
A Fourier Approach to the Computation of CV@R
and Optimized Certainty Equivalents
Samuel Drapeaua,1,∗, Michael Kupperb,2, Antonis Papapantoleonc,3,†

July 2, 2013

ABSTRACT

We consider the class of risk measures associated with op-
timized certainty equivalents. This class includes several
popular examples, such as CV@R and monotone mean-
variance. Numerical schemes are developed for the com-
putation of these risk measures using Fourier transform
methods. This leads, in particular, to a very competitive
method for the calculation of CV@R which is compara-
ble in computational time to the calculation of V@R. We
also develop methods for the efficient computation of risk
contributions.
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Introduction

The quantification of risk is more than ever a central issue in modern asset and risk management.
The increasing volume and complexity of financial instruments have raised the need not only for
coherent but also for efficient and accurate risk measurement methods. In the banking industry, a
vast amount of positions and portfolios have to be assessed daily, which makes the computational
speed of risk measurement methods a matter of paramount importance. Starting with Value at
Risk (V@R), the goal of risk measures was to quantify the minimal amount of capital required
in order to recover from unexpected large losses. V@R became very popular—see also the
Basel II capital requirements—and is nowadays a standard instrument in the industry mainly
for two reasons. Firstly, it has an apparently obvious financial interpretation: it is the minimal
amount of capital that has to be added to a position in order to push the probability of losses
below a threshold level. Secondly, it has an easy and fast implementation: given a portfolio
distribution, it simply amounts to the computation of the quantile of this distribution at the
threshold level. However, V@R has a very serious deficiency; namely, it does not fulfill the
basic property of diversification. Indeed, it may well happen that V@R delivers a lower risk for
a portfolio concentrated in a single asset rather than for one diversified into several assets.

In order to overcome this drawback, Artzner, Delbaen, Eber, and Heath [1] introduced an
axiomatic approach to coherent risk measures inciting diversification. An important example of
such a risk measure is the Conditional Value at Risk (CV@R), which is strongly related to the
Average Value at Risk and the Expected Shortfall. The seminal paper on coherent risk measures
[1] was later generalised to monetary convex risk measures by Föllmer and Schied [21] and
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Frittelli and Rosazza Gianin [23] providing new examples, the most prominent of which are the
entropic and the shortfall risk measures. An important application of these new risk measurement
methods is the portfolio optimization scheme with respect to CV@R developed by Rockafellar
and Uryasev [32]. However, the literature on numerical methods for risk measures has mostly
concentrated on V@R; see Glasserman [24] for an overview. In the area of credit risk, there
is more intense activity on computational methods for CV@R and other coherent or convex
risk measures, see e.g. Kalkbrener et al. [26]. Moreover, most of this literature concentrates on
simulation-based methods, see e.g. Bardou, Frikha, and Pagès [2] and Dunkel and Weber [16]
as well as the references therein.

Compared to V@R though, coherent and convex risk measures are typically more difficult to
calculate and more costly in terms of computational time. Taking CV@R as an example, instead
of computing the quantile of the distribution at one level, it accounts for an integration of the
quantile function over an interval, which increases significantly the computational complexity.

The goal of this paper is to focus on a specific class of risk measures, the optimized certainty
equivalents which were introduced by Ben-Tal and Teboulle [5, 6], and to use Fourier methods
and deterministic root-finding schemes in order to compute them efficiently. The first reason for
choosing this class is that it contains most of the classical examples: CV@R, the entropic risk
measure, and monotone Mean-Variance among others. The second reason is that, due to its nice
smoothness properties, it provides a fairly easy scheme for the numerical computation. This can
be summarized in the following two steps:

1. Solve an allocation problem using a one dimensional root finding algorithm and transform
methods;

2. Based on this optimal allocation, compute an expectation using transform methods.

The terminus ‘transform method’ indicates any method that uses the characteristic or moment
generating function of a random variable for the computation of expectations. This includes the
Fourier transform method of Carr and Madan [8], the Laplace transform method of Raible [31]
and the cosine series expansion of Fang and Oosterlee [20]. We will use Fourier transfroms and
follow the work of Eberlein, Glau, and Papapantoleon [19] closely, while we refer to Schmelzle
[34] for a comprehensive overview and numerous references. Similarly, the term ‘root finding
algorithm’ refers to any method for determining the root of a function; e.g. bisection, secant
or Newton’s method, cf. Stoer and Bulirsch [36] for an overview. We will actually use Brent’s
algorithm, which combines the bisection, the secant and the inverse interpolation methods (see
Brent [7]) for determining the roots of equations.

Transform methods have been introduced to mathematical finance for option pricing, see for
instance [8, 31], and have proved a very efficient tool when the moment generating function of
the underlying random variable is known. This is the case, in particular, for infinitely divisible
distributions (i.e. Lévy models) and affine processes. In the context of risk measurement, the
application of transform methods has been largely unexplored; see Kim, Rachev, Bianchi, and
Fabozzi [28] for an application to the computation of CV@R. Fourier transform methods turn
out to be a very efficient tool for the computation of optimized certainty equivalents as well. In
particular, the calculation of CV@R using Fourier methods has similar computational complex-
ity to the computation of V@R, thus both risk measures can be computed in almost the same
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amount of time. This should be a further argument supporting the use of CV@R in practical
applications.

This paper is organized as follows: in section 1 we present the optimized certainty equivalents
and their connections to risk measures. The representation of risk contributions in this framework
is also discussed. In section 2, we develop computational methods for optimized certainty equiv-
alents using Fourier methods and deterministic root-finding algorithms. We concentrate on the
study of the entropic risk measure, conditional value at risk and polynomial risk measures. We
also illustrate the scope of applications by presenting some realistic scenarios where this method
applies particularly well, and provide examples for the computation of risk contributions. In the
last section, we compare the computational efficiency and accuracy of the developed schemes
with respect to several other methods.

1 Optimized Certainty Equivalent

The first section is devoted to the class of risk measures associated with optimized certainty
equivalents. They are induced by a (parametric) loss function, which can be used to describe
the relative risk aversion of an agent. Optimized certainty equivalents generate naturally quasi-
convex risk measures, and we also discuss risk contributions in this framework.

Let (Ω,F , P ) be an atomless probability space. By L0 we denote the set of random vari-
ables identified when they coincide P -almost surely. By Lp we denote the set of those random
variables in L0 with finite p-norm.

Definition 1.1. A function l : R→ R is called a loss function if

(i) l is increasing and convex;

(ii) l(0) = 0 and 1 ∈ ∂l(0);

(iii) l(x) ≥ bx+ c and l(x) ≥ b′x+ c′ for all x ∈ R for b > 1 > b′ and c, c′ ≤ 0.

Denote by l∗ the convex conjugate of l, that is, l∗(y) = supx∈R{xy− l(x)}. Following Cheridito
and Li [10, 11], we define the Orlicz heart

Xl :=
{
X ∈ L0 : E [l(c |X|)] < +∞ for all c > 0

}
(1.1)

which is, for the P -almost sure ordering and the l-Luxembourg norm

‖X‖l := inf

{
a > 0 : E

[
l

(
|X|
a

)]
≤ 1

}
, (1.2)

a Banach lattice. The norm dual of Xl is the Orlicz space

X ∗l :=
{
Y ∈ L0 : E [l∗(c |Y |)] < +∞ for some c > 0

}
(1.3)

with the Orlicz norm
‖Y ‖∗l := sup {E[Y X] : ‖X‖l ≤ 1} , (1.4)
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Figure 1: Plot of exponential, quadratic and piecewise linear loss functions (cf. section 3).

which is equivalent to the Luxembourg norm ‖·‖l∗ . Since l(x) ≥ x for all x ∈ R+, it follows
that Xl ⊆ L1.

We denote withM1,l∗(P ) the set of those probability measures on F which are absolutely
continuous with respect to P and whose densities are in X ∗l . We consider risk measures in the
following sense.

Definition 1.2. A risk measure is a function ρ : Xl → [−∞,+∞] which is

(i) quasi-convex: ρ(λX + (1− λ)Y ) ≤ max{ρ(X), ρ(Y )} for all X,Y ∈ Xl and λ ∈]0, 1[;

(ii) monotone: ρ(X) ≥ ρ(Y ) whenever X ≤ Y for X,Y ∈ Xl.

A risk measure is called monetary if it is

(iii) cash additive: ρ(X +m) = ρ(X)−m for all m ∈ R and all X ∈ Xl.

As is well-known, any monetary risk measure is automatically convex, see [9, 13, 15, 23] and
the references therein.

Given a loss function l, we define the Optimized Certainty Equivalent (OCE) introduced in
[5, 6]—to which we refer for further interpretation—as follows

ρ(X) := inf
η∈R
{E [l (η −X)]− η} = inf

η∈R
Sl (η,X) , X ∈ Xl, (1.5)
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whereby
Sl (η,X) := E [l (η −X)]− η, η ∈ R and X ∈ Xl. (1.6)

The following proposition is known up to minor differences in the assumptions. See [6, 37] for
the case Xl = L∞, [12] for the case where l is differentiable, and [11] for the computation of
the dual representation in the general case. For the sake of readability, we provide a short proof
based on results in [10].

Proposition 1.3. Consider a loss function l. Then, the Optimized Certainty Equivalent is a lower
semicontinuous cash additive risk measure taking values in R. Furthermore, for any X ∈ Xl,
there exists an optimal allocation η∗ := η∗(X) ∈ R such that

ρ (X) := E [l (η∗ −X)]− η∗ (1.7)

and this optimal allocation η∗ belongs to [ess inf X, ess supX] and satisfies

E
[
l′ (η∗ −X)

]
≤ 1 ≤ E

[
l′+ (η∗ −X)

]
(1.8)

where l′ and l′+ denote the left- and right-hand derivatives of l respectively.
Finally, the OCE has the representation

ρ(X) = max
Q∈M1,l∗ (P )

{
EQ [−X]− EP

[
l∗
(
dQ

dP

)]}
, X ∈ Xl. (1.9)

This supremum is attained for thoseQ∗ ∈M1,l∗(P ) where the density is such that l′(η∗−X) ≤
dQ∗/dP ≤ l′+ (η∗ −X), while η∗ fulfills (1.7).

Proof. Since l(x) ≥ x and Xl ⊆ L1, it holds Sl(η,X) ≥ E[−X] > −∞, hence ρ(X) > −∞.
On the other hand, Sl(0, X) ≤ E[l(X−)] ≤ E[l(|X|)] < +∞ since X ∈ Xl. Hence ρ(X) <
+∞.

Let us show that we have an optimal allocation determined by means of relation (1.8). Given
X ∈ Xl, the function η 7→ Sl(η,X) is real-valued and convex. Furthermore, it holds

Sl (η,X) ≥ E [−bX + bη + c]− η ≥ (b− 1)η − bE[X] + c

which goes to +∞ as η tends to +∞ since b − 1 > 0. A similar argumentation with b′, c′

implies that Sl(η,X) goes to +∞ as η tends to −∞ since b′ − 1 < 0. Hence, there exists
a minimum η∗ ∈ R such that (1.7) holds. A straightforward argumentation shows that η∗ ∈
[ess inf X, ess supX]. This optimal allocation fulfills the first order optimality criteria

lim
ε↗0

Sl(η
∗ + ε,X)− Sl(η∗, X)

ε
≤ 0 ≤ lim

ε↘0

Sl(η
∗ + ε,X)− Sl(η∗, X)

ε
.

A straightforward application of Lebesgue’s dominated convergence theorem allows to inter-
change limits and expectations and get relation (1.8).

The fact that ρ is a cash additive risk measure is well-known, see [6]. The conditions of [10,
Theorem 2.2] are fulfilled and it holds

ρ(X) = max
Q∈M1,l∗ (P )

{EQ[−X]− α(Q)} , X ∈ Xl

5



where
α(Q) := sup

X∈Xl
{EQ[−X]− ρ(X)} , Q ∈M1,l∗(P ). (1.10)

However, since Xl is a decomposable space in the sense of Rockafellar and Wets [33, Definition
14.59] and l is a normal integrand, we can apply [33, Thereom 14.60] which yields

α(Q) = sup
X∈Xl,η∈R

{
E

[
−dQ
dP

X

]
+ η − E [l (−X + η)]

}
= sup

η∈R

{
E

[
sup
x∈R

{
−dQ
dP

x− l(−x+ η)

}]
+ η

}
= sup

η∈R

{
E

[
sup
x∈R

{
dQ

dP
(x− η)− l(x)

}]
+ η

}
= sup

η∈R

{
E

[
l∗
(
dQ

dP

)]
+ η

(
1− E

[
dQ

dP

])}
= E

[
l∗
(
dQ

dP

)]
.

This shows equation (1.9). The representation in terms of the optimal density follows along the
lines of [12], by suitably adapting the proof in the case where l is only convex and not necessarily
differentiable. �

The risk contribution of a risk factor Y to a portfolio X is defined as follows

RC (X;Y ) := lim sup
ε↓0

ρ(X + εY )− ρ(X)

ε
. (1.11)

In the framework of Optimized Certainty Equivalent, this can also be computed explicitly.

Proposition 1.4. Let X,Y ∈ Xl. If l is differentiable or X has a continuous distribution, then

RC(X;Y ) = −E
[
Y l′ (η∗ −X)

]
, (1.12)

where η∗ satisfies E[l′(η∗ −X)] = 1. Otherwise, we have the following bounds

E
[
Y −l′ (η∗ −X)− Y +l′+ (η∗ −X)

]
≤ RC (X;Y ) ≤ E

[
Y −l′+ (η∗ −X)− Y +l′ (η∗ −X)

]
,

for η∗ such that E [l′ (η∗ −X)] ≤ 1 ≤ E
[
l′+ (η∗ −X)

]
.

Proof. In case l is differentiable and strictly convex, the proof can be found in [12, Theorem
3.1]. Below we sketch the proof for the general case. Let η∗ be such that E[l′(η∗ −X)] ≤ 1 ≤
E[l′+(η∗ − X)], that is ρ(X) = Sl(η

∗, X) = E[l(η∗ − X)] − η∗. Using the convexity and
monotonicity of l, and that −l(x) ≤ −x, we deduce for 0 < ε < 1/2 that it holds

l (Z − εY )− l(Z)

ε
≤ 1

1− ε
(
l
(
Z − (1− ε)Y

)
− l (Z)

)
≤ 2
(
l (|Z|+ |Y |) + |Z|

)
∈ L1

for every Z, Y ∈ Xl. Hence, by dominated convergence, it follows that

lim sup
ε↓0

ρ(X + εY )− ρ(X)

ε
= lim sup

ε↓0

ρ(X + εY )− Sl(η∗, X)

ε

≤ lim sup
ε↓0

Sl(η
∗, X + εY )− Sl(η∗, X)

ε
≤ E

[
lim sup
ε↓0

l (η∗ −X − εY )− l (η∗ −X)

ε

]
= E

[
Y −l′+(η∗ −X)− Y +l′ (η∗ −X)

]
.
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On the other hand, let Z ∈ Xl∗ such that l(η∗ − X) ≤ Z ≤ l+(η∗ − X) and E[Z] = 1.
It follows that ZY ≤ Y +l′+(X − η∗) − Y −l′(η∗ − X). By means of (1.9), it follows that
ρ(X) = −E[ZX − l∗(Z)] and

ρ(X + εY ) ≥ −E [Z(X + εY )]− E [l∗(Z)] = ρ(X)− εE [ZY ]

≥ ρ(X) + εE
[
Y −l′(η∗ −X)− Y +l′+(X − η∗)

]
Hence,

lim inf
ε↓0

ρ (X + εY )− ρ (X)

ε
≥ E

[
Y −l′(η∗ −X)− Y +l′+(X − η∗)

]
,

showing the bounds. If l is differentiable then l′ = l′+ and the lower and upper bounds coincide.
If X has a continuous distribution, the set {l′(η∗−X) = l′+(η∗−X)} has measure one since l′

has only a countable number of discontinuity points, which concludes the proof. �

2 Numerical Computation of Optimized Certainty Equivalents

In this section, we develop numerical schemes for the computation of optimized certainty equiv-
alents based on transform methods and deterministic root finding algorithms. We also discuss
the applicability of these methods for different risk scenarios, and provide an example for the
computation of risk contributions. In general, the computation of the optimal allocation η∗ and
the risk measure ρ(X) in Proposition 1.3 can be performed in two steps:

Step 1: use a deterministic root finding algorithm to compute η∗ in (1.8), combined with trans-
form methods for the computation of the expectations;

Step 2: use transform methods once more to compute the expectation E[l(η∗ −X)] and thus
ρ(X).

Let l be a loss function as described in the previous section and denote by lR the dampened
loss function, defined by lR(x) := e−Rxl(x), for R ∈ R. Moreover, let f̂ denote the Fourier
transform of a function f , i.e. f̂(u) =

∫
eiuxf(x)dx, andMX the (extended) moment generating

function of X , i.e. MX(u) = E[euX ], for suitable u ∈ C. By L1, resp. L1
bc, we denote the set

of measurable functions on the real line which are integrable, resp. bounded, continuous and
integrable, with respect to the Lebesgue measure. We also denote by K◦ the interior of a set K
and by =(z) the imaginary part of the complex number z.

The next Theorem provides a general scheme for the computation of optimal allocations and
risk measures in our framework following the two-step procedure described above.

Theorem 2.1. Let X ∈ Xl and define

I := {R ∈ R : MX(R) <∞} (2.1)

J :=
{
R ∈ R : lR ∈ L1

bc and l̂R ∈ L1
}

(2.2)

J ′ :=
{
R ∈ R : l′R ∈ L1

bc and l̂′R ∈ L
1
}
. (2.3)

Assume that the following condition holds:
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(A-I) I ∩ J 6= ∅ and I ∩ J ′ 6= ∅.
Then the optimal allocation η∗ is the unique root of the equation f(η) = 0, where

f(η) =
1

2π

∫
R

e(R
′−iu)ηMX(iu−R′)l̂′(u+ iR′)du− 1, (2.4)

with R′ ∈ I ∩ J ′, and can be computed by a deterministic root finding scheme. Once η∗ has
been determined, the risk measure has the following representation:

ρ(X) =
1

2π

∫
R

e(R−iu)η
∗
MX(iu−R)l̂(u+ iR)du− η∗, (2.5)

for R ∈ I ∩ J .

Proof. Since we have assumed that the derivative of the loss function is continuous, (1.8) yields
that the optimal allocation η∗ is the unique root of the equation f(η) = 0, where

f(η) = E[l′(η −X)]− 1.

The Fourier representation of the function f follows directly from [19, Theorem 2.2]. In addition,
once η∗ has been computed by a deterministic root-finding algorithm, (1.7) yields that

ρ(X) = E[l(η∗ −X)]− η∗

and the Fourier representation follows again from [19, Theorem 2.2]. �

Remark 2.2. The assumption of continuity of l′ can be easily relaxed by assuming more regu-
larity of the random variable X; see the ‘dual’ conditions in [19, Remark 2.3]. Moreover, we
often divide the loss function between R+ and R− where the two parts have different growth
and regularity, and therefore we consider distinct sets J1 and J2 for each one of them. This is,
for instance, the case in the subsequent examples. �

The root of the equation f(η) = 0 can be determined by standard root-finding algorithms, see
e.g. Stoer and Bulirsch [36] or Press et al. [30]. A natural choice is to use the secant method,
where one starts with two initial values η0, η1 such that f(η0) 6= f(η1) and the root η∗ =
limk→∞ ηk. The sequence (ηk) is determined by the recursion

ηk+1 = ηk − f(ηk) ·
ηk − ηk−1

f(ηk)− f(ηk−1)
.

This method converges with superlinear rate if the initial values are sufficiently close to the root.
A more convenient choice is to use Brent’s method, which combines the bisection, the secant
and the inverse quadratic interpolation methods; see Brent [7] for all the details. This method
is guaranteed to converge and the rate is again superlinear (equal to 1+

√
5

2 ) if the function is
continuously differentiable near the root. In the numerical examples, we will use Brent’s method,
since this is the standard root-finding algorithm implemented in Matlab.

Remark 2.3. Although l′ might not be continuously differentiable (or even continuous), f could
still be continuously differentiable if the random variable X is sufficiently regular, since the
density of X will ‘smoothen’ f . �
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2.1 Explicit Fourier Representation for OCEs

In the following subsections, we provide explicit formulas for the computation of optimal al-
locations and OCE-based risk measures using Fourier methods and deterministic root finding
schemes. Before proceeding with examples of loss functions that fit into our framework, we will
briefly review Value at Risk.

2.1.1 Value at Risk

Denote the upper quantile function of the random variable X by q+X , that is

q+X(u) = inf{x ∈ R : P (X ≤ x) > u}.

Then, the Value at Risk (V@R) at some level λ ∈ (0, 1) is defined as

V@Rλ(X) = −q+X(λ),

see e.g. Föllmer and Schied [22, Section 4.4]. Value at Risk can be computed in a similar fashion
to the OCE-based risk measures in Theorem 2.1, i.e. by combining a Fourier representation for
the cumulative distribution function with a root-finding algorithm.

2.1.2 Entropic Risk Measure

A classical example that fits in this framework is the entropic loss function

l(x) =
eγx − 1

γ

with γ > 0. The derivative and the conjugate functions are

l′(x) = eγx and l∗(y) =
y ln(y)

γ
− y − 1

γ
.

The optimal allocation η∗ and the risk measure ρ(X) can be computed explicitly and are pro-
vided by

η∗ = −1

γ
ln
(
E
[
e−γX

])
,

ρ(X) = −η∗ =
1

γ
ln
(
E
[
e−γX

])
= sup

Q∈M1,l∗ (P )

{
EQ [−X]− EQ

[
ln

(
dQ

dP

)]}
.

There exist many models where the moment generating function, i.e. the quantity E[e−γX ], is
known explicitly, for example Lévy or Sato processes and affine models. In this case, also η∗

and ρ(X) can be computed explicitly.
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2.1.3 Conditional Value at Risk

The most interesting example from the point of view of practical applications is Conditional
Value at Risk, also known as Average Value at Risk or Expected Shortfall. These notions coin-
cide if X has a continuous distribution, see [22, Corollary 4.49]. Conditional Value at Risk is a
special case of an OCE where the loss function is

l(x) = −γ1x− + γ2x
+ =

{
γ1x if x ≤ 0

γ2x if x > 0,
(2.6)

with γ2 > 1 > γ1 ≥ 0. The left-hand derivative equals

l′(x) = γ11{x≤0} + γ21{x>0},

while the conjugate function is

l∗(x) =

{
0 if γ2 ≤ x ≤ γ1
+∞ otherwise .

In case γ1 = 0, the resulting risk measure corresponds to the standard CV@R with parameter
1/γ2, see for instance [32]. The optimal allocation can be computed explicitly, in terms of the
quantile function q+X of X , and is provided by

η∗ = q+X

(
1− γ1
γ2 − γ1

)
. (2.7)

The following representation for this risk measure is also standard in the literature

ρ (X) = −γ2

1−γ1
γ2−γ1∫
0

q+X(s)ds− γ1

1∫
1−γ1
γ2−γ1

q+X(s)ds (2.8)

= sup
Q∈M1,l∗ (P )

{EQ [−X] : γ1 ≤ dQ/dP ≤ γ2} . (2.9)

In particular, for the special case of CV@R with parameter λ = 1/γ2, it holds that η∗ = q+X (λ)
and

CV@Rλ(X) = − 1

λ

λ∫
0

q+X(s)ds =
1

λ

λ∫
0

V@Rs(X)ds. (2.10)

The aim of the next result is to provide an alternative representation for ρ(X) using Fourier
transform methods.

Proposition 2.4. Assume that the optimal allocation η∗ is computed by (2.7). Let X ∈ L0 be
a random variable such that 0 ∈ I◦. Then X ∈ L1 = Xl and the risk measure ρ admits the
following representation

ρ(X) =
γ1
2π

∫
R

e(R1−iu)η∗

(u+ iR1)2
MX(iu−R1)du−

γ2
2π

∫
R

e(R2−iu)η∗

(u+ iR2)2
MX(iu−R2)du−η∗, (2.11)
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where R1 ∈ I ∩ (−∞, 0) and R2 ∈ I ∩ (0,+∞). In particular, for CV@R we get

CV@Rλ(X) = − 1

2πλ

∫
R

e(R−iu)η
∗

(u+ iR)2
MX(iu−R)du− η∗, (2.12)

where λ = 1/γ2 and R ∈ I ∩ (0,+∞).

Proof. The loss function grows linearly, while X has finite exponential moments, thus Xl = L1

and X ∈ L1. Since η∗ is already computed using the first order condition (1.8) for the loss
function (2.6), see (2.7), we will apply the second part of Theorem 2.1 directly to representation
(1.7). We get

ρ(X) = E [l(η∗ −X)]− η∗ = E
[
−γ1(η∗ −X)− + γ2(η

∗ −X)+
]
− η∗

= −γ1E
[
(X − η∗)+

]
+ γ2E

[
(η∗ −X)+

]
− η∗

= − γ1
2π

∫
R

e(R1−iu)η∗MX(iu−R1)l̂1(u+ iR1)du

+
γ2
2π

∫
R

e(R2−iu)η∗MX(iu−R2)l̂2(u+ iR2)du− η∗, (2.13)

for R1 ∈ I ∩ J1, R2 ∈ I ∩ J2, where we define the functions

l1(x) = (−x)+ and l2(x) = (x)+.

Now, we just have to compute the Fourier transforms of the functions l1 and l2, determine the
sets J1 and J2, and show that the prerequisites of Theorem 2.1 are satisfied.

The Fourier transform of l1, for z ∈ C with =(z) ∈ (−∞, 0), is provided by

l̂1(z) =

∫
R

eizx(−x)+dx = −
0∫

−∞

eizxxdx = − x
iz

eizx
∣∣∣0
−∞

+
1

(iz)2
eizx
∣∣∣0
−∞

= − 1

z2
, (2.14)

while for l2 we get the same formula, that is

l̂2(z) = − 1

z2
, (2.15)

where now z ∈ C with =(z) ∈ (0,+∞). The corresponding dampened payoff functions are

l1,R1(x) = e−R1x(−x)+ and l2,R2(x) = e−R2x(x)+. (2.16)

Clearly, for R1 < 0 and R2 > 0, these functions are bounded and continuous, while from (2.14)
it directly follows that l1,R1 , l2,R2 ∈ L1. A direct computation shows that also l1,R1 , l2,R2 ∈ L2.
Indeed,

‖l1,R1‖
2
L2 =

∫
R

|l1,R1(x)|2 dx =

0∫
−∞

e−2R1xx2dx =
1

4R3
1

<∞, (2.17)
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while the computation for l2,R2 is completely analogous. We can also examine the weak deriva-
tives of l1,R1 , l2,R2 ; we get that

∂l1,R1(x) =

{
e−R1x(R1x− 1) for x > 0

0 for x < 0
(2.18)

from which we can directly deduce that ∂l1,R1 ∈ L2, while the same is true for ∂l2,R2 . Thus,
l1,R1 , l2,R2 belong to the Sobolev space

H1(R) =
{
g ∈ L2 : ∂g exists and ∂g ∈ L2

}
(2.19)

and using [19, Lemma 2.5] we can conclude that l̂1,R1 , l̂2,R2 are integrable. Therefore, J1 =
(−∞, 0) and J2 = (0,+∞).

Finally, since 0 ∈ I◦, we have that I ∩ J1 6= ∅ and I ∩ J2 6= ∅, hence assumption (A-I) is
satisfied. The result now follows by substituting (2.14)–(2.15) into (2.13). �

2.1.4 Polynomial Loss Function

Another interesting example is the class of polynomial loss functions. The polynomial loss func-
tion is defined by

l(x) =

(
[1 + x]+

)γ − 1

γ
(2.20)

for γ ∈ N, γ > 1. The case γ = 2 corresponds to the Monotone Mean-Variance, cf. [37]. The
derivative equals

l′(x) =
(
[1 + x]+

)γ−1
, (2.21)

and the conjugate function is provided by

l∗(y) =


(1− γ)y

γ
γ−1 − γy − 1

γ
if y ≥ 0

+∞ otherwise.
(2.22)

In this class of loss functions, neither the optimal allocation nor the OCE can be computed
explicitly, and one has to resort to numerical methods for both.

Proposition 2.5. Let X ∈ L0 be a random variable such that 0 ∈ I◦. Then X ∈ Xl = Lγ and
the optimal allocation is the unique solution of the equation f(η) = 0 where

f(η) =
(γ − 1)!

2π

∫
R

MX(iu−R)
e(iu−R)(1+η)

(iu−R)γ
du− 1, (2.23)

withR ∈ I∩(−∞, 0). Once η∗ is determined, the polynomial loss function risk measure admits
the following representation

ρ(X) =
(γ − 1)!

2π

∫
R

MX(iu−R)
e(iu−R)(1+η∗)

(iu−R)γ+1
du− 1

γ
− η∗. (2.24)
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Proof. We start by computing the Fourier transform of the following function:

ϕ(x) = [(−x)+]n (2.25)

for n ∈ N. Integrating by parts iteratively we get, for z ∈ C with =(z) ∈ (−∞, 0), that

ϕ̂(z) =

∫
R

eizxϕ(x)dx =

0∫
−∞

eizx(−x)ndx

=
eizx

iz
(−x)n

∣∣∣0
−∞︸ ︷︷ ︸

=0

+
n

iz

0∫
−∞

eizx(−x)n−1dx = . . .

=
n!

(iz)n

0∫
−∞

eizxdx =
n!

(iz)n+1
. (2.26)

Following the same argumentation as in the proof of Proposition 2.4, we can show that the
dampened function ϕR belongs to L1

bc and has an integrable Fourier transform forR ∈ (−∞, 0).
Now, consider the function

f(η) = E
[
l′(η −X)

]
− 1 = E

[(
(1 + η −X)+

)γ−1]− 1. (2.27)

According to (1.8), the zero of this function determines the optimal allocation corresponding
to the polynomial loss function (2.20), and this can be determined by a standard root-finding
algorithm. Applying Theorem 2.1 to (2.27), using (2.26) with n = γ − 1, and recalling that
I ∩ J ′ 6= ∅ since 0 ∈ I◦ and J ′ = (−∞, 0), yields the representation (2.23).

Once the optimal allocation has been determined numerically, we just have to combine (1.7),
(2.20), Theorem 2.1, and (2.27) with n = γ, and direct computations yield representation (2.24)
for the risk measure corresponding to the polynomial loss function. �

2.2 Scenarios and Computation of Risk Contributions

The framework we consider is very flexible, not only because it accommodates a variety of
different loss functions, but also because the only information needed about the underlying risk
factorX is its moment generating function. This is the reason why a variety of different scenarios
can be treated simultaneously:

S1: The risk factor corresponds to an asset or a portfolio with known moment generating
function (e.g. estimated from market data).

S2: The risk factor corresponds to the random claims against an insurer, that isX =
∑N

i=1Xi,
where N,X1, X2, . . . are independent and N takes values in N0. Then it holds

MX(u) = P (N = 0) +

∞∑
i=1

P (N = i)

i∏
j=1

MXj (u).

A weighted portfolio of financial assets, that is, X =
∑N

i=1wiXi, where N is fixed, wi is
deterministic and Xi, i = 1, . . . , N , are independent, can be treated analogously.
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S3: The risk factor describes the total loss of a portfolio in the spirit of Dembo et al. [14], that
is,X =

∑n
i=1 ZiUi, where n is a finite number of positions,Ui ≥ 0, andZ1, U1, . . . , Zn, Un

are independent. The random variable Zi determines whether i defaults (Zi = 1) or not
(Zi = 0), and Ui determines the exposure at default. In that case

MX(u) = E

[
exp

(
u

n∑
i=1

ZiUi

)]
=

n∏
i=1

{
P (Zi = 0) + P (Zi = 1)MUi(u)

}
.

S4: An easy and popular way to generate dependence is using a linear mixture model (cf.
e.g. Madan and Khanna [29], and Kawai [27]). Let Y1, . . . , Ym be independent random
variables, then the dependent factors U = (U1, . . . , Un) can be defined via U = AY
for A ∈ Rn×m. Assuming that the moment generating function of the Yi’s is known, the
moment generating function of the risk factor X =

∑n
i=1 Ui is provided by

MX(u) =
m∏
l=1

MYl (uαl) ,

where αl :=
∑n

i=1Ail.

2.2.1 Risk Contribution

Next, we present an example where the risk contribution is computed explicitly using Fourier
methods. LetX =

∑n
i=1Xi be a portfolio, whereX1, . . . , Xn are independent random variables

with continuous joint distribution. We are interested in the CV@Rλ-risk contribution of the risk
factor Y = X`, 1 ≤ ` ≤ n, to this portfolio, that is, computingRC(X;Y ) = RC(

∑n
i=1Xi;X`)

in the case where l(x) = γ2x
+, with γ2 = 1/λ.

In order to compute this risk contribution, we will make use of the following notation. Define
the random vector

(Z, Y ) :=
( n∑
i=1
i 6=`

Xi, X`

)

and denote its probability measure by PZ,Y and its moment generating function byMZ,Y . More-
over, define the measure %R(dx) := e〈R,x〉PZ,Y (dx) and introduce the sets

Y :=
{
R ∈ R2 : MZ,Y (R) <∞

}
, (2.28)

and

Z :=
{
R ∈ R2 : %̂R ∈ L1

}
. (2.29)

Proposition 2.6. Let X,X` ∈ L1 and assume that Y ∩ Z 6= ∅. Moreover, assume that the opti-
mal allocation η∗ has been computed by (2.7). Then, the risk contribution admits the following
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representation:

RC(X;X`) =
γ2

4π2

∫
R2

MZ,Y (R+ iu)
e−(R1+iu1)η∗

(R1 + iu1)(u1 − u2 − iR1 − iR2)2
du

+
γ2

4π2

∫
R2

MZ,Y (R′ + iu)
e−(R

′
1+iu1)η

∗

(R′1 + iu1)(u1 − u2 − iR′1 − iR′2)2
du, (2.30)

where

MZ,Y (u1, u2) = MX`(u2)
n∏
i=1
i 6=`

MXi(u1), (2.31)

for R,R′ ∈ Y ∩ Z such that R1 < 0, R′1 < 0, R1 +R2 < 0 and R′1 +R′2 > 0.

Proof. Using Proposition 1.4 with l(x) = γ2x
+, it follows directly that

RC(X;X`) = −γ2E
[
Y 1{η∗>X}

]
= −γ2E

[
Y 1{Y≤0}1{η∗>Z+Y } + Y 1{Y >0}1{η∗>Z+Y }

]
= −γ2E [ψ1(Z, Y ) + ψ2(Z, Y )]

= − γ2
4π2

 ∫
R2

MZ,Y (R+ iu)ψ̂1(iR− u)du+

∫
R2

MZ,Y (R′ + iu)ψ̂2(iR
′ − u)du


where ψ1(z, y) := y1{y≤0}1{η∗>z+y} and ψ2(z, y) := y1{y>0}1{η∗>z+y}. The last equality
follows from [19, Theorem 3.2], noting that for R,R′ ∈ Y ∩ Z assumptions (A2) and (A3)
therein are satisfied.

Now, by independence we get immediately, for u ∈ Y , that

MZ,Y (u) = E
[
eu1Z+u2Y

]
= E

[
eu1

∑n
i=1,i 6=`Xi+u2X`

]
= MX`(u2)

n∏
i=1
i 6=`

MXi(u1).

Next, we have to compute the Fourier transforms of the functions ψ1 and ψ2. We have, for u ∈ C
with =(u1) < 0 and =(u2 − u1) < 0,

ψ̂1(u) =

∫
R2

eiu1z+iu2yψ1(z, y)dzdy =

0∫
−∞

η∗−y∫
−∞

eiu1z+iu2yydzdy

=
eiu1η

∗

iu1

0∫
−∞

ei(u2−u1)yydy =
eiu1η

∗

iu1(u2 − u1)2
.

Similarly, for u ∈ C with =(u1) < 0 and =(u2 − u1) > 0, we get that the Fourier transform of
ψ2 equals

ψ̂2(u) =
eiu1η

∗

iu1(u2 − u1)2
,

15



while we can easily observe that assumption (A1) from [19, Theorem 3.2] is also satisfied.
Finally, the proof is completed by putting the pieces together. �

Remark 2.7. While the portfolio X in this example contains n variables, we can compute the
risk contribution using only a 2-dimensional numerical integration, since only two variables are
important: Z and Y . The same is true if we are interested in the contribution of a subportfolio
Y =

∑m
i=1Xi, m < n, to the total portfolio X . On the contrary, the Monte Carlo computation

of the risk contribution would require the simulation of all n variables and thus is significantly
more time consuming. �

Remark 2.8. Consider the scenario S4 with dependent risks, and assume we want to compute
the contribution of a risk factor U` to the total portfolio X =

∑n
i=1 Ui. Then, we can apply

Proposition 2.6 directly, by just replacing the moment generating function in (2.31) with

MZ,Y (u) =
m∏
k=1

MYk (u1βk + u2A`k) , (2.32)

where βk =
∑n

i=1,i 6=`Aik. �

3 Numerical Analysis and Examples

The aim of this section is to analyze and test the numerical methods for the computation of risk
measures developed in the previous section. We start by considering scenario S1 and assuming
that the risk factor X has a known distribution and moment generating function. We consider
the normal inverse Gaussian (NIG) distribution, which is very flexible and exhibits a variety of
behaviors ranging from fat-tails to high peaks. This distribution has been extensively studied as
a model for financial markets, both under the real-world and under the risk-neutral measure; see
e.g. Eberlein and Prause [18], Barndorff-Nielsen and Prause [4], and Schoutens [35]. The NIG
distribution has four parameters, and the parameter space is α > 0, 0 ≤ |β| < α, δ > 0 and
µ ∈ R. The moment generating function of the NIG distribution has the following form

MX(u) = exp
(
uµ+ δ

[√
α2 − β2 −

√
α2 − (β + u)2

])
(3.1)

and is well-defined for u ∈ (−α+ β, α+ β) =: I. The density and other quantities of interest,
e.g. mean and variance, can be found in Eberlein [17] or Barndorff-Nielsen [3]. The parameters
have roughly the following impact on the shape of the density:

• α is a shape parameter and determines the heaviness of the tails and the height of the peak;

• β is a skewness parameter;

• δ is a scaling parameter and determines the variance;

• µ is a location parameter.
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Figure 2: NIG densities with varying α, β and δ.

See Figure 2 for a graphical illustration of the impact of the parameters α, β and δ on the shape
of the density. In order to make the numerical examples realistic, we consider parameter sets
for the NIG distribution stemming from real data. The four different sets we consider are sum-
marized in Table 1, and correspond to parameters estimated from daily and monthly returns,
and from options data; cf. [18, 35]. Only the last set of parameters is artificial, and corresponds
to a random variable with heavy tails, zero mean and variance one. These parameters exhibit a
smooth transition from densities with high peaks to densities with fat tails, and serve to test the
numerical methods in a variety of different situations. We have set µ = 0 in all cases, since this
is completely irrelevant for the computation of risk measures.

Parameters

α β δ

NIG1 106.00 -26.00 0.0110
NIG2 26.00 -10.60 0.0070
NIG3 6.20 -3.90 0.0011
NIG4 1.00 0.00 1.0000

Table 1: Parameters sets for NIG distributions.

3.1 CV@R

We want to compare here the Fourier representation (2.12) for the Conditional Value at Risk de-
veloped in the previous section with the standard representation (2.10). A careful observation of
these two formulas reveals that the Fourier representation should be numerically more efficient
than the standard one. Indeed, while the latter requires to solve an optimization problem—the
computation of the quantile q+X—for every grid point used in the numerical integration, the for-
mer requires to solve only one optimization problem for the computation of η∗. Let us assume
that the grid for the numerical integration has sizeN , the computational effort for the solution of
the optimization problem is MO, while the computational effort for the numerical integration is
MI , where typicallyMI �MO. Then, the total computational effort (TCE) for the two methods
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compares as follows:

TCE(Fourier) ∼= MO +MI vs TCE(standard) ∼= N ·MO +MI . (3.2)

This also reveals that the computation of CV@R should not be significantly more time consum-
ing that the computation of V@R, when the Fourier representation is used. Indeed, the bulk of
the computation amounts to the solution of the optimization problem (for the quantile or V@R)
and not to the numerical integration.

We have computed CV@R using the Fourier and the standard representation for the four
parameters sets described in Table 1, at the λ = 5% and the λ = 1% level. The results are
reported in Tables 2 and 3 respectively. We have also computed V@R for the same levels. The
implementation was done in Matlab and for the computation of the quantile we have used an
existing package for the NIG distribution, while the results have been verified with Python and
R. The results report the value for V@R and CV@R, the computational time for V@R (CT),
and the computational times for CV@R with the Fourier (CT(F)) and the standard representation
(CT(S)).

The numerical results are completely in accordance with the analysis above. Indeed, we can
immediately observe that the computational times for CV@R using the standard representation
are significantly longer than the corresponding times for the Fourier alternative. The factor of
this difference is at least equal to two, while it equals seven for the third set at the 5% level. In
addition, we can also observe that the computational times for CV@R using the Fourier method
are only marginally longer than the respective times for the computation of V@R. This value is
typically a few thousandths of a second. This last observation should be an argument in favor of
using CV@R for practical applications.

V@R CV@R

Value CT Value CT (F) CT (S)

NIG1 0.0210 0.092 0.0298 0.099 0.212
NIG2 0.0311 0.087 0.0585 0.094 0.359
NIG3 0.0073 0.088 0.0352 0.097 0.636
NIG4 1.5914 0.089 2.2872 0.097 0.197

Table 2: Numerical results for V@R and CV@R at the 5% level. Time in seconds.

Remark 3.1. In case the risk factor X has a known density function (scenario S1), as is the
case for the normal inverse Gaussian distribution, we can directly integrate over the density to
compute CV@R. We have the following representation

CV@Rλ(X) =
1

λ

∫
R

(η∗ − x)fX(x)dx− η∗, (3.3)

where fX denotes the density of the random variableX . We have tested this method numerically
and, while it yields very competitive—in terms of computational times—results for the third and
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V@R CV@R

Value CT Value CT (F) CT (S)

NIG1 0.0350 0.095 0.0444 0.104 0.211
NIG2 0.0737 0.092 0.1108 0.099 0.360
NIG3 0.0369 0.088 0.1162 0.100 0.507
NIG4 2.7019 0.094 3.4503 0.099 0.194

Table 3: Numerical results for V@R and CV@R at the 1% level. Time in seconds.

fourth datasets, it fails completely for the first and second datasets. The reason is that these data
correspond to densities with very high peaks and small variance, and the standard discretization
in Matlab is not sufficient to deliver the correct values. Since these datasets correspond to 1-day
and 1-month returns, while in practice risk measures for 10-days returns have to be computed,
one should be very careful when using (3.3). �

3.2 Polynomial Risk Measures

In the last numerical experiment, we want to compute polynomial risk measures using the
Fourier methodology developed here. We consider again scenario S1 and use the parameters
for the normal inverse Gaussian distribution from Table 1. We consider three exponents for the
relative risk aversion parameter: γ = 2 which corresponds to monotone mean-variance, γ = 4
which corresponds to quartic utility (cf. Hamm et al. [25]) and γ = 5. We have first computed
the optimal allocation using representation (2.23) in combination with Brent’s root finding al-
gorithm, and then calculated the corresponding risk measure using (2.24). The values of both
η∗ and ρ(X) for all datasets and exponents are reported in Tables 4 and 5 together with the
respective computational times for the Fourier representation (CT(F)).

Fourier SRF

η∗ ρ(X) CT(F) CT

NIG1 0.0028 -0.0027 0.062 0.455
NIG2 0.0031 -0.0029 0.071 0.449
NIG3 0.0008 -0.0007 0.129 0.443
NIG4 -0.0957 0.4380 0.039 0.448

Table 4: Polynomial risk measure with γ = 2. Time in seconds.

We can immediately observe that the combination of a deterministic root-finding algorithm
with the Fourier representation for the optimal allocation and risk measure yields numerical
results in very short time for all combinations of parameters and exponents. In general, less than
1/10 of a second is required to solve the optimization problem corresponding to the allocation
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γ = 4 γ = 5

η∗ ρ(X) CT(F) η∗ ρ(X) CT(F)

NIG1 0.0027 -0.0026 0.070 0.0026 -0.0026 0.030
NIG2 0.0028 -0.0026 0.040 0.0026 -0.0025 0.032
NIG3 0.0006 -0.0005 0.039 0.0005 -0.0004 0.027
NIG4 -1.0283 1.4994 0.124 -1.8095 2.3915 0.103

Table 5: Polynomial risk measures with γ = 4 and γ = 5. Time in seconds.

η∗ and then compute the risk measure.
In order to compare our results, we have used a stochastic root finding (SRF) algorithm,

see [2, 16, 25]. We use 30,000 iteration steps as suggested by the results in [25], although we
have not implemented a variance reduction technique—note that, for a fixed number of steps,
implementation of a variance reduction technique would increase the computational time. The
computational times for the stochastic root finding methods in all datasets for γ = 2 are reported
in the last column of Table 4. The times for the other exponents are almost identical, thus have
been omitted for the sake of brevity. One can immediately observe that the combination of
deterministic root finding methods with Fourier representation is several times faster than the
stochastic root finding schemes. In the worst case, the factor equals 4, while in most cases it
exceeds 7. Apart from the gains in computational time, it should be stressed out that the Fourier
method yields an exact value for both η∗ and ρ(X), while the stochastic root finding scheme
delivers only an estimate.
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