techniques as in the proof of Lemma 4.2, we define Y 1 by Y 1

t := Eg0 (ξ) −∫ t
0 gu(Z̄u, ∆̄u, Γ̄u)du +

∫ t
0 Z̄udWu, for all t ∈ [0, T ], where (∆̄, Γ̄ ) is the decomposition of Z̄,

and obtain that Y 1
T ≥ ξ as well as Eg0 (Y 1

T ) = Eg0 (ξ). Consequently,

−
T∫

0

gu(Z̄u, ∆̄u, Γ̄u)du+

T∫
0

Z̄udWu

= Y 1
T − E

g
0 (ξ) ≥ Y 1

T ≥ ξ = −
T∫

0

gu(Zu,∆u, Γu)du+

T∫
0

ZudWu , (4.10)

which, by taking expectation under Q in (4.10) and using (∆̄, Γ̄ ) ∈ Π, implies

E∗0 (Q) ≥ EQ

− T∫
0

gu(Zu,∆u, Γu)du+

T∫
0

ZudWu

 . (4.11)

Since (∆, Γ ) was arbitrary, we have finally shown that E∗0 (Q) is greater or equal to the supre-
mum over (∆, Γ ) ∈ L2 × L2 of the right-hand side of (4.11), which finishes the proof. �

The ensuing proposition provides, for a given measure Q ∈ Q with dQ
dP ∈ L

∞
b , the existence of

a pair of processes attaining the supremum in (4.5).
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Proposition 4.5. For each Q ∈ Q with dQ
dP ∈ L

∞
b there exist (∆Q, ΓQ) ∈ Π and a correspond-

ing control ZQ of the form ZQ = z +
∫

∆Qdu+
∫
ΓQdW such that

E∗0 (Q) = EQ

− T∫
0

gu(ZQu ,∆
Q
u , Γ

Q
u )du+

T∫
0

ZQu dWu

 . (4.12)

Furthermore, if the convexity of g is strict, then the triple (ZQ,∆Q, ΓQ) is unique.

Proof. Step 1: The integral
∫
qdW is an element of BMO. We begin by proving that, for

Q ∈ Q the density dQ
dP = exp(

∫ T
0 qudWu − 1

2

∫ T
0 |qu|

2du) of which belongs to L∞b , the process
(
∫ t

0 qudWu)t∈[0,T ] is an element of BMO. Indeed, since the process vt := E[dQdP | Ft] is uni-
formly bounded away from zero, it satisfies the Muckenhaupt (A1) condition, see [16, Definition
2.2], and therefore

∫
qdW ∈ BMO by means of [16, Theorem 2.4].

Step 2: L2-boundedness of a minimizing sequence and the candidate (∆Q, ΓQ). Since the
generator g satisfies (DGC), it holds for all (∆, Γ, Z) that

‖∆‖2L2(Q) + ‖Γ‖2L2(Q) ≤
1

c2

EQ
 T∫

0

gu(Zu,∆u, Γu)du

− c1T

 . (4.13)

If we put F (Z,∆, Γ ) := EQ[
∫ T

0 (gu(Zu,∆u, Γu)du − qu
∫ u

0 (∆s + qsΓs)ds)du], then (4.7)
in combination with Lemma 4.4 implies that the conjugate can be expressed by E∗0 (Q) =

− inf(∆,Γ )∈L2×L2 F (Z,∆, Γ ) + zEQ[
∫ T

0 qudu]. We claim that, for (Zn,∆n, Γn) a minimizing
sequence of F , both (∆n) and (Γn) are bounded in L2(Q). Since in our case the L2-norms with
respect to P andQ are equivalent, we suppress the dependence on the measure in the notation to
follow. Assume now contrary to our assertion that ‖∆n‖2L2 →∞ and ‖Γn‖2L2 →∞ as n tends
to infinity. This in turn would imply either

EQ

 T∫
0

qu

u∫
0

∆n
s ds du

→∞ and lim sup
n

‖∆n‖2L2
EQ

[∫ T
0 qu

∫ u
0 ∆n

s ds du
] = K (4.14)

or

EQ

 T∫
0

qu

u∫
0

qsΓ
n
s ds du

→∞ and lim sup
n

‖Γn‖2L2
EQ

[∫ T
0 qu

∫ u
0 qsΓ

n
s ds du

] = L (4.15)

or both, for K,L ∈ R. Indeed, (4.13) would otherwise lead to limn F (Zn,∆n, Γn) = ∞
and thereby contradict ((Zn,∆n, Γn)) being a minimizing sequence of F . On the other hand
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however, an application of Hölders inequality yields

∣∣∣∣∣∣EQ
 T∫

0

qu

u∫
0

∆n
s ds du

∣∣∣∣∣∣ ≤
EQ

 T∫
0

|qu|2du

EQ
 T∫

0

 u∫
0

∆n
s ds

2

du


1
2

≤ ‖q‖L2

EQ
 T∫

0

u∫
0

|∆n
s |2dsdu


1
2

≤ T
1
2 ‖q‖L2 ‖∆

n‖L2 . (4.16)

Taking the square on both sides above we obtainEQ
 T∫

0

qu

u∫
0

∆n
s ds du

2

≤ T ‖q‖2L2 ‖∆
n‖2L2

which in turn implies ‖∆n‖2L2 (EQ[
∫ T

0 qu
∫ u

0 ∆n
s ds du])−1 → ∞, a contradiction to (4.14). As

to (Γn), we argue similarly and, for (Qu)u∈[0,T ] defined by Qu :=
∫ T
u qsds estimate∣∣∣∣∣∣EQ

 T∫
0

qu

u∫
0

qsΓ
n
s ds du

∣∣∣∣∣∣ =

∣∣∣∣∣∣EQ
 T∫

0

quΓ
n
uQudu

∣∣∣∣∣∣ ≤ EQ
 T∫

0

|qu||Γnu ||Qu|du



≤

EQ
 T∫

0

|qu|2|Qu|2du


1
2

‖Γn‖L2 =

EQ
 T∫

0

|qu|2
∣∣∣∣
T∫
u

qsds

∣∣∣∣2du


1
2

‖Γn‖L2

≤

EQ

 T∫

0

|qu|2du

2



1
2

‖Γn‖L2 = ‖q‖2L4 ‖Γ
n‖L2 ,

where we used Fubini’s theorem in the first equality above. Since
∫
qdW ∈ BMO, the L4-

norm of q is finite5 and the contradiction to (4.15) is derived analogously to the argumentation
following (4.16). Consequently, there exists a sequence ((∆̃n, Γ̃n)) in the asymptotic convex
hull of ((∆n, Γn)) and (∆Q, ΓQ) ∈ L2 × L2 such that ((∆̃n, Γn)) converges in L2 × L2 to
(∆Q, ΓQ). On the side of (Zn) we pass to the corresponding sequence (Z̃n) and recall from the
proof of Lemma 3.4 that it is bounded inL2. Hence, there is a sequence in the asymptotic convex
hull of (Z̃n), denoted likewise, that converges in L2 to some ZQ = z +

∫
∆Qdu +

∫
ΓQdW .

Of course, we pass the corresponding sequence on the side of ((∆̃n, Γn)) without violating the
convergence to (∆Q, ΓQ).

Step 3: Lower Semicontinuity and convexity of F . In a next step we show that the earlier
defined function F (Z,∆, Γ ) = EQ[

∫ T
0 gu(Zu,∆u, Γu)du −

∫ T
0 ZudWu] is lower semicon-

tinuous and convex on L2 × L2 × L2 where Z = z +
∫

∆du +
∫
ΓdW . Indeed, the part

5Recall that BMO can be embedded into anyHp-space , compare [16, Section 2.1, p. 26].
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EQ[
∫ T

0 gu(Zu,∆u, Γu)du] is lower semicontinuous by (POS), (LSC) and Fatou’s lemma. As to
the second part, first observe that L2-convergence of (Z̃n) towards ZQ implies∣∣∣∣∣∣EQ

 T∫
0

(Z̃nu − ZQu )dWu

∣∣∣∣∣∣ −→n→∞ 0 .

Furthermore, (CON) yields that F is convex in (Z,∆, Γ ).

Step 4: Minimality of (ZQ,∆Q, ΓQ). We claim that F (ZQ,∆Q, ΓQ) = inf(∆,Γ )∈L2×L2
F (Z,∆, Γ ) which would then in turn finally imply (4.12). To this end, it suffices to prove
that F (ZQ,∆Q, ΓQ) ≤ inf(∆,Γ )∈L2×L2 F (Z,∆, Γ ), since the reverse inequality is naturally
satisfied. Observe now that

inf
(∆,Γ )∈L2×L2

F (Z,∆, Γ ) = lim
n
F (Zn,∆n, Γn) = lim

n

M(n)∑
k=n

λ
(n)
k F

(
Zk,∆k, Γ k

)

≥ lim
n
F

M(n)∑
k=n

λ
(n)
k Zk,

M(n)∑
k=n

λ
(n)
k ∆k,

M(n)∑
k=n

λ
(n)
k Γ k


= lim

n
F
(
Z̃n, ∆̃n, Γ̃n

)
≥ F (ZQ,∆Q, ΓQ)

where we denoted by λ(n)
k , n ≤ k ≤ M(n),

∑
k λ

(n)
k = 1 the convex weights of the sequence

((Z̃n∆̃n, Γ̃n)) and made use of the convexity and lower semicontinuity of F .

Step 5: Uniqueness of (ZQ,∆Q, ΓQ). As to the uniqueness, assume that there are (∆1, Γ 1)
and (∆2, Γ 2) with corresponding Z1 and Z2, respectively, both attaining the supremum such
that P ⊗ dt[(∆1, Γ 1) 6= (∆2, Γ 2)] > 0. Setting (Z̄, ∆̄, Γ̄ ) := 1

2 [(Z1,∆1, Γ 1) + (Z2,∆2, Γ 2)]
together with Q ∼ P and the strict convexity of F inherited by g yields that F (Z̄, ∆̄, Γ̄ ) <
F (Z1,∆1, Γ 1), a contradiction to the optimality of (Z1,∆1, Γ 1). �

Remark 4.6. Since for a given Q ∈ Q with dQ
dP ∈ L∞b and a strictly convex generator the

maximizer (ZQ,∆Q, ΓQ) is unique by the preceding proposition, it has to be (conditionally)
optimal at all times t ∈ [0, T ]. Indeed, assume to the contrary the existence of (∆, Γ ) such that
z +

∫ t
0 ∆udu +

∫ t
0 ΓudWu = Zt = ZQt and EQ[

∫ T
t −gu(Zu,∆u, Γu)du +

∫ T
t ZudWu|Ft] >

EQ[
∫ T
t −gu(ZQu ,∆

Q
u , Γ

Q
u )du +

∫ T
t ZQu dWu|Ft] holds true for some t ∈ [0, T ]. Then, how-

ever, the concatenated processes (Z̄, ∆̄, Γ̄ ) := (ZQ,∆Q, ΓQ)1[0,t] + (Z,∆, Γ )1]t,T ] satisfy
EQ[

∫ T
0 −gu(Z̄u, ∆̄u, Γ̄u)du +

∫ T
0 Z̄udWu] > EQ[

∫ T
0 −gu(ZQu ,∆

Q
u , Γ

Q
u )du +

∫ T
0 ZQu dWu],

which is a contradiction to the opimality of (ZQ,∆Q, ΓQ) at time zero. �

Notice that, for d = 1 and the case of a quadratic generator which is in addition independent of z,
that is gu(δ, γ) = |δ|2+|γ|2, the processes (∆Q, ΓQ) attaining E∗0 (Q) can be explicitly computed
and (∆Q

t , Γ
Q
t ) depends on the whole path of q up to time t, as illustrated in the following

proposition. It thus constitutes a useful tool for the characterization of the dual optimizers and its
proof is closely related to the Euler-Lagrange equation arising in classical calculus of variation.
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Proposition 4.7. Assume that d = 1 and that g is defined by gu(δ, γ) = |δ|2 + |γ|2. For Q ∈ Q
with dQ

dP ∈ L
∞
b , let (∆Q, ΓQ) be the optimizer attaining E∗0 (Q). Then there exist c1, c2 ∈ R such

that

∆Q
t = −1

2

t∫
0

qsds+ c1 (4.17)

ΓQt = −1

2
qt

 t∫
0

qsds+ c2

 , (4.18)

for all t ∈ [0, T ].

Proof. For the purpose of this proof we assume without loss of generality that z = 0, since
the initial value does not affect the optimization with respect to (∆, Γ ). Hence, the genera-
tor only depending on δ and γ in combination with (4.7) gives E∗0 (Q) = − inf(∆,Γ ){F1(∆) +

F2(Γ )} where F1(∆) := EQ[
∫ T

0 (|∆u|2 − qu
∫ u

0 ∆sds)du] and F2(Γ ) := EQ[
∫ T

0 (|Γu|2 −
qu
∫ u

0 qsΓsds)du]. We will proceed along an ω-wise criterion of optimality, since any pair
(∆Q, ΓQ) that is optimal for almost all ω ∈ Ω then naturally also optimizes the expectation
under Q. The uniqueness obtained in Proposition 4.5 then assures that the path-wise optimizer
is the only one. We define

J1(∆) =

T∫
0

|∆u|2 − qu

u∫
0

∆sds

 du and J2(Γ ) =

T∫
0

|Γu|2 − qu u∫
0

qsΓsds

 du

and observe that it is sufficient to elaborate how to obtain conditions for a minimizer of J1, as
the functional J2 is of a similar structure. Introducing X(u) :=

∫ u
0 ∆sds we obtain X ′(u) :=

d
duX(u) = ∆u and

J1(∆) = J̃1(X) =

T∫
0

L(u,X(u), X ′(u))du

where L(u, a, b) = |b|2 − qua. If X is a local minimum of J̃1, then J̃1(X) ≤ J̃1(X + εη)
for sufficiently small ε > 0 and all differentiable η ∈ C([0, T ],R) the derivatives of which are
square integrable and which satisfy η(0) = η(T ) = 0. In particular, with φ(ε) := J̃1(X + εη),
it has to hold that d

dεφ(ε)|ε=0
= 0. Using the specific form of L we get

d

dε
φ(ε)|ε=0

= lim
h→0

1

h

T∫
0

[
L
(
u,X(u) + hη(u), X ′(u) + hη′(u)

)
− L

(
u,X(u), X ′(u)

)]
du

= lim
h→0

T∫
0

[
−quη(u) + 2X ′(u)η′(u) + h(η′(u))2

]
du .

19



Having assumed η′ to be square integrable allows us to exchange limit and integration, yielding

0 =
d

dε
φ(ε)|ε=0

=

T∫
0

[
−quη(u) + 2∆uη

′(u)
]
du . (4.19)

Using integration by parts we obtain

−
T∫

0

quη(u)du =

 u∫
0

−qsds

 η(u)

∣∣∣∣∣∣
T

0

−
T∫

0

 u∫
0

−qsds

 η′(u)du .

The first term on the right-hand side above vanishes and so, by plugging this back into (4.19) we
end up with

T∫
0

2∆u +

u∫
0

qsds

 η′(u)du = 0 . (4.20)

Let us next introduce the constant c := 1
T

∫ T
0 (2∆u +

∫ u
0 qsds)du and observe that, using∫ T

0 η′(u)du = 0, Equation (4.20) may be rewritten as

T∫
0

2∆u +

u∫
0

qsds− c

 η′(u)du = 0 . (4.21)

Moreover, the function

η̄(t) :=

t∫
0

2∆u +

u∫
0

qsds− c

 du

satisfies η̄(0) = η̄(T ) = 0 by construction as well as η̄′(u) = 2∆u +
∫ u

0 qsds − c, which is
square integrable for almost all ω ∈ Ω, since ∆ and q are square integrable6. Hence, (4.21)
applied to our particular function η̄ yields

T∫
0

2∆u +

u∫
0

qsds− c

2

du = 0

and we deduce that

2∆u +

u∫
0

qsds =
1

T

T∫
0

2∆r +

r∫
0

qsds

 dr for almost all u ∈ [0, T ] . (4.22)

6More precisely, it holds P (
∫ T

0
|qu|2du <∞) = P (

∫ T

0
|∆u|2du <∞) = 1.
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Specifically, (4.22) shows that, for almost all ω ∈ Ω, there exists a set I(ω) ⊆ [0, T ] with
Lebesgue measure T such that, for all u ∈ I(ω),

2∆u +

u∫
0

qsds = M , (4.23)

where M of course depends on ω ∈ Ω and is thus a random variable. This in turn implies, for
dt-almost all u ∈ [0, T ], the existence of Ωu ⊆ Ω with P (Ωu) = 1 such that (4.23) holds for
all ω ∈ Ωu. In particular, on Ωu the above M equals an Fu-measurable random variable. We
choose a sequence (un) ⊂ [0, T ] with limn un = 0 and hence obtain that on Ω̄ :=

⋂
n Ωun ,

where P (Ω̄) = Q(Ω̄) = 1, M equals an
⋂
nFun-measurable random variable and is thus

F0-measurable by the right-continuity of our filtration, that means it is a constant on Ω̄ due to
Blumenthal’s zero-one law. Since modifying our optimizer on a Q-nullset does not alter the
value of the functional to be optimized, we have shown (4.17) by putting c1 := M

2 .
As to the case of our optimal ΓQ, assume first that qu 6= 0 for all u ∈ [0, T ] and observe that,

with Y (u) :=
∫ u

0 qsΓsds, we obtain J2(Γ ) = J̃2(Y ) =
∫ T

0 K(u, Y (u), Y ′(u))du where we
set K(u, a, b) = (1/qu)2b2 − qua. Thus, an argumentation identical to that above would yield
(4.18) in that case. Furthermore, it holds that limqu→0 Γ

Q
u = 0, a value that is consistent with

the “pointwise” minimization consideration that arg minΓu
{|Γu|2 − qu

∫
[0,u) qsΓsds}|qu=0 = 0

and hence justifies expression (4.18). �

For ξ ∈ L1 such that A(ξ, g, z) 6= ∅, the ensuing theorem states that, given the existence of
an equivalent probability measure Q̂ ∈ Q such that the sup in (4.2) is attained, the BSDE with
generator g and terminal condition ξ admits a solution under constraints.

Theorem 4.8. Assume that, for ξ ∈ L1 withA(ξ, g, z) 6= ∅, there exists a Q̂ ∈ Q with dQ
dP ∈ L

∞
b

such that Eg0 (ξ) = EQ̂[ξ]−E∗0 (Q̂). Then there exists a solution (Y, Z) ∈ A(ξ, g, z) of the BSDE
with parameters (ξ, g).

Proof. Starting with (4.2) in combination with Proposition 4.5, it holds

Eg0 (ξ) = EQ̂[ξ]− E∗0 (Q̂) = EQ̂

ξ +

T∫
0

gu(ZQ̂u ,∆
Q̂
u , Γ

Q̂
u )du−

T∫
0

ZQ̂u dWu

 . (4.24)

We recall that A(ξ, g, z) 6= ∅ and ξ ∈ L1. Hence, by Theorem 3.7 there exists (∆, Γ, Z) such
that

EQ̂

ξ +

T∫
0

gu(ZQ̂u ,∆
Q̂
u , Γ

Q̂
u )du−

T∫
0

ZQ̂u dWu

− T∫
0

gu(Zu,∆u, Γu)du+

T∫
0

ZudWu ≥ ξ
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holds true. Taking expectation under Q̂ on both sides of the inequality above yields

EQ̂

− T∫
0

gu(ZQ̂u ,∆
Q̂
u , Γ

Q̂
u )du+

T∫
0

ZQ̂u dWu


≤ EQ̂

− T∫
0

gu(Zu,∆u, Γu)du+

T∫
0

ZudWu

 .
However, the expression on the left-hand side is maximal for (ZQ̂,∆Q̂, Γ Q̂) by means of Propo-
sition 4.5 and thus equality has to hold. Hence, it follows that E∗0 (Q̂) = EQ̂[−

∫ T
0 gu(Zu,∆u,

Γu)du+
∫ T

0 ZudWu]. By plugging this back into (4.24) we obtain

Eg0 (ξ) = EQ̂[ξ] + EQ̂[

T∫
0

gu(Zu,∆u, Γu)du−
T∫

0

ZudWu]

which is equivalent to

EQ̂

Eg0 (ξ)−
T∫

0

gu(Zu,∆u, Γu)du+

T∫
0

ZudWu − ξ

 = 0 .

Since the expression within the expectation is P - and thereby also Q̂-almost surely positive, we
finally conclude that

Eg0 (ξ)−
T∫

0

gu(Zu,∆u, Γu)du+

T∫
0

ZudWu = ξ ,

and thus (Eg0 (ξ) −
∫ ·

0 g(Z,∆, Γ )du +
∫ ·

0 ZdW,Z) constitutes a solution of the BSDE with pa-
rameters (ξ, g). �

References
[1] P. Briand and Y. Hu. BSDE with quadratic growth and unbounded terminal value. Probability

Theory and Related Fields, 136(4):604–618, 2006.
[2] M. Broadie, J. Cvitanic, and H. M. Soner. Optimal Replication of Contingent Claims under Portfo-

lio Constraints. The Review of Financial Studies, 11:59–79, 1998.
[3] P. Cheridito, H. M. Soner, and N. Touzi. The multi-dimensional super-replication problem under

gamma constraints. Annales de l’Institut Henri Poincaré (C) Analyse Non Linéaire, 22(5):633–666,
2005.

[4] P. Cheridito, H. M. Soner, N. Touzi, and N. Victoir. Second Order Backward Stochastic Differential
Equations and Fully Non-Linear Parabolic PDEs. Communications in Pure and Applied Mathemat-
ics, 60(7):1081–1110, 2007.

22



[5] J. Cvitanic and I. Karatzas. Hedging contingent claims with constrained portfolios. Annals of
Applied Probability, 3(3):652–681, 1993.

[6] F. Delbaen and W. Schachermayer. A General Version of the Fundamental Theorem of Asset
Pricing. Mathe. Annalen, 300:463–520, 1994.

[7] F. Delbaen and W. Schachermayer. A Compactness Principle for Bounded Sequences of Martin-
gales with Applications. Proceedings of the Seminar of Stochastic Analysis, Random Fields and
Applications, Progress in Probability, 133–173, Birkhäuser, 1996.

[8] F. Delbaen, Y. Hu, and X. Bao. Backward SDEs with Superquadratic Growth. Probability Theory
and Related Fields, 150(1-2):145–192, 2011.

[9] S. Drapeau, G. Heyne, and M. Kupper. Minimal Supersolutions of Convex BSDEs. Forthcoming
in Annals of Probability, 2013.

[10] S. Drapeau, M. Kupper, E. R. Gianin, and L. Tangpi. Dual Representation of Minimal Supersolu-
tions of Convex BSDEs. arXiv e-prints, 2013.

[11] N. El Karoui, S. Peng, and M. C. Quenez. Backward Stochastic Differential Equations in Finance.
Mathematical Finance, 7(1):1–71, 1997.

[12] G. Heyne. Essays on Minimal Supersolutions of BSDEs and on Cross Hedging in Incomplete
Markets. PhD thesis, Humboldt-Universität zu Berlin, 2012.

[13] G. Heyne, M. Kupper, and C. Mainberger. Minimal Supersolutions of BSDEs with Lower Semi-
continuous Generators. Forthcoming in Annales de l’Institut Henri Poincaré (B) Probabilités et
Statistiques, 2012.

[14] E. Jouini and H. Kallal. Arbitrage in securities markets with short-sales constraints. Mathematical
Finance, 5(3):197–232, 1995.

[15] I. Karatzas and S. E. Shreve. Brownian Motion and Stochastic Calculus (Graduate Texts in Mathe-
matics). Springer, August 2004.

[16] N. Kazamaki. Continuous Exponential Martingales and BMO, volume 1579 of Lecture Notes in
Mathematics. Springer-Verlag, Berlin, 1994. ISBN 3-540-58042-5.

[17] M. Kobylanski. Backward Stochastic Differential Equations and Partial Differential Equations with
Quadratic Growth. Annals of Probability, 28(2):558–602, 2000.

[18] E. Pardoux and S. Peng. Adapted Solution of a Backward Stochastic Differential Equation. System
& Control Letters, 14(1):55–61, 1990.

[19] S. Peng. Monotonic Limit Theorem of BSDE and Nonlinear Decomposition Theorem of Doob–
Meyer’s Type. Probability Theory and Related Fields, 113(4):473–499, 1999.

[20] P. E. Protter. Stochastic Integration and Differential Equations. Springer, 2nd edition, 2005.
[21] H. M. Soner and N. Touzi. Superreplication under Gamma constraints. SIAM Journal on Control

and Optimization, 39(1):73–96, 2000.
[22] H. M. Soner, N. Touzi, and J. Zhang. Dual Formulation of Second Order Target Problems. Annals

of Applied Probability, 23(1):308–347, 2013.

23


	Introduction
	Introduction
	Setting and notations
	Minimal supersolutions of BSDEs under delta and gamma constraints
	Definitions
	General properties
	Minimality under constraints
	Stability results

	Duality under constraints

