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Summary: In this paper we study asymptotically stable risk assessments (or equivalently risk
measures) which have the property that an unacceptable position cannot become acceptable by
adding a huge cash-flow far in the future. Under an additional continuity assumption, these risk
assessments are exactly those which have a a robust representation in terms of test probabilities that
are supported on a finite time interval. For time-consistent risk assessments we give conditions on
their generators which guarantee asymptotic stability.

1 Introduction
The starting point of this paper is the investigation of risk assessments which are not
influenced by statements like: “Far in the future I shall be extremely rich”. For such
risk assessments negative values in the near future cannot be compensated by extremely
positive values far away. We call such assessments asymptotically stable.

Risk assessments (or equivalently risk measures) have been widely studied since the
lighthouse paper [3] of Artzner et al. in 1999; see also [7] and [8]. Our focus is on risk
assessments of stochastic processes; see for instance [1], [2], [4], [5], [6], [10], [11], [13],
[14]. Since we are interested in an asymptotic concept we consider risk assessments for
discrete time stochastic processes with an infinite time horizon. In the first main result
of this paper we characterize asymptotic stable risk assessments under the additional
assumption of local continuity from below by a robust representation. It turns out that
the test probabilities of this representation are exactly the so-called local probabilities
whose support is restricted to a finite time interval. This is equivalent to the fact that the
acceptance set of the risk assessment is closed in the weak topology induced by local test
probabilities.

The main concept of this paper is asymptotic stability which is defined in terms of
the acceptance set of the risk assessment: If a position modeled as a stochastic processX
is not acceptable, then there exists a time horizon T such that X1I(0,T ) +N1I[T,∞) is still
not acceptable regardless of the size of the future position N . In that sense, asymptotic
stable risk assessments may be regarded as immune against extremely high values in the
far future.

Using the property of time-consistency, we show in the second part of the paper how
risk assessments can be constructed by composing a sequence of generators. We provide
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a condition on the generators such that the resulting risk assessment is asymptotically
stable, and discuss several examples.

The structure of this paper is as follows. In Section 2 we give the main notation
and definitions. The robust representation of asymptotically stable risk assessments is
presented in the Section 3. In Section 4 we construct dynamic risk assessments which
are asymptotically safe and finally give some examples in Section 5.

2 Preliminaries
Let (Ω,F , (Ft)t∈N,P) be a filtered probability space. Denote by Lp (resp. Lpt ) the space
of all F-measurable (resp. Ft-measurable) random variables with finite pth moment if
p ∈ [1,∞), and which are essentially bounded if p = ∞, and where two of them are
identified if they agree P-almost surely. Let R∞ be the space of all adapted processes
X : Ω× N→ R such that X∗ := supt∈N |Xt| ∈ L∞. On R∞ we work with the partial
order X ≥ Y whenever Xt ≥ Yt for all t ∈ N.

Definition 2.1 A concave risk assessment on R∞ is a function φ : R∞ → R which
satisfies

(i) φ(0) = 0,

(ii) φ(X +m1I[1,∞)) = φ(X) +m for all m ∈ R,

(iii) φ(X) ≥ φ(Y ) whenever X ≥ Y ,

(iv) φ(λX + (1− λ)Y ) ≥ λφ(X) + (1− λ)φ(Y ) for all λ ∈ (0, 1),

for all X,Y ∈ R∞.
If in addition to (i) – (iv), φ is positively homogeneous, i.e. φ(λX) = λφ(X) for all

λ ≥ 0 then φ is called coherent risk assessment.

The acceptance set of a risk assessment φ is defined as C := {X ∈ R∞ : φ(X) ≥ 0}.
In line with [5] for two stopping times τ and θ such that 0 ≤ τ ≤ θ < ∞ we define the
projection πτ,θ : R∞ → R∞ by

πτ,θ(X)t := 1I{τ≤t}Xt∧θ, t ∈ N.

Definition 2.2 A risk assessment φ : R∞ → R is locally continuous from below, if for
every sequence (Xn) in R∞ and X ∈ R∞ such that Xn ≤ Xn+1 and Xn

t → Xt

P-almost surely for all t ∈ N, one has

φ (π0,T (Xn))→ φ (π0,T (X))

for all T ∈ N.

LetA1 be the space of all adapted processes a : Ω×N→ R such that
∑
t∈N |∆at| ∈

L1, where ∆at := at − at−1 with the convention a0 := 0. Further, denote by A1,loc the
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set of those a ∈ A1 which are eventually constant, that is at = aT for all t ≥ T for some
T ∈ N. The linear spacesR∞ and A1 are in duality by the dual pairing

〈X, a〉 := E

[∑
t∈N

Xt∆at

]
.

Note that for a ∈ A1,loc one has 〈X, a〉 :=
∑T
t=1 E [Xt∆at] for some T ∈ N.

For any time horizon T ∈ N we define the subspaces

R∞0,T := π0,TR∞ and A1
0,T := π0,TA1. (2.1)

Finally, let A1
+ denote the set of those a ∈ A1 which satisfy at ≤ at+1 for all t ∈ N,

and A1
1 the set of those a ∈ A1

+ for which E
[∑

t∈N ∆at
]

= 1. Similarly, we define
A1,loc

1 := A1,loc ∩ A1
1. Elements of A1,loc

1 are referred to as local test probabilities.

3 Asymptotically stable risk assessments
The focus of this paper is to characterize risk assessments onR∞ which have the desired
property that an unacceptable position cannot become acceptable by adding a huge cash-
flow far in the future.

Definition 3.1 A concave risk assessment φ onR∞ is called asymptotically stable if for
each X ∈ R∞ with X /∈ C there exists a time horizon T ∈ N such that

X1I(0,T ) +N1I[T,∞) /∈ C

for all N ∈ N.

Although asymptotically stable risk assessments neglect asymptotic benefits, they may
take into account asymptotic losses. Asymptotic stability can be characterized as follows:

Proposition 3.2 For a concave risk assessment φ onR∞ the following are equivalent:

(i) φ is asymptotically stable

(ii) X ∈ C iff for every t ∈ N there exists N ∈ N such that X1I(0,t) +N1I[t,∞) ∈ C

(iii) For every X ∈ R∞, γt(X) := supN∈N
[
φ(X1I(0,t) +N1I[t,∞))− φ(X)

]
→ 0 as

t→∞.

Proof: We only show that (i) and (iii) are equivalent, the equivalence between (i) and
(ii) is obvious. To that end, suppose that (i) holds, but supt∈N γt(X) ≥ ε for some
ε > 0. By (ii) of Definition 2.1 we may assume that φ(X) = −ε/2 so that X /∈ C.
Hence, for any t ∈ N one has

sup
N∈N

φ(X1I(0,t) +N1I[t,∞)) = γt(X) + φ(X) ≥ ε

2
,
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so that X1I(0,t) + N1I[t,∞) ∈ C for all t ∈ N and sufficiently large N ∈ N. Hence (i)
implies X ∈ C, which is a contradiction, so that (iii) has to hold.

Conversely, suppose that (iii) holds and X /∈ C. Since

sup
N∈N

φ(X1I(0,t) +N1I[t,∞)) = γt(X) + φ(X), for all t ∈ N,

φ(X) < 0 and γt(X) → 0, it follows that supN∈N φ(X1I(0,t0) + N1I[t0,∞)) < 0 for
some t0 large enough. Hence X1I(0,t0) +N1I(t0,∞) /∈ C for all N ∈ N, which shows (i).

2

In a next step we give the robust representation of asymptotically stable concave risk
assessments. The general representation theory provides formulas of the form

φ(X) = inf
a∈A
{〈X, a〉 − φ∗(a)} , for all X ∈ R∞, (3.1)

where the ’dual set’ A is a convex set of linear forms onR∞ and the conjugate function
φ∗ is given by

φ∗(a) := inf
X∈R∞

{〈X, a〉 − φ(X)} = inf
X∈C
〈X, a〉 , for all a ∈ A , (3.2)

and takes values in [−∞, 0]. The second equality in (3.2) follows from

inf
X∈C
〈X, a〉 ≥ inf

X∈C
{〈X − φ(X), a〉} ≥ inf

X∈R∞
{〈X − φ(X), a〉} ≥ inf

X′∈C
〈X ′, a〉

because X − φ(X) ∈ C.
In our context, the robust representation of φ is given in the following theorem which

is our main result in the static case. It characterizes the property of asymptotical stabil-
ity for risk assessments which are locally continuous from below in terms of local test
probabilities.

Theorem 3.3 Let φ : R∞ → R be a concave risk assessment which is locally continu-
ous from below. The following statements are equivalent:

(i) φ is asymptotically stable

(ii) The acceptance set C is σ
(
R∞,A1,loc

)
-closed

(iii) φ is σ
(
R∞,A1,loc

)
-upper semicontinuous

(iv) φ has a robust representation with local test probabilities:

φ(X) = inf
a∈A1,loc

1

{〈X, a〉 − φ∗(a)} , for all X ∈ R∞ (3.3)

(v) For any sequence (Xn) and X in R∞ such that supn∈N |Xn
t | ∈ L∞ and Xn

t →
Xt P-almost surely for all t ∈ N, one has φ(X) ≥ lim supn→∞ φ(Xn).
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Proof: (i)⇒ (ii): We have to show that

X ∈ C ⇐⇒ 〈X, a〉 − φ∗(a) ≥ 0 for all a ∈ A1,loc
1 . (3.4)

That the left hand side implies the right hand side follows directly from the definition of
φ∗. The converse implication is shown in the following six steps.
Step 1: Suppose X /∈ C. By (ii) of Definition 2.1 there exists ε ∈ (0, 1] such that
X + ε /∈ C. Since φ is asymptotically stable there exists t ∈ N such that

(X + ε)1I(0,t) + (N + 1)1I[t,∞) /∈ C for all N ∈ N. (3.5)

Step 2: Here we make a deviation to use the duality between L∞(Ω′,F ′) and the set
Mf (Ω′,F ′) of finitely additive measures on some measurable space (Ω′,F ′). We follow
[1], [2], [5], or [11].
Set Ω′ := Ω × N, F ′ := σ {Fn × {n} : n ∈ N}, µ0(B) :=

∑
n≥1 2−nP(B|n) where

B|n = {ω ∈ Ω : (ω, n) ∈ B} for B ∈ F ′. µ0 is a probability measure on (Ω′,F ′).
Further, letMf

1 the set of positive finitely additive measures µ on (Ω′,F ′) with µ(Ω′) =
1 and µ(B × {n}) = 0 for all B ∈ Fn with P[B] = 0. Identifying X ∈ R∞ with
X ′(ω, n) = Xn(ω) ∈ L∞(Ω′,F ′) and writing 〈X,µ〉 instead of 〈X ′, µ〉, we get for
φ′(X ′) = φ(X) the representation (see [12])

φ(X) = φ′(X ′) = min
µ∈Mf

1

{〈X,µ〉 − φ′∗(µ)} .

where again φ′∗(µ) := infX∈C 〈X ′, µ〉 takes values in [−∞, 0].
Now the statement (3.5) implies the existence of a sequence (µN ) inMf

1 with〈
(X + ε)1I(0,t) + (N + 1)1I[t,∞), µ

N
〉
− φ′∗(µN ) < 0 for all N ∈ N. (3.6)

Since φ′∗(µN ) ≤ 0, it follows that〈
1IΩ×[t,∞), µ

N
〉
≤
‖X‖R∞ + ε

N + 1
and 0 ≥ φ′∗(µN ) ≥ −‖X‖R∞ for all N ∈ N.

(3.7)
Step 3: Next we show that the sequence (µN ) satisfies:

∀ η > 0,∀ Bκ ∈ F ′, Bκ ↗ Ω′ for κ→∞ ∃ N0, κ0 ∈ N, such that〈
1IBκ , µ

N
〉
≥ 1− η for all N ≥ N0 and κ ≥ κ0. (3.8)

Let η > 0 and Bκ ∈ F ′ be an increasing sequence of subsets of Ω′ with Bκ ↗ Ω′ for
κ → ∞. By (3.7) there exists N0 ∈ N such that

〈
1IΩ×[t,∞), µ

N
〉
≤ η for all N ≥ N0.

Fix M ∈ N such that M ≥ ‖X‖R∞ /η. By the local continuity from below of φ we get

lim
κ→∞

inf
N≥N0

{〈
M1IBκ , µ

N
〉
− φ′∗(µN )

}
≥ lim
κ→∞

inf
N≥N0

{〈
M(1IBκ∩Ω×(0,t) + 1IΩ×[t,∞)), µ

N
〉
− φ′∗(µN )

}
−Mη

≥ lim
κ→∞

φ′(M(1IBκ∩Ω×(0,t) + 1IΩ×[t,∞)))−Mη

= lim
κ→∞

φ
(
M(1IBκ∩Ω×{1}, . . . , 1IBκ∩Ω×{t−1}, 1IΩ×{t}, . . .)

)
−Mη

= φ(M1I(0,∞))−Mη = M(1− η).
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With the second inequality in (3.7), it follows that

1 ≥ lim
κ→∞

inf
N≥N0

〈
1IBκ , µ

N
〉
≥ 1− η − ‖X‖R∞ /M ≥ 1− 2η

This shows (3.8).
Step 4: In this step we prove

∀ η > 0, ∃ δ > 0 and N ∈ N, so that ∀D ∈ F ′ with sup
0≤N ′≤N

〈
1ID, µN

′
〉
< δ

implies
〈
1ID, µM

〉
< η for all M ∈ N. (3.9)

Assume that (3.9) does not hold. Then there exists η > 0 such that for all δN = η/2N

there exists DN ∈ F ′ with sup0≤N ′≤N

〈
1IDN , µ

N ′
〉
< η/2N , but

〈
1IDN , µ

M
〉
≥ η

for some M ∈ N. We set Bκ := Ω′ \
⋃
N≥κDN such that µ0(Bκ) ≥ 1 − 2η/2κ or

Bκ ↗ Ω′ for κ → ∞. (Here we use the fact that µ0 is σ-additive, while µN are only
finitely additive for for N ≥ 1). By (3.8) there exist N0, κ0 ∈ N such that

〈
1IBκ , µ

M
〉
≥

1 − η/2 for all M ≥ N0 and κ ≥ κ0. Now for κ′ = max(N0, κ0) we find not only
sup0≤N ′≤κ′

〈
1IBc

κ′
, µN

′
〉
< η/2κ

′ ≤ η/2, but also
〈

1IBc
κ′
, µM

〉
≤ η/2 for all M ≥ κ′,

contradicting the fact that we have
〈

1IBc
κ′
, µMκ′

〉
≥ η forMκ′ ∈ N. Thus assertion (3.9)

is shown.
Step 5: We define µ :=

∑
N ′≥0 µ

N ′
/2N

′
and conclude for all η > 0 using δ > 0 and

N from (3.9): For any B′ ∈ F ′ with 〈1IB′ , µ〉 < δ/2N we have
〈

1IB′ , µN
′
〉
< δ for all

0 ≤ N ′ ≤ N such that
〈
1IB′ , µM

〉
< η for all M ∈ N, i.e.

lim
〈1IB′ ,µ〉→0

〈
1IB′ , µM

〉
→ 0 uniformly for all M. (3.10)

By Theorem IV.9.12 in [9], the sequence (µM ) is weakly sequentially compact and there
exists a subsequence of (µN ) (again denoted by (µN )) such that (µN ) converges weakly
to some µ̃ ∈Mf

1 .
Step 6: First (3.7) shows that

〈
1IΩ×[t,∞), µ̃

〉
= 0 and from (3.8) we conclude that for any

η > 0 and any sequence Bκ ∈ F ′, Bκ ↗ Ω′ for κ → ∞ we have 〈1IBκ , µ̃〉 ≥ 1− η for
all sufficintly large κ. Therefore µ̃ is a probability measure absolutely continuous w.r.t.
µ0. Moreover, for every ε′ > 0 there exists Y ∈ C′ such that

φ′∗(µ̃) ≥ 〈Y, µ̃〉 − ε′ = lim
N→∞

〈
Y, µN

〉
− ε′ ≥ lim inf

N→∞
φ′∗(µN )− ε′.

From (3.6) we conclude that 〈
X,µN

〉
− φ′∗(µN ) < −ε

for all N ∈ N such that 〈X, µ̃〉 − φ′∗(µ̃) < 0. Transforming µ̃ back to ã ∈ A1
1 via

the Radon-Nikodym density ∆ãt := ∂µ̃(. ∩Ω×{t})
∂P restricted to Ω × {t}, we see that

ã ∈ A1,loc
1 and

〈X, ã〉 − φ∗(ã) < 0.
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This shows that C is σ(R∞,A1,loc)-closed.
(ii) ⇒ (iii): The σ

(
R∞,A1,loc

)
-upper semicontinuity follows directly from (3.3)

and (ii) of Definition 2.1.
(iii)⇒ (iv): This follows from the Fenchel-Moreau theorem.
(iv) ⇒ (v): Fix ε > 0 and let (Xn) be a sequence in R∞ and X ∈ R∞ such that

supn∈N |Xn
t | ∈ L∞ and Xn

t → Xt P-almost surely for all t ∈ N. There is a∗ ∈ A1,loc
1

such that

φ(X) + ε ≥ 〈X, a∗〉 − φ∗(a∗)
= lim

n→∞
(〈Xn, a∗〉 − φ∗(a∗))

≥ lim sup
n→∞

inf
a∈A1,loc

1

{〈Xn, a〉 − φ∗(a)} = lim sup
n→∞

φ(Xn).

(v)⇒ (i): Let X ∈ R∞ such that X1I(0,t) +N(t)1I[t,∞) ∈ C for all t ∈ N and some
large N(t) ∈ N. The sequence (Xn) defined as

Xn := X1I(0,n) +N(n)1I[n,∞)

satisfies φ(Xn) ≥ 0 for all n ∈ N. Moreover, supn∈N |Xn
t | ∈ L∞ and Xn

t → Xt

P-almost surely for all t ∈ N. Hence

φ(X) ≥ lim sup
n→∞

φ(Xn) ≥ 0

which shows that X ∈ C. 2

Remark 3.4 Let φ be a risk assessment which is locally continuous from below and has
the robust representation

φ(X) = inf
a∈A
{〈X, a〉 − φ∗(a)} for all X.

The arguments in step 3 of the implication (i)⇒ (ii) show that for any γ > 0 the set

A γ := {a ∈ A : φ∗(a) ≥ −γ}

is locally uniformly integrable in the following sense: For every T ∈ N and any sequence
Bn = (Bn1 , . . .) satisfying Bnt ↗

n→∞
Ω for all t ≤ T and Bnt = Ω for all t > T one has

lim
n→∞

inf
a∈A γ

〈1IBn , a〉 = 1

where 1IBn =
(
1IBn1 , . . .

)
. Indeed, for any ε > 0 and M ≥ γ/ε we get

lim
n→∞

inf
a∈A γ

〈1IBn , a〉 ≥
1

M
lim
n→∞

inf
a∈Aγ

(〈M · 1IBn , a〉 − φ∗(a))− ε

≥ 1

M
lim
n→∞

φ (M · 1IBn)− ε = 1− ε.
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Example 3.5 Let P be a uniformly integrable set of absolutely continuous probabilities
and T a subset of N. Then

φ(X) := inf
t∈T

inf
Q∈P

EQ [Xt]

is an asymptotically stable coherent risk assessment which is locally continuous from
below.

Let φ : R∞ → R be an asymptotically stable risk assessment which is locally continuous
from below. Then it holds that

φ(X) = lim sup
t→∞

φ(X1I(0,t) +Xt1I[t,∞)). (3.11)

However, the following example shows that there exist asymptotically stable risk assess-
ments which are locally continuous from below, which satisfy

φ(X) > lim inf
t→∞

φ(X1I(0,t) +Xt1I[t,∞))

for some X ∈ R∞, i.e. limt→∞ φ(X1I(0,t) +Xt1I[t,∞)) does not exist in general.

Example 3.6 Suppose Ω = {ω} and φ(X) := infa∈Q 〈X, a〉 where

Q :=

{
a ∈ A1,loc

1 : ∆at = ∆at+1 =
1

2
for some t ∈ N

}
.

Then φ is an asymptotically stable coherent risk assessment which is locally continuous
from below. However, for X = (1,−1, 1,−1, 1, . . . ) one has φ(X) = 0, whereas
lim inft→∞ φ(X1I(0,t) +Xt1I[t,∞)) = −1.

4 Dynamic risk assessments
In this section, we study families of risk assessments (φs)s∈N0 which are time-consistent:

φs(X) = φs
(
X1I(s,t] + φt(X)1I(t,∞)

)
, for all s, t ∈ N with s < t. (4.1)

The time-consistent property of a risk assessment is an important concept in multiperiod
risk assessment (see [1], [2], [6]). In particular, within the problem of optimizing the
assessment with respect to a control process, time-consistency implies the Bellman prin-
ciple (see [2]). This principle allows to replace a global optimization problem over pro-
cesses by a recursive procedure of timely local optimization problems over random vari-
ables. In the context of insurance risks together with a liquid market, one is interested
in portfolios, which in addition to the insurance risk minimize the total risk assessment.
Such portfolios are called optimal replicating portfolios (ORP). The time-consistency of
the risk assessment reduces this problem to find an optimal portfolio just for one period
(see [10] for concepts of insurance supervisions, like Solvency II or the Swiss Solvency
Test). Furthermore, some accounting concepts for insurances, like the risk margin as
external capital, are defined with respect to such optimal replicating portfolios.
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Here we work with the notion of time-consistency as in [10] which is slightly differ-
ent to the respective notion in [1] and [5]. Since both concepts of time-consistency are
formally very similar, the results of this section can directly be adapted to the context of
[1] and [5].

Time-consistent risk assessments lead naturally the the notion of a family of genera-
tors Gs : L∞s+1 × L∞s+1 → L∞s by defining

Gs(Z
1, Z2) := φs

(
Z11I{s+1} + Z21I(s+1,∞)

)
. (4.2)

This gives
φs(X) = Gs (Xs+1, φs+1(X)) . (4.3)

Here the goal is to give conditions of a family (Gs)s∈N0
of generators which leads to

asymptotically stable risk assessments which are locally continuous from below. We
start with the following properties of generators:

(G0) Gs(0, 0) = 0,

(G1) Gs(X +m,Y +m) = Gs(X,Y ) +m for all m ∈ L∞s ,

(G2) Gs(X1, Y 1) ≥ Gs(X2, Y 2) whenever X1 ≥ X2 and Y 1 ≥ Y 2,

(G3) Gs(X,Y ) = limn→∞Gs(X
n, Y n) for every decreasing sequence (Xn, Y n)

which converges to some (X,Y ) P-almost surely,

(G3’) Gs(X,Y ) = limn→∞Gs(X
n, Y n) for every increasing sequence (Xn, Y n)

which converges to some (X,Y ) P-almost surely,

(G4) Gs(λX1 + (1−λ)X2, λY 1 + (1−λ)Y 2) ≥ λGs(X1, Y 1) + (1−λ)Gs(X
2, Y 2)

for all λ ∈ L∞s with 0 ≤ λ ≤ 1.

Under the concavity assumption (G4) the condition (G3’) implies (G3). For X ∈ R∞,
s ∈ N0 and N ≥ ‖X‖R∞ the sequence {Gs(Xs+1, ·) ◦ · · · ◦ Gt−1(Xt, N)}t≥s+1 is
nonincreasing in t and we define

φNs (X) := inf
t≥s+1

Gs(Xs+1, ·) ◦ · · · ◦Gt−1(Xt, N).

Theorem 4.1 Suppose that the generators (Gs)s∈N0 satisfy (G0)–(G3) and

lim
n→∞

Gs(0, ·) ◦ · · · ◦Gs+n(0,m) = 0 for all m ≥ 0. (4.4)

Then, for every s ∈ N0 one has

φs(X) := φNs (X) = φMs (X) for all M,N ≥ ‖X‖R∞ ,

and the family (φt)t∈N0 is time-consistent in the sense of (4.1). Further, φ0 satisfies (i)–
(iii) of Definition 2.1, and φ0(X) = limn→∞ φ0(Xn) for every sequence (Xn) in R∞
and X ∈ R∞ such that Xn ≥ Xn+1 and Xn

t → Xt P-almost surely for all t ∈ N.
Under the additional assumption (G4), φ0 is a concave risk assessment. If the gener-

ators satisfy (G3’) instead of (G3) then φ0 is locally continuous from below.
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Remark 4.2 For instance, condition (4.4) holds if for every ε > 0 there exists β(ε) with
0 ≤ β(ε) < 1 such that Gs(0,m) ≤ β(ε)m for all m ≥ ε and Gs(0,m) ≤ ε whenever
m < ε for eventually all s.

Proof: We first show that the definition of φNs does not depend on N ≥ ‖X‖R∞ . To
that end, we fix X ∈ R∞ and M ≥ N ≥ ‖X‖R∞ . For every ε > 0 there exists t ∈ N
such that

ε+ φN0 (X) ≥ G0(X1, ·) ◦ · · · ◦Gt−1(Xt, N).

In view of (G1) one has

Gt(N, ·) ◦ · · · ◦Gt′−1(N,M) = N +Gt(0, ·) ◦ · · · ◦Gt′−1(0,M −N)

for all t′ ≥ t+ 1. Thus, by condition (4.4), (G1) and (G2) there exists t′ ≥ t such that

φN0 (X) + 2ε ≥ G0(X1, ·) ◦ · · · ◦Gt−1(Xt, N) + ε

≥ G0(X1, ·) ◦ · · · ◦Gt−1(Xt, ·) ◦Gt(N, ·) ◦ · · · ◦Gt′−1(N,M)

≥ G0(X1, ·) ◦ · · · ◦Gt−1(Xt, ·) ◦Gt(Xt+1, ·) ◦ · · · ◦Gt′−1(Xt′ ,M)

≥ φM0 (X).

Since φN0 (X) ≤ φM0 (X) by (G2), we get φN0 (X) = φM0 (X), which shows that φ0 is
well-defined. The argumentation for φs works analogously, however t and t′ have to be
chosen Fs-measurable with values in N.

As for the time-consistency (4.1), the conditions (G2) and (G3) imply

φs
(
X1I(s,t] + φt(X)1I(t,∞)

)
=Gs(Xs+1, ·) ◦ · · · ◦Gt−1(Xt, φt(X))

=Gs(Xs+1, ·) ◦ · · · ◦Gt−1(Xt, ·) ◦
(

inf
t′≥t+1

Gt(Xt+1, ·) ◦ · · · ◦Gt′−1(Xt′ , N)

)
= inf
t′≥t+1

Gs(Xs+1, ·) ◦ · · · ◦Gt−1(Xt, ·) ◦Gt(Xt+1, ·) ◦ · · · ◦Gt′−1(Xt′ , N)

=φs(X),

for all N ≥ ‖X‖R∞ .
To show that φ0 is continuous from above, let (Xn) be a decreasing sequence inR∞

such that N := supn∈N ‖Xn‖R∞ <∞ and Xn
t → Xt P -almost surely for all t ∈ N for

some X ∈ R∞. For every ε > 0 there exists a time horizon t ∈ N such that

φ0(X) + ε ≥ G0(X1, ·) ◦ · · · ◦Gt−1(Xt, N))

= lim
n→∞

G0(Xn
1 , ·) ◦ · · · ◦Gt−1(Xn

t , N)

≥ lim
n→∞

φ0(Xn).

On the other hand, φ0(Xn) ≥ φ0(X) for all n ∈ N, so that limn→∞ φ0(Xn) = φ0(X).
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In case that the generators satisfy (G3’), for all T ∈ N we have

φ0(X1I(0,T ) +XT 1I[T,∞)) = G0(X1, ·) ◦ · · · ◦GT−1(XT , XT ))

= lim
n→∞

G0(Xn
1 , ·) ◦ · · · ◦GT−1(Xn

T , X
n
T )

= lim
n→∞

φ0(Xn1I(0,T ) +Xn
T 1I[T,∞))

for every sequence (Xn) in R∞T which increases to some X ∈ R∞T , which shows that
φ0 is locally continuous from below. 2

Proposition 4.3 Suppose that the generators (Gs)s∈N0 satisfy (G0)–(G3’) and condition
(4.4). If in addition

lim sup
t→∞

sup
N∈N

Gt(0, N) <∞, (4.5)

then φ0 is asymptotically stable.

Proof: For every X ∈ R∞ and N ∈ N one has

φ0

(
X1I(0,t] +N1I(t,∞)

)
= φ0

(
X1I(0,t) + φt−1

(
X1I{t} +N1I(t,∞)

)
1I[t,∞)

)
≤ φ0

(
X1I(0,t) +Gt−1(‖X‖R∞ , ‖X‖R∞ +N)1I[t,∞)

)
≤ φ0

(
X1I(0,t) + [‖X‖R∞ +Gt−1(0, N)] 1I[t,∞)

)
for all t ∈ N. Hence, by (4.5) there exist t0 ∈ N and a constant C ∈ N such that

sup
N∈N

(
φ0

(
X1I(0,t) +N1I[t,∞)

)
− φ0(X)

)
≤ φ0

(
X1I(0,t) + (‖X‖R∞ + C) 1I[t,∞)

)
− φ0(X)

for all t ≥ t0. Since φ0 is continuous from above, the right hand side tends to zero as t
goes to infinity. Hence

lim
t→∞

sup
N∈N

(
φ0

(
X1I(0,t) +N1I[t,∞)

)
− φ0(X)

)
= 0,

showing that φ0 satisfies (A2). 2

5 Examples
In this section, we construct examples of generators which satisfy the conditions (G0)–
(G3’), (4.4) and (4.5). To that end, we consider generators of the form

Gs(X,Y ) := ψs (X + hs(Y −X)) , s ∈ N0, (5.1)

where ψs : L∞s+1 → L∞s such that

(p0) ψs(0) = 0,
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(p1) ψs(Z +m) = ψs(Z) +m for all m ∈ L∞s ,

(p2) ψs(Z1) ≥ ψs(Z2) whenever Z1 ≥ Z2,

(p3) ψs(Zn)→ ψs(Z) for every sequence (Zn) which increases to Z,

(p4) ψs(λZ1+(1−λ)Z2) ≥ λψs(Z1)+(1−λ)ψs(Z
2) for all λ ∈ L∞s with 0 ≤ λ ≤ 1,

and the function hs : R→ R satisfies

(h0) hs(0) = 0,

(h1) hs(z +m) ≤ hs(x) +m for all z ∈ R and m ≥ 0,

(h2) hs(z1) ≥ hs(z2) whenever z1 ≥ z2,

(h3) hs is continuous,

(h4) hs is concave.

A straightforward application of Theorem 4.1, Remark 4.2 and Proposition 4.3 is
then:

Proposition 5.1 Let (Gs)s∈N0 be a sequence of generators of the form (5.1) which satisfy
(p0)–(p4), (h0)–(h4), for every ε > 0 there exists 0 ≤ β(ε) < 1 such that hs(m) ≤
β(ε)m for all m ≥ ε and hs(m) ≤ ε whenever m < ε, and

lim sup
s→∞

sup
z∈N

hs(z) <∞.

Then the generators Gs satisfy (G0)–(G2), (G3’), (G4). The corresponding concave risk
assessment φ0 is locally continuous from below and asymptotically stable.

Proof: Clearly, such generators Gs satisfy (G0) and (G1). As for the monotonicity (G2),
for X1 ≥ X2 and Y 1 ≥ Y 2 we have X2 +hs(Y

2−X2) ≤ X1 +hs(Y
2−X1) by (h1)

so that

Gs(X
1, Y 1) = ψs(X

1 + hs(Y
1 −X1)) ≥ ψs(X1 + hs(Y

2 −X1))

≥ ψs(X
2 + hs(Y

2 −X2)) = Gs(X
2, Y 2).

To show (G3’) let (Xn, Y n) be a sequence which increases to (X,Y ). Then Xn +
hs(Y

n −Xn) increases to X + hs(Y −X) by (h1)–(h3) so that Gs(Xn, Y n) increases
to Gs(X,Y ). By (p2) and (h4), it holds that

ψs
(
λX1 + (1− λ)X2 + hs(λ(Y 1 −X1) + (1− λ)(Y 2 −X2))

)
≥ ψs

(
λX1 + (1− λ)X2 + λhs(Y

1 −X1) + (1− λ)hs(Y
2 −X2)

)
≥ λψs(X1 + hs

(
Y 1 −X1)

)
+ (1− λ)ψs(X

2 + hs
(
Y 2 −X2)

)
,
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which shows (G4).
Finally, that φ0 is an asymptotically stable risk assessment follows from Theorem 4.1

and Proposition 4.3 since

Gs(0,m) = ψs(hs(m)) = hs(m)

implies (4.4) by Remark 4.2 and (4.5). 2

Notice that Proposition 5.1 allows to construct time-consistent risk assessments which
are asymptotically stable. For instance, the generators

Gs(X,Y ) = ψs (X + hs(Y −X))

can be defined through the negative of a conditional risk measure ψs such as the entropic
utility function

ψs(Z) =
1

γ
log (E [exp(−γZ) | Fs])

with risk aversion parameter γ, and discounting functions such as

• hs(z) = −z−

• hs(z) = 1− exp(−z+)− z−,

where z+ := max(x, 0) and z− := max(−z, 0), and which both satisfy the assumptions
of Proposition 5.1. Alternatively, ψs could be chosen as the negative of the conditional
Value at Risk for which (p4) does not hold, or the conditional Average Value at Risk.
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bounded càdlàg processes. Stochastic Processes and their Applications, 112:1–22,
2004.

[5] P. Cheridito, F. Delbaen, and M. Kupper. Dynamic monetary risk measures for
bounded discrete-time processes. Electronic Journal of Probability, 11:57–106,
2006.



14 Eisele – Kupper

[6] P. Cheridito and M. Kupper. Composition of time-consistent dynamic monetary risk
measures in discrete time. Intern. Journal of Theor. and Applied Finance, 14:137–
162, 2011.

[7] F. Delbaen. Coherent risk measures on general probability spaces. Advances in
Finance and Stochastics, pages 1–38, 2002.

[8] F. Delbaen. Monetary utility functions. Lecture Notes: University of Osaka, Osaka,
2011.

[9] N. Dunford and J. Schwartz. Linear Operators, Part I. Interscience Publ. New
York, 1957.

[10] K.-Th. Eisele and Ph. Artzner. Multiperiod insurance supervision: top-down mod-
els. European Actuarial Journal, 1:107–130, 2011.
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