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Abstract

In discrete time, every time-consistent dynamic monetary risk measure can be written as a
composition of one-step risk measures. We exploit this structure to give new dual represen-
tation results for time-consistent convex monetary risk measures in terms of one-step penalty
functions. We first study risk measures for random variables modelling financial positions at
a fixed future time. Then we consider the more general case of risk measures that depend on
stochastic processes describing the evolution of financial positions or cumulated cash flows. In
both cases the new representations allow for a simple composition of one-step risk measures
in the dual. We discuss several explicit examples and provide connections to the recently
introduced class of dynamic variational preferences.
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1 Introduction

Following the introduction of coherent, convex and monetary risk measures in [2, 3, 19, 20, 21],
different dynamic extensions have been proposed. This has led to the study of conditional repre-
sentations and time-consistency properties of dynamic risk measures in various setups. We refer to
[4, 32, 33, 36, 14, 10, 34, 7, 23, 25, 18, 1] for the discrete time case and [22, 12, 31, 5, 6, 28, 13] for
risk measures in continuous time; see also [16] and [29] for related results for dynamic preferences
in discrete time.

In this paper we provide representations of time-consistent dynamic monetary risk measures in
discrete time that are similar in spirit to the continuous-time representations of [22, 31, 5, 6, 13].
Rather than looking at general dynamic monetary risk measures and trying to establish conditions
for time-consistency, we here only consider time-consistent ones and view them as compositions of
one-step risk measures. For time-consistent dynamic convex monetary risk measures, we exploit
this structure to derive new dual representations in terms of the penalty functions of the one-step
risk measures. These representations permit a simple construction of time-consistent dynamic
convex monetary risk measures by composing one-step risk measures in the dual.

*We thank Irina Penner and an anonymous referee for valuable comments.
tSupported by NSF Grant DMS-0642361
fSupported by the Swiss National Science Foundation



The structure of the paper is as follows. In Section 2, we study time-consistent dynamic
monetary risk measures for random variables. They can be written as simple concatenations of
one-step risk measures. In Theorem 2.4, Lemma 2.8 and Corollary 2.9 we give dual representations
for time-consistent dynamic convex monetary risk measures for random variables. The time-
consistency is reflected by an additive structure in the dual. We illustrate this with examples
and provide connections to the dynamic variational preferences of [29]. In Section 3, we consider
dynamic monetary risk measures that depend on stochastic processes describing the evolution of
financial positions over time. In this case, the composition of one-step risk measures involves
the aggregation of current and future risk. For time-consistent dynamic convex monetary risk
measures, we translate this structure into a dual representation in terms of supermartingales; see
Theorem 3.4, Lemma 3.8 and Corollary 3.9. We conclude by introducing a special class of one-step
aggregators of composed form and discussing several related examples of risk measures that depend
on the whole path of a stochastic process.

2 Dynamic risk measures for bounded random variables

We fix a finite time horizon T' € N and let (2, F, (F;)L_,,P) be a filtered probability space such that
P[A] € {0,1} for all A € Fy. P is not necessarily understood as a physical probability measure.
We use it as reference measure that specifies the negligible events. Equalities and inequalities
between random variables as well as equalities and inclusions betweens events are understood in
the P-almost sure sense. For instance, A C B for A, B € F means P[A\ B] = 0. L*®(F) is
the space of essentially bounded F;-measurable random variables. By P* we denote the set of all
probability measures on (£, F) that are absolutely continuous with respect to P.

In this section the risky objects are financial positions at time 7" modelled by the set L>°(Fr)
of essentially bounded Fpr-measurable random variables. We assume that there exists a money
market account and use it as numeraire, that is, money at later times is expressed in multiples of
the value of one dollar put into the money market account at time 0. A risk measure at time ¢ is
a mapping p; : L (Fr) — L®(F:). pi(X) is interpreted as a capital requirement at time ¢ for the
financial position X conditional on the information given by F;. For the study of dynamic risk
measures, it is more convenient to work with the negative ¢; = —p; of a monetary risk measure.
We call ¢, a monetary utility function. Alternative names are risk adjusted valuation ([4]) or
acceptance measure ([33]).

Definition 2.1 Lett € {0,...,T}. We call a mapping ¢¢ : L°(Fr) — L®°(F;) a monetary utility
function at time t, if it has the following properties:

(N) Normalization: ¢;(0) =0

(M) Monotonicity: ¢:(X) > ¢+(Y) for all X, Y € L>(Fr) such that X >Y

(T) Translation property: ¢,(X +m) = ¢.(X) +m for all X € L>°(Fr) and m € L>=(F;)
We call ¢ a concave monetary utility function at time t, if it also satisfies

(C) Fi-concavity: ¢p:(AX + (1 = N)Y) > Ape(X) + (1 = N (Y)
for all X, Y € L>™°(F;) and X € L*°(F;) such that 0 < A < 1.

A dynamic monetary utility function is a family of monetary utility functions (¢¢)i_q. If all ¢¢ are
concave, then we call (¢¢)L_, a dynamic concave monetary utility function.

The normalization property (N) is convenient for the study of time-consistency questions. Every
function ¢, : L>°(Fr) — L°(F;) satisfying (M) and (T) can readily be normalized by passing to
#+(.) — ¢+(0). Note that the properties (M) and (T) imply the



(LP) Local property:
Gt(1aX +14cY) = 14¢e(X) + Lacge(Y)
for all X,Y € L*°(Fr) and A € F;.
Indeed, it follows from (M) and (T) that
Gr(1aX) —1ac [ Xy = Se(1aX —1ac X[ ) < 6:(X)
< pr(laX + 1ae [ X ) = e (1aX) + 1ae | X -

By multiplying through with 14, one obtains 14¢+(X) = 14¢:(14X), which is equivalent to (LP).
Definition 2.2 We call a dynamic monetary utility function (¢;)_, time-consistent if

G141(X) = @1 (Y)  implies ¢ (X) = ¢¢(Y) (2.1)
for all XY € L®(Fr) andt =0,...,T — 1.

Due to the properties (N), (M) and (T), time-consistency of dynamic monetary utility functions
on L (Fr) is equivalent to the dynamic programming principle

$:(X) = dp(de1(X)) forall X € L®(Fr)and t=0,...,T — 1. (2.2)

Concepts equivalent or similar to (2.1) or (2.2) have been studied in different contexts, see for
instance, [26, 27, 17, 15, 35, 16, 12, 4, 32, 31, 5, 6, 33, 36, 14, 10, 34, 25, 28, 18, 29].

2.1 Generators

For a dynamic monetary utility function (¢;)7_,, we denote by ¢; the restriction of ¢; to L (F;41)
and call (¢;)2-' the generator of (¢;)7 . It follows from (2.2) that a time-consistent dynamic
monetary utility function is uniquely given by its generator. One can also start with an arbitrary
family

QDtILOO(J_'.tJ'_l)*)LOO(.Ft), tZO,,T*].

of monetary utility functions and define the time-consistent monetary utility function (¢;)_, by
backwards induction:

¢r(X) =X and ¢(X) = p(dr1(X)), t<T -1

It is clear that every ¢, is Fi-concave if and only if all ¢; are so.

)

2.2  Duality

In this section we provide duality results for time-consistent dynamic concave monetary utility
functions on L*°(Fr) in terms of one-step penalty functions. We need the sets of one-step transition
densities

Dyi={ €Ll (F):Epl¢| Fon] =1}, t=1,....,T.

Every sequence (&1, ...,&r) € Dy X --+ X Dp defines a probability measure Q¢ in P* with density
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On the other hand, every probability measure Q in P* induces a non-negative martingale

d
MR = Ep [ﬁlﬂ}, t=0,...,T.



One has
{M&:O} C {M;Q:O} forall 1 <t<T,

and the sequence

M on {M& > 0}

&= o fort=1,...,T,
1 on {M2, =0}

is an element in Dy X --- X Dy with the property

dQ
O _. g
We will work with the convention
Eq[X | 7] := Ep [531--...5%)(@ . X eL®(Fp), t=0,...T—1

This is consistent with the standard definition of the conditional expectation. But according
to the standard definition, Eqg [X | F;] is only defined up to Q-almost sure equality, whereas

Ep {fg_l ----- E2X | ]-'t} is a version of Eg [X | F;] which is defined up to P-almost sure equal-

ity. This will be important for formulas like (2.3) and (2.11) below, which involve the essential
infimum or supremum of random variables. We denote the essential infimum by essinf and the
essential supremum by esssup. Both are understood with respect to the reference measure P; for
the definition and properties of the essential infumum and supremum, see for instance, Proposition
VI.1.1 of Neveu [30] or the Appendix in Follmer and Schied [20].

By L, (F;) we denote all F;-measurable functions X : Q — [0, 0o]. The conditional expectation
of X € Ly (F;) is, as usual, understood as

EP[X|]:75] ;= lim Ep[X/\?’l'ft]
n—roo
Definition 2.3 Fort € {0,...,T — 1}, we call a mapping
¢t N Dt+1 — I_/+(./T"t)

a one-step penalty function if it satisfies the following two conditions:

(i) €88 infEEDt+1 Py (5) =0
(ll) Q/Jt(].Ag + 1AC£/) = ].A'(/Jt(g) + 1Acwt(€/) fOT' all g,fl € Dt+1 and A € ft.

For Q € P, we set
Ve(Q) = du(€)-

A dynamic penalty function consists of a sequence (wt)tT;()l of one-step penalty functions. It induces
the mapping W : P* — Ly (Fr_1) given by ¥(Q) = Zz:ol ¥ (Q).

In the following theorem we provide different dual representations through which a dynamic
penalty function induces a time-consistent dynamic concave monetary utility function. A new
feature of Theorem 2.4 compared to other representations of time-consistent dynamic convex mon-
etary risk measures is that (2.5) provides a dual representation of a whole family of risk measures
(6¢)L_, in terms of the single penalty function ¥ = Z]r;ol ;. This extends the dual representa-
tion of a time-consistent dynamic coherent risk measure with one m-stable (or rectangular) set of
probability measures (see [4, 12, 32, 16, 10]). Formula (2.4) can be seen as a discrete version of
the continuous-time representation (37) in [6].



Theorem 2.4 Let (wt)tTgol be a dynamic penalty function. Then

Qot(X):eQ?g,g}Lf{E@ [X |ft]+wt((@)}a tio,,T*]_, XGLOO(-FH-l)ﬂ (23)

defines a generator of a time-consistent concave monetary utility function (¢¢)L_, with the following
representations:

T
o(X) = essinfFq | X + > i 1(Q) | F (2.4)
j=t+1
= essinfBy (X +U(Q)| 7 (2.5)

forallt <T —1 and X € L>™(Fr).
Proof. 1t can easily be checked that for all t < T — 1,

pe(X) = e&zg}f {Eg [X | 7] + 4 (Q)}

defines a concave monetary utility function from L (F;,1) to L>°(F;). Therefore, (o;)]-" is the
generator of a time-consistent dynamic concave monetary utility function (b1)E . Tt remains to
show (2.4) and (2.5). To do this we denote (2.5) by ¢:(X). If X € L>®(Fy) for 0 <t < s < T, then

T
GO0 = Lo, B S b X D)) 15
t
= Zegselbnjf¢j—l(§j) (2.6)
Jj=1
ess inf Ep | &40 &1 X+ Z Yi1(§) | | Fe

...,€s)ED XX Dg .
(€t+150-,€5)EDr41 s =11

T
essinf - Z Ep[§iq1-- &1 ¥5-1(8) | Fe] oo (2.7)

(€s+15-67)EDsy1 X+ XD i

The terms (2.6) and (2.7) are both equal to 0. For (2.6) this follows directly from condition (i) of
Definition 2.3. For (2.7) we prove it by induction over T: Fix (&41,...,&s) € Dyy1 X -+ x Dy, If
T = s, then the sum in (2.7) contains no terms and is equal to zero. If T' = s+ 1, then (2.7) equals

essinf Ep[&qq - & Vs(&syr1) | Fil- (2.8)

£s+1€Ds 41
By condition (ii) of Definition 2.3, the family {ts(&s41) : Es+1 € Dsy1} is directed downwards.
Therefore, the essinf in (2.8) can be taken over a decreasing sequence and, by Beppo Levi’s

dominated convergence theorem, commutes with the conditional expectation. By condition (i) of
Definition 2.3, this shows that (2.8) is equal to zero. Now, assume T > s + 2 and

T—1
essinf Z Ep [§41 - &1 ¥j—1(&5) | Fe] = 0.

s+15-67—1)EDs XDp_q |
(€s+15e-87—1)EDsp1 X XD S



Then, to prove that (2.7) is equal to zero, it is enough to show that for fixed (&41,...,&r-1) €
Dt+1 X oo X DT—la the term

ess inf Bp (TSRS §r—1 vra(ér) | Fi

Er €D

is zero. As above, this follows because 17_1 satisfies condition (ii) of Definition 2.3 and therefore,
the essinf can be taken inside the conditional expectation.
Since (2.6) and (2.7) are both equal to zero, one has

h(X) = fEg | X
¢1(X) essinfBq | X + Z $;—1(Q) | 7
Jj=t+1 ]
= fEg | X . 2.9
Bepi P +]§t£1w]1 )| 7 (2.9)

Next, we show ¢; = ¢, by induction over s. If s =t + 1, then we obtain from (2.9) that
0+(X) = (X)) = essinf Fg (X +¢:(Q) | Fi] = d¢(X) for all X € L=(F,).

Now, assume s > t + 2 and ¢(Y) = ¢(Y) for all Y € L>®(Fs_1). If X € L*(Fs), then
por(X) € L®(F, 1), and we got

$1(X) = ¢1(ps-1(X)) = @1 (ps-1(X))

= essinf Ep [&yq---- s s—1(X) + i1(&;5 Fi
e et B |G € | pea(X) j;lw (&) | 17
= essinf Ep |&41-- - s—
Et4150-,8s—1€D41 X XDs_1 P[£t+l 'f !
%SSEiDHf Ep [6X | Forl + D -1(&) o | Fe| . (2.10)
s s j=t+1

By condition (ii) of Definition 2.3, the family

EIP [ng | _7:5,1} + 1#571(55)7 gs S Ds

is directed downwards. Therefore, we can take the essinf in (2.10) outside of the conditional
expectation and arrive at

d)t(X) B Et+1ww§?2%trif1.><...><l)s Ep £t+1 cee 'gs X +j;1 ¢j—1(§j) | Fi| = (bt(X)»
which concludes the proof. (Il

Remark 2.5 The generator (¢;)L-; and dynamic utility function (¢;)7—;' in Theorem 2.4 can
also be represented by the variants of (2.3)—(2.5), where P® is replaced with the smaller set

V.= {QeP*: ¥(Q) < o0}.



Indeed, it follows from conditions (i) and (ii) of Definition 2.3 that for all ¢ < T — 1, there exists
a sequence (£ 1)p>1 in Dyqq such that ¥, () | 0 P-almost surely. Set A} := {ty(&f ) < oo}
and define

§ip1 = §t1+11A} + Z §f+11{A?\A?_1}.
n>2
Then
§iv1 € Dzbh = {&+1 € Dyg1 : Ye(§pq1) < 00}

For arbitrary &1 € Dii1, the element &, = St+11{yp,(er1)<oo) T Ei1 1 {we(€p1)=00) 18 1N Dfﬂﬁl,
and

Ep [§41X | Fe] + ¥1(&e41) > Ep {ét-&-lX | ft} +(€q1) for X € L(Fpan).

Since .
U _ 1y -
P _DIO"'DTT 17

this shows that
pr(X) = ?Qﬁgg}?f {Eg [X [ ] +v¢(Q)}, X € L¥(Fiqa).

From here, exactly the same arguments as in the proof of Theorem 2.4 lead to

T
X) =essinfEqg [ X + . Fi| = essinf Eg [X + ¥(Q) | F,
¢1(X) ess inf Fig j;l% 1(Q) | Fi essind ol Q) | ]

for t <T —1and X € L*(Fr). Note that the second identity can be written in the alternative
form
X) = essinf Eg[X +¢q|F],
?u(X) e el q|Fi

for the set
QY = {(Q,q) € P* x LO(Fr) : ¢ > ¥(Q)}.

It can easily be checked that generators with a dual representation of the form (2.3) and
the corresponding dynamic monetary utility functions (2.4)—(2.5) have the following continuity
property:

Definition 2.6 For 0 <t < s < T, we call a mapping I : L>=(Fs) — L°°(F;) continuous from
above if

I(X™) = I(X) P-almost surely
for every sequence (X™)pen in L*°(F,) that decreases P-almost surely to X € L*™(Fs). We call
a generator (py)1—y" or a dynamic monetary utility function (¢;)i_y on L>(Fr) continuous from
above if all py or ¢y are continuous from above, respectively.

Next we are going to show that every time-consistent dynamic concave monetary utility function
with generator that is continuous from above has representations of the form (2.4)—(2.5). This will
be shown in Corollary 2.9 below. First we need the following definition and lemma.

Definition 2.7 For a time-consistent dynamic concave monetary utility function (gzﬁt)tT;()l with

generator (<pt)tT;01 that is continuous from above we define for allt =0,...,T —1,
of (Gr1) == esssup  {@(X) —Bp & X | A}, &1 € Do (2.11)
XeLee(Fit1)



Up to a sign, gp? is the conditional concave conjugate of ¢;. In the next lemma we provide a
conditional dual representation result for concave generators ¢; in terms of @fﬁ . Similar results are
proved in [32, 4, 14, 10, 7, 34, 28]. Since our setup is slightly different, we provide a proof.

Lemma 2.8 Let (¢;)]_, be a time-consistent dynamic concave monetary utility function on L> (Fr)

with generator (p¢)l—," that is continuous from above. Then (gofﬁ)tT:_ol is the smallest dynamic

penalty function such that
— ; #
4(X) = essinf {E@ (X | Fi] + ot (@)} (2.12)

forallt=0,....,T—1 and X € L (Fiy1).
Proof. We fix t € {0,...,T — 1} and introduce the sets
B; := {X S Loo(ft+1) : (pt(X) > 0}

and
Coi= {X € L*(Fuu1) s Bg [X | F] + ¢ (@) > 0 forall Qe P}

It follows directly from the definition of gafﬁ that

Eq [X | 7] +<Pf£((@) > 0¢(X)

for all X € L*®(Fi41) and Q € P This shows that B; C C;. In the following we are going
to prove C; C B;. Assume this is not the case. Then there exists X* € C; \ B;. Hence, the set
A := {p:+(X™) < 0} has positive P-measure and 14 X* is still in C; \ B;. The mapping

X = I(X) = E[p(X)]

is a concave monetary utility function from L>°(F;41) to R that is continuous from above. Hence,
it can be deduced from the Krein—-Smulian theorem that

B:= {X S Loo(]:t_i_l) : I(X) > O}

is o (L% (Ft1), L' (Fis1))-closed, see for instance, the proof of Theorem 3.2 in Delbaen [11] or
Remark 4.3 in Cheridito et al. [10]. Since it does not contain 14 X*, it follows from the separating
hyperplane theorem that there exists a Q € P such that

Eq [1aX™] < inf Eo[X] < inf Be[X]. (2.13)

Since the family {Eq [X | 7] : X € B} is directed downwards, we obtain from Beppo Levi’s mono-
tone convergence theorem that

Xlrelgt Eg [X] = Eg e}s{seanthQ [X | 7

Moreover, by the translation property of ¢y, <p2# can be written as

cpf((@) =esssupEg [-X | F].
XeB;

Therefore, it follows from (2.13) that

Eq[LaX*] < Eq |[-¢}(Q)],



and hence,
Eq [Bq [1aX™ | B + o (@] <o.

But this contradicts 14 X* € C;. Thus, we must have B; = C;. Now note that for all X € L>®(Fy41),
ot(X) =esssup{m € L¥(F): X —m € B;},

and therefore,

wi(X) = esssup {m e L®(F) :Eg[X —m | F]+¢f(Q) >0foral Qe P“}
= esssup {m € L®(F) :Eqg[X | Fi] + o7 (Q)>mforall Q € P“}

= e(ggg}lf{EQ [X|]:t}+90?(@)}

Finally, observe that for every function ¢; from D;,; to L, (F;) satisfying

i(X) = essinf {Ep[§1 X | F] +ve(§ev1)}

§t4+1€D¢ 41

for all X € L*°(F;41), one has
ot(X) = Ep [§41 X | Fe] < be(€e1)

for all X € L*°(Fi41) and &41 € Diq1, and hence, (pfé < . O

The following corollary is an immediate consequence of Theorem 2.4 and Lemma 2.8.

Corollary 2.9 Let (¢;)]_, be a time-consistent dynamic concave monetary utility function that is
continuous from above. Then

T
o # R
0u(X) = essinfEq | X +j;lsoj,1(<@) | Fi| = cssinfEq [X +67(Q) | ]

for allt <T —1 and X € L®(Fr), where o7 (Q) = Zle goz#_l((@).

2.3 Examples
2.3.1 Dynamic Average-Value-at-Risk

For every t =0,...,T — 1, let o be an element of L>°(F;) such that 0 < oy < 1 and consider the
generators
(pt(X) = essinf . Ep [§t+1 X | .Ft] , Xe L*>® (.Ft+1).
€t4+1€D41,&e+1<0y
Then, —¢; is a conditional Average-Value-at-Risk on L>(F;41) at the level ay; see [20] for the
definition of the unconditional Average-Value-at-Risk. The minimal dynamic penalty function

(o)} of the induced time-consistent dynamic concave monetary utility function (¢;)7_, is given
by

{ 0 on {P4 >a;" | F]=0}

of (€41) = esssup {py(X) = B [ X | ]} = o on {Pléys > ot | F] >0}

XeL>®(Fii1)



Hence,

)
oo else

¢#(Q):ZT:<P#1(@)={ 0 ifPE>al [F]=0forallj=1,..,T
*
Jj=1

and
6:(X) = essinf Bo [X + 6#(Q) | ] = essint Eq [X | ],
where
Q= {era;gg@ga;_ll foralljzl,...,T}.
(p)Ey = (=¢1)L, is a time-consistent dynamic Average-Value-at-Risk at the dynamic level
(a0, ..., ar—1).

2.3.2 Dynamic entropic risk measure

Forall t =0,...,T — 1, let ay € L>®(F;) with oy > 0 and define ¢; by
0i(X) = —a; 'og Ep [exp(—ay X) | Fi], X € L®(Fiyq).

Then, —¢; is a conditional entropic risk measure on L>°(F; 1) with risk aversion parameter ay;
see [19, 20, 5, 6, 14, 10]. It is well known that the minimal dynamic penalty function (wt#)z:(f of
the induced time-consistent concave monetary utility function (¢;)7_, is given by

¢f (&41) = a7 "Ep €141 log(&1) | F.-

Hence,
T T 1
oHQ) =D ¢F (@ = —Fq [log (¢%.1) 1 7]
j=1 =1 Y
and
oe(X) = ess inf Fo (X +¢%(Q) | 7], XeL®Fr), t=0,...,T.

2.3.3 Dynamic variational preferences

Denote by R the space of all essentially bounded adapted processes (X;)7_, on (Q, F, (F;)iy, P).
We here understand X; as a (not necessarily discounted) cashflow at time ¢. Let (¢;)7_, be a time-
consistent dynamic concave monetary utility function on L>°(Fr) and 8 > 0 a depreciation factor.
The transform

Wt() = ﬂ7t¢t(6t.), tZO,...,T,

is still a dynamic concave monetary utility function on L (Fr). It satisfies the S-time-consistency
condition

Wt+1(Y) 2 Wt+1(Z) lmphes Wt(ﬁY) Z Wt(BZ) for Y, Z € LOO(.FT)
or equivalently, the S-dynamic programming principle

W,(Y) = Wy(BWyi1 (B71Y)) for Y € L®(Fyr).

10



Now, let u be an increasing continuous function from R to R. Then, the functionals
d A Tu(X;) |, XeR®, t=0,...,T,

satisfy the recursive relation
V;(X):u(Xt)—"_Wt(ﬁ‘/;H*l(X)% t:077T_1

In the simpler framework of finite sample spaces, this class of dynamic preferences is axiomatized
in [29], where they are called dynamic variational preferences.

3 Dynamic monetary risk measures for stochastic processes

In this section the risky objects are stochastic processes X € R modelling discounted value
processes or discounted cumulated cash flows; for instance, the discounted market value of a
portfolio, the discounted equity value of a firm or the discounted surplus of an insurance company.
This interpretation of X € R is the same as in [4, 8, 9, 10, 25] but different from the one in
Subsection 2.3.3 above, where X is understood as a sequence of cash flows. However, in discrete
time it is easy to pass from cash flows to cumulated cash flows and back (see Subsection 3.1
below). As before, we are interested in monetary risk measures p; but find it more convenient to
work with the corresponding monetary utility functions ¢; = —p;. In the following, we generalize
the definitions of Section 2 to this more general setup. For 0 < ¢ < s < T, we define the projection
st R™ = R by
Tes(X)r = 1<y Xpns, 7=0,...,T.

and denote
Riw = m1,s(R™).
Definition 3.1 Lett € {0,...,T}. A monetary utility function on R is a mapping ¢¢ : Rip —
L (Fy) with the following properties:
(N) Normalization: ¢;(0) =0
(M) Monotonicity: ¢.(X) > ¢,(Y) for all X,Y € RS such that X >Y
(T) Translation property: ¢:(X + mly 7)) = ¢¢(X) +m for all X € RS and m € L>(Fy).
We call ¢y Fi-concave if it satisfies

(C) Fi-concavity: ¢(AX+(1-N)Y)
such that 0 < \ <

For X € R*™ we set

> Ap(X)+(1=A)ge(Y) for all X, Y € RP%G and A € L>(Fy)
1

O1(X) := ¢y oM (X).

A dynamic monetary utility function on R* is a family (¢;)]_, such that each ¢ is a monetary
utility function on R If all ¢¢ satisfy (C), then we call (61)Ey a dynamic concave monetary
utility function on R*°.

As in the case of risk measures for random variables, it can be deduced from (M) and (T) that
¢ satisfies the

(LP) Local property: ¢;(1aX 4+ 14cY) = 14¢0¢(X) 4+ 1ace(Y) for all X, Y € R*> and A € F;.

11



Definition 3.2 We call a dynamic monetary utility function (¢;)i_, on R° time-consistent if for
all X, Y € R*® andt=0,...,T -1,

Xe =Y, and ¢i11(X) > ¢ (V)

imply
(X)) > ¢e(Y).

It can easily be deduced from (N), (M) and (T) that time-consistency of a dynamic monetary risk
measure on R is equivalent to the following dynamic programming principle:

¢t(X) :th(Xt]-{t} +¢t+1(X)]-[t+1,T]) for all X GROO andt:(),...,Tfl. (31)

3.1 Cash flow streams

In discrete time, one can easily pass from discounted value processes or cumulated discounted cash
flows X € R to discounted increments or discounted cash flows Cy = X, C; = AX; = X —X;_1,
t > 1. A monetary utility function ¢; : R{% — L*°(F;) induces the following functional for future
discounted cash flows

T
¢t(ct+1a"'7CT):¢t Oa"'70act+17ct+1+Ct+27"'a Z C]
G=t+1

The dynamic programming principle (3.1) translates into

¢t (Ct+17~ . ~;CT) = J)t (Ct—',-l + Qgt—'rl (Ct+27 .. '7CT)aOa .. ,0) )
and ¢; can be recovered from <;~St through
0e(X) = Xt 4+ 0t (AX 41, ..., AX7).

So in discrete time, the two formulations are equivalent.

3.2 Aggregators and generators
For a time-consistent dynamic monetary utility function (¢;)~_, on R>°, we define the aggregators
thLoo(.Ft)XLoo(‘Ft+1)—>Loo(ft), tZO,,T—l
by
Gi(Xt, Xig1) = (X),
where X is the process in Ry3,, given by
0 for r <t
X, = X, forr=t
Xt+1 for r Z t+1
Clearly, G; has the following three properties:

(G1) G4(0,0) =0
(G2) Gt(Xt7Xt+1) > Gt(Yt7Yt+1) if X; >Y; and Xiy1 2> Y
(G3) Gt(Xt + m,Xt+1 + m) = Gt(Xt,Xt-‘rl) +m for all m € L(]:t),

12



and it can be seen from (3.1) that the whole dynamic functional (¢¢)7_, is uniquely determined
by the aggregators (G;)7—,'. In fact, every sequence of functionals (G;)]_," satisfying (G1)-(G3)
defines a time-consistent dynamlc monetary utility function (¢;)Z_, by

or(X) = X
o(X) = Gi(Xp,pe11(X)), t<T—1.

It is clear that (¢;)L_, is concave if and only if all Gy satisfy

(G4) Gt()\Xt + (1 - )\)}/;5, )\Xt+1 + (1 - )\)}/;H’l) 2 )\Gt(Xt7Xt+1) + (1 - )\)Gt(}/ty th+1)
for all X;,Y; € L°(F;), Xeq1, Yeqp1 € L°(Fiq1) and A € L°(F;) such that 0 < A <1

By (G3), we can write G; as
Gi( X, Xpan) = Xy + Go(0, Xop1 — Xi) = Xy + Hy(Xps1 — Xo), (3.2)
for the mapping H; : L (Fzq1) = L®°(F;) given by
Hi(X) = G(0,X).

It follows from (Gl)—(GB) that H; has the following three properties:

(H1) H(0) =

(H2) Hy(X )>Ht( ) for X,Y € L®(Fyyq) with X >V

(H3) Hy (X +m) < Hi(X) +m for all X € L*>(F;41) and m € LE(F)
(H1)

H1) and (H2) are clear, and (H3) holds because for X € L*°(F;41) and m € LY (F;) one has
Hy(X +m) =G0, X +m) =m+ G(—m, X) <m+ G(0,X) = m+ H(X).

On the other hand, every sequence (H;){_;' of mappings satisfying (H1)—(H3) induces aggregators

(G1)LZ! of a time-consistent dynamic monetary utility function (¢¢)7_, on R*®°. Indeed, if H;

satisfies (H1)—(H3), then
Gi( X, X)) = Xo + Hy (X1 — Xo)

satisfies (G1)—(G3). (G1) and (G3) are clear, and (G2) holds because for X;,Y; € L°°(F;) and
Xit1,Yer1 € L% (Fyg1) such that X; > Y; and X;y1 > Y11, one obtains from (H2) and (H3) that

Ge( X, Xoq1) = Xo + Hy (X1 — Xo) > X + Hi(Yepr — X)) > Y+ Hi (Yo — Y2).
We call (H,;)I=' the generators of (¢;)_,. It is clear that G, satisfies (G4) if and only if H; fulfils
(H4) Hy(AX + (1 —NY) > AH(X) 4+ (1 = M) H(Y) for all A € L°°(F;) such that 0 < A < 1.
3.3 Duality
Fort=1,...,T, we define the set
E={¢e L (F):Epl¢| Fion] <1}.

Every sequence (§11,...,&r) € Eq1 X - -+ X Er induces a P-supermartingale (M&)I_, by

ME 1 forr <t
L €t+1"'§7‘ fOI‘T:t—f-l,...,T.

13



Definition 3.3 A one-step penalty function on 11 is a mapping
T,Z)t : gt—i-l — E+(.Ft)

that satisfies the two properties:

(i) essinfece, , e(§) =0
(il) Ye(1ad+1acg") = 1ave(§) + Lace (&) for all §,§ € Ey1 and A€ Fy

A dynamic penalty function on £ is a sequence (z/Jt)tTgol of one-step penalty functions.
Theorem 3.4 Let (wt)f:_ol be a dynamic penalty function on . Then

Hy(X) = essinf {Ep &1 X | F) +¢e(&eq1)}, t=0,...,T—1, (3.3)

Et41€E 41

defines generators of a time-consistent dynamic concave monetary utility function (¢;)1_, on R>
with the following representation:

T
X)=X s inf E MEAX,; + MS i (& 3.4
o(X)=Xet+ - essinf By j;l SAX M) | Fe (3.4)

forallt <T —1 and X € R*.
Proof. 1t can easily be checked that for every t =0,...,7 — 1,

Hy(X) = essinf {Ep[§{1X | Fe] +e(§ev1)}
Etr1€E€+1
defines a mapping from L>(F;11) to L(F;) satisfying (H1)-(H4). Therefore, the family (H;)
induces a time-consistent dynamic concave monetary utility function (¢;)7_, on R*. Let X € RS
for some t < s < T and denote

J(X)=X inf E MSAX; + MS_ i _1(&) | F
9.s(X) tJr(€t+1,..‘,§ss)sélfrtl+1><...><£s P j;d J it ]—11/}J 1(51)‘ t
Since
T
inf E MS_ i 1(&) | Fe| =0,
(§s+1,--~7fis)sél’52+1><"'><5T F _Z ]_11/}] l(é-ﬂ)‘ t
j=s+1
for all s <T — 1, one has
T
J(X)=X inf E MSAX; + MS_ 0, _1(&) | F
o ( ) t+(§t+1,..4,§(;S)S€1‘5It1+1><~-~><8T ¥ j;—l J it J—le 1(53)‘ t

So it is enough to show that ¢.(X) = ¢ s(X). We prove this by induction over s. First, assume
that X € RyG,q. Then,

0e(X) = Go( Xy, o1 (X)) = Ge( X, Xyq1) = Xo + Hi(AX11)
= X;+ essinf {Ep[{41AXe | Fo) +¥e(§e41)} = bri41(X).

Et+1€E41
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Now, assume X € Ry for s > ¢ +2 and ¢4(Y) = ¢4 s—1(Y) for all Y € RgS,_;. By (3.1), we have
¢(X) = ¢ (Y) for
Y = l[t,sfl)X + l[sfl,T]gbs—l(X) € R?fs—l?

and therefore,

Pt(X) = (V) = ¢r,5-1(Y)

s—1
= X+ essinf E MEAY: + M5 b 1(&) | F
t (Eortofe ) ebrrnxxEn s P Z j J g—lT/)J 1(£J)| t
_]7t+1
-572
= X+ essinf E MEAX; + MS [pe 1(X) — X,
e, i e ER j:;l JAX; o 1[Ps—1(X) 2]

+Z 11/)J 1€J)|‘Ft

j=t+1
s—2
= X+ essinf E MEAX,
! (Et41,-085—1)EE41 X X Es1 v Z ! !
Jj=t+1
+ME[AX 1+ essinf {Bp [GAX | Foo] +¥e1 (€9} (3.5)

+Z 1¢J 1£J)|ft )

j=t+1

where for s =t + 2, the term Zj 41 MfAXj is understood as 0. By condition (ii) of Definition
3.3, the family

E]P’ [fsAXs | ]:sfl] + wsfl(fs)v gs S gsv

is directed downwards. Therefore, we can take the essinf in (3.5) outside of the conditional
expectation Ep [. | 73] and arrive at

(bt(X) =X; + essinf Ep Z MfAXj+M§711,/Jj_1(€j) :¢t,s(X)-

(Et41se-€s)EEL41 X+ X Ey S

O

It is easy to see that aggregators of the form (3.3) are continuous from above in the sense of
Definition 2.6 and utility functions of the form (3.4) are continuous from above in the following
more general sense:

Definition 3.5 Let 0 <t < s <T. We call a mapping I : R{S, — L*°(F) continuous from above
if I(X™) = I(X) P-almost surely for all (X" )nen and X in RS such that X' decreases to X,
P-almost surely for all v =t,...,s. We call a dynamic monetary utility function (¢;)}_, on R
continuous from above if every ¢, is continuous from above.

Lemma 3.6 A time-consistent dynamic monetary utility function (¢1)1_y is continuous from above
if and only if all of the corresponding aggregators (Gt) 0 are continuous from above, which is the

case if and only if all of the associated generators (H,g)tzo1 are continuous from above.
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Proof. Tt is obvious that (¢;)7, is continuous from above if and only if all aggregators (G)i_'

are continuous from above. Now, fix ¢ and assume that Gy is continuous from above. If (X™),en
and X are in L™ (F;41) such that (X™),en decreases to X P-almost surely, then we have

H:(X"™) = G¢(0,X") | G1(0,X) = Hy(X) P-almost surely.

Hence, H; is continuous from above. On the other hand, if we assume that H; is continuous from
above and (X7, X[ |)nen is a sequence in L*>(F;) x L>(F;41) that decreases to (X¢, Xi41) €
L>*(F) x L (Fi41) P-almost surely, then

Gu(XP, X)) = XP+ Ho (X — X7) < X+ Ho(X{ — X)) L X+ Hiy (X —Xo) = Go(Xe, Xeg)
P-almost surely. This shows that G; is continuous from above. O

Definition 3.7 For a time-consistent dynamic concave monetary utility function (¢;)1_, on R>

with generators (Ht);f:_ol that are continuous from above, we define for &1 € Ep1 and t =

0,....T—1,
Hff (&41) == esssup {Hy(X) - Ep &1 X | R}
X€EL>°(Fis1)

Lemma 3.8 Let (¢;)L_, be a time-consistent dynamic concave monetary utility function on R>

with generators (H,)1=! that are continuous from above. Then (Hi' )l is the smallest dynamic

penalty function on € such that

Ht(X) = essinf {E]p [§t+1X | ft} + Hf(€t+1)} (36)

£i11€841
forallt=0,....,T =1 and X € L (Fy41).

Proof. Fix t € {0,...,T — 1} and consider Q= {t,t + 1} x Q with the o-algebra Fi41 generated
by all sets of the form {j} x A, for j =¢,t+ 1 and A; € F;. Let P be the probability measure
on (Q, Fiy1) given by P[{j} x A4;] := iP[A4;] for j = t,t+1 and A; € F;. By F, we denote the
o-algebra on Q generated by all sets of the form {t,t+ 1} x A; for A; € F;. Then one has

L®(F;) x L®(Feq1) = L°(Q, Frir, P),

and the aggregator G can be viewed as a concave monetary utility function from L*>° (Q, ]:'tH,IFD)
to L>(Q), F¢,P). Clearly, it is continuous from above. Therefore, it follows from Lemma 2.8 that

Gi(Xt, Xi41) = ess inf {Ep (1 — a) X 4 a1 Xos1 | Fi] + Gla, E41)), (3.7)
(a,6c41)€LES 11 (F) X Dega
where
Ligy(F) :=={a € L®(F):0<a <1}
and
Gla,&ev1) = ess sup {Gy( X4, Xis1) —Bp (1 — a) Xy + a &1 Xt | Fi]}
(X4, X 41)EL®(F)XL>®(Fiq1)
= ess sup {G1(0,AX;41) — Epla& 1 AX 1 | Fi}

(X4, X¢41)EL®(Fy) X Lo°(Fq1)

= esssup {Hy(X)—Epla&1X | F2}.
XeEL>(Fit1)
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Hence,

Hy(X) = G4(0,X)= essinf {Ep[§t+1X|ft]+Hf(§t+1)}

Et41€E 41

for all X € L°°(Fi4+1). The minimality of Ht# follows because every function 9; : &1 — Ly (F)
fulfilling
Hy(X) = essinf {Ep[&1X | Fe] + (&)} for all X € L(Fiqq)

§i41€E841

must also satisfy
Ht(X) — E]p [ft—&-lX | ]:t] < "/’t(ét—i—l) for all X € LOO(]:t.H) and §t+1 S gt+17

and therefore, Hf& < . O

The following corollary is an immediate consequence of Theorem 3.4 and Lemma 3.8.

Corollary 3.9 Let (¢;)]_, be a time-consistent dynamic concave monetary utility function that is
continuous from above. Then

T
X) =X s inf Ep | > M;AX;+M; HY (&) | F
(%) o (&t41,0-- 535)561‘5?+1><~-><5T ¥ ot J it Jj—1 j*l(fj) | t

forallt <T —1 and X € R*™.

3.4 Composed generators

We now consider generators of the special form

Hy(X) = hi(pe(X)), (3.8)
where ¢ 1 L®(Fi1) — L°(F;) is a monetary utility function from L (Fi41) to L°(F;) and
h: : R — R is a function satisfying

(hl) ht(o) =0
(h2) hy(x) > he(y) for z >y
(h3) |h(z) — he(y)| < |z —y| for all z,y € R.

Then Hy = hy o @y @ L®(Fyp1) — L°(F) satisfies the properties (H1), (H2) and (H3). Hence,
(ht,¢¢)i=y" induces a time-consistent dynamic monetary utility function (¢¢)7_, on R*®. If in
addition to (h1)—(h3), h; is concave and ¢, F;-concave, then H; satisfies (H4), and (¢;)L, is a
time-consistent dynamic concave monetary utility function on R°.

By standard convex duality, every concave function h : R — R can be represented as

h(x) = minzy — h*
() min zy (),

where h* is the concave conjugate given by
h*(y) := inf xy — h(z).
(y) ;GR Y (2)

As a consequence, the following representation result holds:
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Proposition 3.10 If ¢; : L®°(Fy1) — L°(F) is given by

0(X) = essinf {Ep[§1 X | Fe] +me(&e41) }

£t41€D¢ 11

for a one-step penalty function n, on Diy1 and hy : R — R is a concave function satisfying (hl)-
(h3). Then H, = hy o ¢, can be represented as

Ht(X) = essinf {E]p [ft+1X | -Ft] + ’(/Jt(ftJrl)}, X e Loo(]:tJrl),

t11€E11

for the one-step penalty function 1y on &1 given by

Ep [§e41 | 2

Proof. Since h; satisfies (h2) and (h3), we have hy(y) = —oo for y ¢ [0, 1], and therefore

Gel€n) = En € | Fil m (5*) b (Ee [ | Fi].

Hi(X) = he(p:(X))

= hy < essinf {Ep[& 01X | Fi] + 77t(§t+1)})

£t4+1€D111

= ess inf {Y[Ep [§e41X | Fe] +me(&e1)) — b (y)}

0<y<1,&t+1€D¢+1

= fﬁslseigi {Ep [Ee1 X | Fe] +Ep [Segn | Foe] me (m) = hi(Ep [§e41 | ]:t])} .

]

In the following we are going to discuss different specifications of the function h;. This leads
to extensions of some of the examples of Section 5 of Cheridito et al. [10].

3.4.1 Risk measures which only depend on the final value
If hi(x) = x, then the aggregators reduce to
Gt(XthtJrl) =X; + ht(@t(Xt+1 - Xt)) = (Pt(Xt+1)~

So one has
Ht(X) = Ge( Xy, pr01(X)) = @e(de11(X)) = @r o0 pr_1(X7),

that is, (¢¢)7_, is a time-consistent dynamic utility function which only depends on the final value
XT of X.

3.4.2 Risk measures that depend on a weighted average over time

If hi(z) = vy for v € L™ (F;) such that 0 < v < 1, then

Gi( X, Xey1) = Xi 4+ he(pe( X1 — Xi)) = (L —7) X + 7206 (Xig1)-

Consider the mappings ¢; : L>°(Fr) — L (F;) given by

X
¢ (X) = Y01 0 V10041 0 - O VP_10T 1 () .
fyt e fyT_l
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Then the time-consistent dynamic monetary utility function (¢;)Z_, on R* induced by the aggre-
gators (Gy)l_, is given by

T
G(X)=¢] | D 6iX; |, t=0,...T—1,
j=t

where
1T—v for j=t
5= y-y(l=yy) fort<j<T
r}/t.....fYT_l forj:T
In particular, for v = T%;rtl, one obtains
1 T
X)=¢] | ———— X;
¢A>¢tT%+é;]

Observe that for the special case, where all ¢; have the scaling property ¢:(71:X) = 11 (X), the
¢7 are of the form ¢} = p 0+ 0 pr_1.

3.4.3 Risk measures defined by worst stopping
For hi(x) = x A 0, the aggregators become
Gi(Xt, Xt1) = Xo + he (e (Xe1 — X)) = X A pe(Xey1), (3.9)
and the ¢; are of the form ~
6u(X) = essinf §,(X,), X € R™,

TEO,

where ©, is the set of all {¢,...,T}-valued stopping times and (ét)fzo is the time-consistent
dynamic concave monetary utility function on L>°(Fr) given by

¢i(X) =pro--0pra(X), X eL™(Fr).
This can be seen by checking that

ssinf oy (X,), t=0,...,T
eg;gﬁ@( ) s

is a time-consistent dynamic monetary utility function on R>° whose aggregators are given by

(3.9).

3.4.4 Trade-off functions

Instead of specifying the function h; directly, one can start with a continuous decreasing function
gt : R = R such that ¢;(0) = 0 and define the corresponding aggregator G; by

Gi(Xt, Xy1) = esssup {m € L(F;) : (Xe —m, X¢p1 —m) € B},
where the one-step acceptance set B; is given by

By = {(Xt, Xy41) € L (Fy) X L= (Fyp1) 0 ge(Xe) < pe(Xe1)}
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The function g; specifies the trade-off between risk at time ¢ and ¢t + 1 of an acceptable process
X € R{5S41- It can easily be checked that the inverse h; of the strictly increasing function g;(—z)+x
satisfies (h1)—(h3), and B; can be written as

By = {(X¢, Xi11) € L (Fy) x L= (Fyp1) : Xo + he o oy (Xyp1 — X)) > 0}

Hence, the generator H; is given by h; o ¢;. Note h; is concave if and only if g; is convex.
For ¢g:(x) = 0 we get hi(z) = x, and we are back in the case of Subsection 3.4.1. The case
gt(x) = (1 = 1/4¢)x for 0 < v < 1 corresponds to h:(x) = y:x of Subsection 3.4.2. The function
hi(x) = 2 A0 of Subsection 3.4.3 is not bijective. Therefore, it cannot be obtained from a trade-off
function g;.

Example 3.11 Our last example is built on trade-off functions of the form g;(z) := exp(—vyz)—1
for 74 > 0. In this case there exists no closed form expression for h;. But one has the following
relation between h; and the convex conjugate g; (y) = sup,cp 2y — g:(x) of g4

* _ *ygf (1 - 1/y) for Yy e (07 ”
hily) = { —00 for y ¢ (0,1]

Indeed, hj(y) = —oo for y ¢ (0,1] is an immediate consequence of the fact that h; satisfies
lim, o0 he(z) = 00 as well as (h2) and (h3). For y € (0, 1], one can write

hi(y) = inf oy = he(w) = inf by (~2)y = hu(hy ' (=2)
_ : -1/ s -1/ .
= yifhy (-2) +az/y=yinf b (—2)+a+(1/y-1)z

= —ysup(l—-1/y)x—gi(z) = —yg; (1-1/y).

z€R
g;(2) = Z (1 —log <—Z>) +1,
Ve Yt

. 1- 1-
hi(y) = —2 {llog< y)} - 9.
Ve "ty

We now combine h; with the entropic generator

For z < 0, one has

and therefore,

©0i(X) = —a; 'ogEp [exp(—a: X) | Fy], X € L®(Fiy1)
with minimal penalty function

ef (&41) = a7 "Ep €111 log(E1) | Fi -

It follows from Proposition 3.10 that the minimal dynamic penalty function of the dynamic concave

monetary utility function (¢¢)7_, on R> induced by (hy, )iy is given by

_ _ 11— 1—) 1—)
be(Eean) = ap Br (6 log(€) | Fil — o Mog(A) + A+ 2= log ( ) _L=X
Yt ’Yt>\ Yt

for §t+1 S gt+1 and A = EIP [£t+1 | ]:t}
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