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Abstract

Motivated by financial applications, we study convex analysis for modules over the
ordered ring L0 of random variables. We establish a module analogue of locally convex
vector spaces, namely locally L0–convex modules. In this context, we prove hyper-
plane separation theorems. We investigate continuity, subdifferentiability and dual
representations of Fenchel–Moreau type for L0–convex functions from L0–modules
into L0. Several examples and applications are given.
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1 Introduction

Various fundamental results in mathematical finance draw from convex analysis. For
instance, arbitrage theory or duality of risk and utility functions are concepts built on the
Hahn–Banach extension theorem and its consequences for hyperplane separation in locally
convex vector spaces, cf. [7, 10].

The simplest situation is a one period setup:

R E
π,ρ,u

oo

p
oo

0 T

(1.1)

Random future (date T ) payments are modeled as elements of a locally convex vector
space E endowed with semi norms p. Price, risk or utility assessments π, ρ, or u, map E
linearly, convexly, or concavely, into the real line R, respectively.

However, the idea of hedging random future payments develops its power in a multi
period setting. We therefore randomize the initial data, and let π = π(ω, ·), ρ = ρ(ω, ·),
or u = u(ω, ·), be ω dependent, where ω ∈ Ω denotes the initial states modeled by a
probability space (Ω,F , P ). Here F is understood as the information available at some
future initial date t < T .

While classical convex analysis perfectly applies in the one period model (1.1), its
application in a multi period framework is rather delicate. Take, for instance, the convexity
properties of the risk measure ρ. These properties have to be extended to ω wise convexity
properties of ρ(ω, ·) for almost all ω ∈ Ω. But ω–wise convex duality correspondences for
ρ(ω, ·) have to be made measurable in ω to assert intertemporal consistency in a recursive
multi period setup. This would require heavy measurable selection criteria.

We propose instead to consider π = π(ω, ·), ρ = ρ(ω, ·), or u = u(ω, ·), as maps into
L0 = L0(Ω,F , P ), the ordered ring of (equivalence classes of) random variables:

R L0 E
π,ρ,u
oo

p
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0 t T
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The space E, in turn, is considered as module over L0.
This requires hyperplane separation and convex duality results on topological modules,

which seem to be new in the literature. In this paper, we provide a comprehensive treat-
ment of convex analysis for topological L0-modules. While our emphasis is on financial
applications as outlined above, the results in this paper are of theoretical nature. We
illustrate the scope of applications that can be covered by our results in Section 3.2 below.

The paper is divided into two parts. The first part covers Hahn–Banach extension and
hyperplane separation theorems. In the second part, as an application of the first, duality
results are established. The related literature is discussed in the course of the text. The
remainder of the paper is as follows:

Part I. In Section 2.1 we state the main results on locally L0–convex topologies and
hyperplane separation in locally L0–convex modules. For the sake of readability, all proofs
are postponed to the subsequent respective sections. In Section 2.2 we prove a Hahn–
Banach type extension theorem in the context of L0–modules. Instead of sublinear and
linear functions on a vector space we study L0–sublinear and L0–linear functions on an
L0–module. In Section 2.3 we characterize a class of topological L0–modules, namely
locally L0–convex modules. An important feature of a locally L0–convex module E is
that the neighborhoods of 0 absorb E over L0. This is the key difference to the notion
of a locally convex module which is merely absorbent over the real line, cf. [13, 20, 23].
The neighborhood base of a locally L0–convex module is constructed by means of L0–
semi norms. Such vector valued, or vectorial, norms go back to [14]. In Section 2.4 we
establish some preliminary results for L0–valued gauge functions. In Section 2.5 we prove
the hyperplane separation theorems in locally L0–convex modules. We separate a non
empty open L0–convex set from an L0–convex set and we strictly separate a point from a
non empty closed L0–convex set by means of continuous L0–linear functions.

Part II. In Section 3.1 we state the main Fenchel–Moreau type duality results in locally
L0–convex modules. Section 3.2 illustrates the scope of financial applications. As in part
one, all proofs are postponed to the subsequent respective sections. In Section 3.3 we prove
that L0–convex functions share a certain local property. In Section 3.4 we characterize
lower semi continuous functions. In Section 3.5 we establish continuity results for L0–
convex functions. For instance, under topological assumptions on E, proper L0–convex
functions are automatically continuous on the interior of their effective domain. In Section
3.6 we prove that proper lower semi continuous L0–convex functions are subdifferentiable
on the interior of their effective domain. In Section 3.7 we prove our Fenchel–Moreau type
dual representation for proper lower semi continuous L0–convex functions.

2 Part I. Separation in locally L
0–convex modules

2.1 Main results

Let (Ω,F , P ) be a probability space. Denote by L0 the ring of real valued F–measurable
random variables. Random variables and sets which coincide almost surely are identified.
Recall that L0 equipped with the order of almost sure dominance is a lattice ordered
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ring. Throughout, the strict inequality X > Y between two random variables is to be
understood as point–wise almost surely (in other texts, “X > Y ” is sometimes interpreted
as “X ≥ Y and X 6= Y ”). Define L0

+ := {Y ∈ L0 | Y ≥ 0} and L0
++ := {Y ∈ L0 | Y > 0}.

By L̄0 we denote the space of all F–measurable random variables which take values in
R̄ := R ∪ {±∞} and we define L̄0

+ := {Y ∈ L̄0 | Y ≥ 0}. Throughout, we follow the
convention 0 · (±∞) := 0.

The order of almost sure dominance allows to define the following topology on L0. We
let

Bε := {Y ∈ L0 | |Y | ≤ ε}

denote the ball of radius ε ∈ L0
++ centered at 0 ∈ L0. A set V ⊂ L0 is a neighborhood

of Y ∈ L0 if there is ε ∈ L0
++ such that Y + Bε ⊂ V . A set V ⊂ L0 is open if it

is a neighborhood of all Y ∈ V . Inspection shows that the collection of all open sets
is a topology on L0, which is referred to as topology induced by | · |. By construction,
U := {Bε | ε ∈ L0

++} is a neighborhood base of 0 ∈ L0. Throughout, we make the
convention that L0 = (L0, | · |) is endowed with this topology.

Notice that (L0, | · |) is not a real topological vector space, in general. Indeed, suppose
(Ω,F , P ) is atom–less. Then the scalar multiplication R → L0, α 7→ α ·1 is not continuous
at α = 0. The topology on L0 induced by | · | is finer than the topology of convergence
in probability, which is often used in convex analysis on L0, such as in [3]. For example,
L0

++ is open in (L0, | · |) but not in the topology of convergence in probability.
However, it follows from Theorem 2.4 below that (L0, | · |) is a topological ring or,

equivalently, a topological L0–module in the following sense:

Definition 2.1 A topological L0–module (E,T ) is an L0–module E endowed with a topol-
ogy T such that the module operations

(i) (E,T ) × (E,T ) → (E,T ), (X1,X2) 7→ X1 + X2 and

(ii) (L0, | · |) × (E,T ) → (E,T ), (Y,X) 7→ Y X

are continuous w.r.t. the corresponding product topologies.

Locally convex topologies in our framework are defined as follows:

Definition 2.2 A topology T on E is locally L0–convex if (E,T ) is a topological L0–
module and there is a neighborhood base U of 0 ∈ E for which each U ∈ U is

(i) L0–convex: Y X1 + (1 − Y )X2 ∈ U for all X1,X2 ∈ U and Y ∈ L0 with 0 ≤ Y ≤ 1,

(ii) L0–absorbent: for all X ∈ E there is Y ∈ L0
++ such that X ∈ Y U ,

(iii) L0–balanced: Y X ∈ U for all X ∈ U and Y ∈ L0 with |Y | ≤ 1.

In this case, (E,T ) is a locally L0–convex module.
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Note that an L0–convex set K ⊂ E with 0 ∈ K satisfies Y K ⊂ K for all Y ∈ L0 with
0 ≤ Y ≤ 1; in particular, 1AK ⊂ K for all A ∈ F .

Next we show how to construct, and actually characterize all, locally L0–convex mod-
ules. Let E be an L0–module.

Definition 2.3 A function ‖ · ‖ : E → L0
+ is an L0–semi norm on E if:

(i) ‖Y X‖ = |Y |‖X‖ for all Y ∈ L0 and X ∈ E,

(ii) ‖X1 + X2‖ ≤ ‖X1‖ + ‖X2‖ for all X1,X2 ∈ E.

If, moreover,

(iii) ‖X‖ = 0 implies X = 0,

then ‖ · ‖ is an L0–norm on E.

Any family P of L0–semi norms on E induces a topology in the following way. For
finite Q ⊂ P and ε ∈ L0

++ we define

UQ,ε :=

{
X ∈ E | sup

‖·‖∈Q
‖X‖ ≤ ε

}

and
U := {UQ,ε | Q ⊂ P finite and ε ∈ L0

++}. (2.2)

We then proceed as for (L0, | · |) above and define a topology, referred to as topology
induced by P, on E with neighborhood base U of 0. We thus obtain a locally L0-convex
module, as the following theorem states:

Theorem 2.4 A topological L0–module (E,T ) is locally L0–convex if and only if T is
induced by a family of L0–semi norms.

Proof. This follows from Lemma 2.16 and Corollary 2.24. �

By convention, an L0–normed module (E, ‖ · ‖) is always endowed with the locally
L0–convex topology induced by ‖ · ‖. Notice that any L0–norm ‖ · ‖ on E = L0 satisfies
‖1‖ > 0 and ‖ · ‖ = ‖1‖ | · |.

An important L0–normed module is given in the following example. Recall that a
function µ : E → L0 is L0–linear if µ(Y1X1+Y2X2) = Y1µ(X1)+Y2µ(X2) for all X1,X2 ∈ E
and Y1, Y2 ∈ L0.

Example 2.5 Let (Ω, E , P ) be a probability space with F ⊂ E, and let p ∈ [1,+∞]. We
define the function ‖ · ‖p : L̄0(E) → L̄0

+(F) by

‖X‖p :=

{
limn→∞ E[|X|p ∧ n | F ]1/p if p < +∞,

ess.inf{Y ∈ L̄0(F) | Y ≥ |X|} if p = +∞,
(2.3)
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and denote
Lp
F (E) :=

{
X ∈ L0(E) | ‖X‖p ∈ L0(F)

}
.

In [15], it is shown that (Lp
F (E), ‖ · ‖p) is an L0(F)–normed module, which is complete

in the sense that any Cauchy net in Lp
F (E) has a limit in Lp

F (E). Moreover, for p < ∞,
the L0(F)–module of all continuous L0(F)–linear functions µ : Lp

F (E) → L0(F) can be
identified with Lq

F (E), where q := p/(p − 1) (:= +∞ if p = 1).
Since X/‖X‖p ∈ Lp(E) (with the convention 0/0 := 0) for X ∈ Lp

F (E), we conclude
that Lp

F (E) = L0(F) ·Lp(E) as sets. In particular, for F = {∅,Ω} the function ‖·‖p can be
identified with the classical Lp–norm. In turn Lp

{∅,Ω}(E) can be identified with the classical

Lp space Lp(E). In fact, whenever F = σ(A1, . . . , An) is finitely generated, we can identify
Lp

σ(A1,...,An)(E) with Lp(E).

Hahn–Banach type extension theorems for modules appear already in the fifties. This
started with [11], where modules over totally ordered rings were considered. Modules
over rings which are algebraically and topologically isomorphic to the space of essentially
bounded measurable functions on a finite measure space were considered in [12, 21, 19].
Nowadays, it is well known, cf. [4, 22], that a Hahn–Banach type extension theorem for
modules over more general ordered rings can be established. In particular, this is the case
for L0–modules.

However, to our knowledge, the following hyperplane separation theorems for L0-
modules are new in the literature. The proofs are given in Section 2.5 below.

Theorem 2.6 (Hyperplane Separation I) Let E be a locally L0–convex module and
let K,M ⊂ E be L0–convex, K open and non empty. If 1AM ∩ 1AK = ∅ for all A ∈ F
with P [A] > 0 then there is a continuous L0–linear function µ : E → L0 such that

µY < µZ for all Y ∈ K and Z ∈ M.

For the second hyperplane separation theorem we need to impose some technical as-
sumption on the topology.

Definition 2.7 A topological L0–module has the countable concatenation property if for
every countable collection (Un) of neighborhoods of 0 ∈ E and for every countable partition
(An) ⊂ F (An ∩ Am = ∅ for n 6= m and

⋃
n∈N

An = Ω) the set
∑

n∈N

1AnUn

again is a neighborhood of 0 ∈ E.

Notice that any L0–normed module has the countable concatenation property.

Theorem 2.8 (Hyperplane Separation II) Let E be a locally L0–convex module that
has the countable concatenation property and let K ⊂ E be closed L0–convex and non
empty. If X ∈ E satisfies 1A{X} ∩ 1AK = ∅ for all A ∈ F with P [A] > 0 then there is
ε ∈ L0

++ and a continuous L0–linear function µ : E → L0 such that

µY + ε < µX for all Y ∈ K.

6



2.2 Hahn–Banach extension theorem

In this section, we establish a Hahn–Banach type extension theorem. We recall that the
main result of this section, Theorem 2.14, is already contained in [4, 22]. Nevertheless, for
the sake of completeness, we provide a self contained proof which is tailored to our setup.
The fact that not all elements in L0 possess a multiplicative inverse leads to difficulties
in showing that the ”one step extension” from the proof of the classical Hahn–Banach
theorem is well defined in our framework. For this reason, we derive some preliminary
results first.

The following lemma recalls that F is a complete lattice w.r.t. the partial order of
almost sure set inclusion.

Lemma 2.9 Every non empty collection D ⊂ F has a supremum denoted by ess.supD
and called essential supremum of D. Further, if D is directed upwards (A ∪B ∈ D for all
A,B ∈ D) there is an increasing sequence (An) in D such that ess.supD =

⋃
n∈N

An.

If D ⊂ F is empty we set ess.supD := ∅.

Proof. For a countable set C ⊂ D define AC :=
⋃

A∈C A. Then AC ∈ F and the upper
bound

c := sup{P [AC ] | C ⊂ D countable}

is attained by some Csup; indeed, take a sequence (Cn) in D with P [ACn ] → c and Csup :=⋃
n∈N

Cn. Then, Csup ∈ F and P [ACsup ] = c. We conclude that ess.supD := ACsup is as
required. Indeed, ess.supD is an upper bound of D, otherwise there would be A ∈ D with
P [A \ ess.supD] > 0 and in turn P [ACsup∪{A}] > P [ACsup ] = c. To see that ess.supD is a
least upper bound, observe ess.supD ⊂ A′ whenever A′ ∈ F with A ⊂ A′ for all A ∈ D.
By construction, there is an increasing sequence approximating ess.supD if D is directed
upwards. �

Let E be an L0–module. For a set C ⊂ E, we define the map M(· | C) : E → F ,

M(Z | C) := ess.sup{A ∈ F | 1AZ ∈ C}. (2.4)

If C is an L0–submodule of E the collection {A ∈ F | 1AZ ∈ C} is directed upwards for
all Z ∈ E and hence there exists an increasing sequence (Mn) ⊂ F such that

M(Z | C) =
⋃

n∈N

Mn. (2.5)

Definition 2.10 A set C ⊂ E has the closure property if

1M(Z|C)Z ∈ C for all Z ∈ E. (2.6)

By Ĉ we denote the smallest subset of E that has the closure property and contains C.
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Note that Ĉ is given by
Ĉ = {1M(Z|C)Z | Z ∈ E}

and therefore Ĉ always exists and is well defined. By definition, the closure property is a
property in reference to E. In particular, E has the closure property.

Lemma 2.11 Let C ⊂ E be an L0–submodule. Then Ĉ is again an L0–submodule.

Proof. Let X ∈ Ĉ and Y ∈ L0. Denote Z = Y X. By definition, there exists some X ′ ∈ E
with X = 1M(X′|C)X

′. Since C is an L0–submodule of E there exist an increasing sequence
(Mn) ⊂ F with Mn ր M(X ′ | C) such that 1MnX ′ ∈ C. Hence 1MnZ = Y 1MnX ′ ∈ C,
and thus Mn ⊂ M(Z | C), for all n ∈ N. We conclude that M(X ′ | C) ⊂ M(Z | C) and
thus

Y X = Y 1M(X′|C)X
′ = 1M(Z|C)Z ∈ Ĉ.

Now let X = 1AX ′, Y = 1BY ′ ∈ Ĉ where A := M(X ′ | C) and B := M(Y ′ | C), for
some X ′, Y ′ ∈ E. Denote

Z = X + Y = 1A\BX + 1A∩B(X + Y ) + 1B\AY.

As above there exist increasing sequences (An), (Bn) ⊂ F with An ր A and Bn ր B
such that 1AnX ′, 1BnY ′ ∈ C and thus

1An\BX = 1A\B1AnX ′ ∈ C

1An∩Bn(X + Y ) = 1Bn1AnX ′ + 1An1BnY ′ ∈ C

1Bn\AY = 1B\A1BnY ′ ∈ C.

Define the disjoint union Mn = (An \ B) ∪ (An ∩ Bn) ∪ (Bn \ A). We obtain

1MnZ = 1An\BX + 1An∩Bn(X + Y ) + 1Bn\AY ∈ C,

and thus Mn ⊂ M(Z | C), for all n ∈ N. Since Mn ր A ∪ B, we conclude that A ∪ B ⊂
M(Z | C) and thus

X + Y = 1M(Z|C)Z ∈ Ĉ.

Hence the lemma is proved. �

For a set C ⊂ E we denote by

spanL0(C) :=

{
n∑

i=1

YiXi | Xi ∈ C, Yi ∈ L0, 0 ≤ i ≤ n, n ∈ N

}

the L0–submodule of E generated by C. The next example illustrates the situation where
an L0–submodule C of E does not have the closure property.
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Example 2.12 Consider the probability space Ω = [0, 1], F = B[0, 1] the Borel σ–algebra
and P the Lebesgue measure on [0, 1]. Let E = L0, and define

C := spanL0{1[1−2−(n−1) ,1−2−n] | n ∈ N}.

Then, 1 /∈ C but 1 ∈ Ĉ.

Proposition 2.13 Let C ⊂ E be an L0–submodule of E, Z ′ ∈ E and Z := 1M(Z′|C)cZ ′.
Then

(i) M(Z ′ | C) = M(Z | C),

(ii) X = X ′ and Y = Y ′ on M(Z | C)c whenever X + Y Z = X ′ + Y ′Z for X,X ′ ∈ C
and Y, Y ′ ∈ L0, and

(iii) for W ∈ 1M(Z|C)cL0 and an L0–linear function µ : C → L0

µ̄(X + Y Z) := µX + Y W for all X ∈ C and Y ∈ L0 (2.7)

defines the unique L0–linear extension of µ to spanL0(C,Z) which satisfies µ̄Z = W .

If in addition to this C has the closure property,

(iv) spanL0(C,Z ′) = spanL0(C,Z).

Proof. (i) By definition of Z, M(Z ′ | C) ⊂ M(Z | C), and since P [M(Z | C) \ M(Z ′ |
C)] > 0 would contradict the definition of M(Z ′ | C) we have M(Z ′ | C) = M(Z | C).

(ii) X + Y Z = X ′ + Y ′Z is equivalent to X − X ′ = (Y ′ − Y )Z. If B := {Y ′ − Y 6=
0} ∩ M(Z | C)c had positive measure then on B, Z = (X − X ′)/(Y ′ − Y ) ∈ C in
contradiction to the definition of M(Z | C). Hence Y = Y ′ and in turn X = X ′ on
M(Z | C)c.

(iii) This is an immediate consequence of (ii).
(iv) By definition of Z, spanL0(C,Z) ⊂ spanL0(C,Z ′). Since C has the closure prop-

erty, 1M(Z′|C)Z
′ ∈ C and hence spanL0(C,Z) = spanL0(C,Z ′). �

A function p : E → L0 is L0–sublinear if p(Y X) = Y p(X) for all X ∈ E and Y ∈ L0
+

and p(X1 + X2) ≤ p(X1) + p(X2) for all X1,X2 ∈ E. We can now state and prove the
main result of this section.

Theorem 2.14 (Hahn–Banach) Consider an L0–sublinear function p : E → L0, an
L0–submodule C of E and an L0–linear function µ : C → L0 such that

µX ≤ p(X) for all X ∈ C.

Then µ extends to an L0–linear function µ̄ : E → L0 such that µ̄X ≤ p(X) for all X ∈ E.
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Proof. Step 1: In view of Lemma 2.15 below we can assume that C has the closure
property and that there exists Z ′ ∈ E \ C. Then Z := 1M(Z′|C)cZ ′ /∈ C and Z 6= 0. We
will show that µ extends L0–linearly to µ̄ : spanL0(C,Z) → C, such that

µ̄X ≤ p(X) for all X ∈ spanL0(C,Z). (2.8)

More precisely, we claim that

W := 1M(Z|C)c ess.sup
X∈C

(µX − p(X − Z))

and µ̄ defined as in (2.7) satisfies

µX + Y W ≤ p(X + Y Z) for all X ∈ C and Y ∈ L0 (2.9)

which, apparently, is equivalent to (2.8). To verify this claim, let X,X ′ ∈ C and observe

µX + µX ′ = µ(X + X ′)

≤ p(X + X ′)

= p(X ′ + Z + X − Z)

≤ p(X ′ + Z) + p(X − Z).

Hence,
µX − p(X − Z) ≤ p(X ′ + Z) − µX ′ for all X,X ′ ∈ C. (2.10)

Since Z = 0 on M(Z | C) we have µX − p(X − Z) ≤ 0 on M(Z | C) as well as p(X ′ +
Z) − µX ′ ≥ 0 on M(Z | C) for all X,X ′ ∈ C. Hence, (2.10) implies

µX − p(X − Z) ≤ W ≤ p(X ′ + Z) − µX ′ for all X,X ′ ∈ C (2.11)

and in turn
µX ± W ≤ p(X ± Z) for all X ∈ C.

From this we derive

1A(µX + W ) ≤ 1Ap(X + Z) = 1Ap(X + 1AZ) (2.12)

1Ac(µX − W ) ≤ 1Acp(X − Z) = 1Acp(X − 1AcZ) (2.13)

for all A ∈ F . Adding up the inequalities in (2.12) and (2.13) yields

µX + (1A − 1Ac)W ≤ p(X + (1A − 1Ac)Z) for all X ∈ C and A ∈ F . (2.14)

Further, for all Y ∈ L0 with P [Y 6= 0] = 1 we have Y/|Y | = 1A − 1Ac , where A := {Y >
0} ∈ F . Thus, (2.14) implies

|Y |

(
µ

(
X

|Y |

)
+

Y

|Y |
W

)
≤ |Y |p

(
X

|Y |
+

Y

|Y |
Z

)
.
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for all X ∈ C and Y ∈ L0 with P [Y 6= 0] = 1. From this we derive

µX + Y W ≤ p(X + Y Z) for all X ∈ C and Y ∈ L0 with P [Y 6= 0] = 1. (2.15)

But this already implies the required inequality in (2.9). Indeed, for X ∈ C and arbitrary
Y ∈ L0 we define Y ′ := Y 1A + 1Ac , where A := {Y 6= 0}, and derive from (2.15)

1A(µX + Y W ) = 1A(µX + Y ′W ) ≤ 1Ap(X + Y ′Z) = 1Ap(X + Y Z) (2.16)

1Ac(µX + Y W ) = 1Ac(µX) ≤ 1Acp(X) = 1Acp(X + Y Z). (2.17)

Adding up (2.16) and (2.17), we see that (2.15) implies (2.9) and complete this step.
Step 2: The set

I :=



(D, µ̄) |

C ⊂ D
L0–linear

⊂ E,D has the closure property

µ̄ : D
L0–linear

→ L0, µ̄|C = µ and µ̄X ≤ p(X) for all X ∈ D





is partially ordered by

(D, µ̄) ≤ (D′, µ̄′) if and only if D ⊂ D′ and µ̄′|D = µ̄.

We will show that a totally ordered subset {(Di, µ̄i), i ∈ I} of I (that is, for all i, j either
(Di, µ̄i) ≤ (Dj , µ̄j) or (Di, µ̄i) ≥ (Dj , µ̄j)) has an upper bound and then we will apply
Zorn’s lemma. To this end, observe that D given by

C ⊂ D :=
⋃

i∈I

Di ⊂ E

is an L0–module since {(Di, µ̄i), i ∈ I} is totally ordered. µ̄ : D → L0 given by µ̄|Di
:= µ̄i

is L0–linear, dominated by p on all of D and µ̄|C = µ. Further, in view of Lemma 2.15
below, we can assume that D has the closure property. Hence, (D, µ̄) ∈ I is an upper
bound for {(Di, µ̄i), i ∈ I} and Zorn’s lemma yields the existence of a maximal element
(Dmax, µ̄max) ∈ I, i.e.

(Dmax, µ̄max) ≤ (D, µ̄) ∈ I implies (Dmax, µ̄max) = (D, µ̄).

Assume that Dmax 6= E. Then, by the first step of this proof, µ̄max extends to

µ̄′
max : spanL0(Dmax, Z) → L0,

where Z ∈ E \Dmax, which contradicts the maximality of (Dmax, µ̄max). Hence, Dmax = E
and µ̄max is as desired. �

Lemma 2.15 Let C,µ, p be as in Theorem 2.14. Then µ extends uniquely to an L0–linear
function µ̂ : Ĉ → L0 such that µ̂X ≤ p(X) for all X ∈ Ĉ.
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Proof. For Z ∈ E, let
µ̂(1M(Z|C)Z) := lim

n→∞
µ(1MnZ), (2.18)

where M(Z | C) =
⋃

n∈N
Mn as in (2.5). Since for all n ≤ m

µ(1MnZ) = µ(1MmZ) on Mn

(2.18) uniquely and unambiguously defines the L0–linear extension µ̂ : Ĉ → L0 of µ to Ĉ.
Further, (2.18) guarantees that µ̂X ≤ p(X) for all X ∈ Ĉ. �

2.3 Locally L
0–convex modules

In this section we establish some facts about locally L0–convex modules. For more back-
ground on general topological spaces we refer to the comprehensive Chapter 2 of [1].

Let us first recall some basic definitions. Let T be a topology on some set E. Then

K ⊂ E is closed if Kc ∈ T . The interior, boundary and closure of K are denoted by
◦
K,

∂K, K̄, respectively. Moreover,
◦
K ∩ ∂K = ∅, K is open if and only if K =

◦
K, and K is

closed if and only if K = K̄. An element X ∈
◦
K,∂K, K̄ is an interior, boundary, closure

point of K, respectively.
Now let E be an L0–module and T the topology induced by some family P of L0–semi

norms on E, see Definition 2.3 and below. The following result gives one direction in the
proof of Theorem 2.4. The converse direction is proved in Corollary 2.24 below.

Lemma 2.16 (E,T ) is a locally L0–convex module.

Proof. Let U denote the neighborhood base given in (2.2). It follows by inspection that
each U ∈ U is L0–convex, L0–absorbent and L0–balanced as in Definition 2.2. To establish
(i) and (ii) of Definition 2.1, let O ∈ T .

(i) We show that Õ := {(X,Y ) ∈ E × E | X + Y ∈ O} is open. Let (X,Y ) ∈ Õ and
U = UQ,ε ∈ U such that X +Y +U ⊂ O. Then V = UQ,ε/2 satisfies V +V ⊂ U and hence

(X + V )× (Y + V ) ⊂ Õ. This means that (X,Y ) is an interior point of Õ and (i) follows.
(ii) We show that Õ := {(X,Y ) ∈ E × L0 | XY ∈ O} is open. Consider (X,Y ) ∈ Õ

and U = UQ,ε ∈ U such that XY + U ⊂ O. We find ε ∈ L0
++ and W ∈ U such that

W × {Z ∈ L0 | |Z − Y | ≤ ε} ⊂ Õ

as follows. As in the proof of (i) let V ∈ U be such that V + V ⊂ U and let ε ∈ L0
++

be such that εX ∈ V , which is possible since V is L0–absorbing. Further, since V is
L0–balanced,

(Z − Y )X ∈ V if |Z − Y | ≤ ε.

V is of the form V = UQ,δ, hence W := UQ,δ/(ε+|Y |) satisfies (ε + |Y |)W ⊂ V and since W
is L0–balanced

ZW ⊂ V for all Z ∈ L0 with |Z| ≤ ε + |Y |.

12



Finally, for |Z − Y | ≤ ε and X ′ ∈ W we derive

Z(X + X ′) − Y X = (Z − Y )X + ZX ′ ∈ V + V ⊂ U

and the assertion is proved. �

Here is a trivial example.

Example 2.17 (Chaos Topology) The locally L0–convex topology T induced by the
trivial L0–semi norm ‖ · ‖ ≡ 0 on L0 consists of the sets ∅ and L0. T is called chaos
topology and it is an example for a locally L0–convex topology which is not Hausdorff.
Note that T is locally convex and locally L0–convex at the same time.

2.3.1 The countable concatenation property

A technicality we encounter is a certain concatenation property. This concatenation prop-
erty is crucial in the context of hyperplane separation, cf. Lemma 2.28, Theorem 2.8 and
the Examples 2.29 and 2.30 in Section 2.5 below.

The following result motivates the subsequent definition.

Lemma 2.18 Let P be a family of L0–semi norms inducing a locally L0–convex topology
T on E.

(i) For A ∈ F and ‖ · ‖ ∈ P, 1A‖ · ‖ is an L0–semi norm.

(ii) For a finite collection ‖ · ‖1, . . . , ‖ · ‖n ∈ P, supi=1,...,n ‖ · ‖i is an L0–semi norm.

(iii) Define

P ′ := P ∪ {1A‖ · ‖ | A ∈ F , ‖ · ‖ ∈ P}

P ′′ := P ′ ∪

{
sup
‖·‖∈Q

‖ · ‖ | Q ⊂ P ′ finite

}

and denote T ′ and T ′′ the induced locally L0–convex topologies, respectively. Then
T = T ′ = T ′′; in other words, we may always assume that, with every ‖ · ‖ ∈ P, P
contains 1A‖ · ‖ for all A ∈ F and that P is closed under finite suprema.

Proof. (i) and (ii) follow from the properties of L0–semi norms.
(iii) Since P ⊂ P ′ ⊂ P ′′ we have T ⊂ T ′ ⊂ T ′′. The inclusion T ′′ ⊂ T follows from

the fact that for all ε ∈ L0
++,

U{‖·‖},ε ⊂ U{1A‖·‖},ε for all ‖ · ‖ ∈ P and A ∈ F and

U{‖·‖1,...,‖·‖n},ε = U{supi=1,...,n ‖·‖i},ε for all ‖ · ‖1, . . . , ‖ · ‖n ∈ P.

�
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For a finite collection UQ1,ε1, . . . , UQn,εn and a finite collection of pairwise disjoint sets
A1, . . . , An ∈ F (Ai ∩ Aj = ∅ for i 6= j), the preceding lemma shows that

∑n
i=1 1Ai

UQi,εi

is a neighborhood of 0 ∈ E. Indeed, let

‖ · ‖ :=
n∑

i=1

1Ai
sup

‖·‖∈Qi

‖ · ‖ = sup
i=1,...,n

1Ai
sup

‖·‖∈Qi

‖ · ‖

and ε :=
∑n

i=1 1Ai
εi. Then,

∑n
i=1 1Ai

UQi,εi
= U{‖·‖},ε.

In the case of a countably infinite sequence (UQn,εn) and a pairwise disjoint sequence
(An) ⊂ F (Ai ∩ Aj = ∅ for i 6= j) the next example illustrates that the above reasoning
does not apply, as the L0–semi norm given by

‖ · ‖ :=
∑

n∈N

1An sup
‖·‖∈Qn

‖ · ‖ = sup
n∈N

1An sup
‖·‖∈Qn

‖ · ‖

cannot be assumed to belong to P in general.

Example 2.19 Consider the probability space Ω = [0, 1], F = σ(An | n ∈ N) the σ-algebra
generated by the sets An := [1 − 2−(n−1), 1 − 2−n], and P the Lebesgue measure. Define
Bn := ∪m≤nAm, and let E := L0. For the family P of L0–semi norms | · |n := 1An | · |,
n ∈ N, we subsequently derive the following:

(i) | · | =
∑

n∈N
| · |n /∈ P.

(ii) For all ε ∈ L0
++, U{|·|},ε =

∑
n∈N

1AnU{|·|n},ε is not a neighborhood of the origin in
the locally L0–convex topology induced by P.

(iii) The sequence (1Bn

1
n + 1Bc

n
)n∈N converges to 0 w.r.t. the locally L0–convex topology

induced by P but it does not converge to 0 in the locally L0–convex topology induced
by P ∪ {| · |}.

This leads us to the following definition.

Definition 2.20 A family P of L0–semi norms has the countable concatenation property
if ∑

n∈N

1An‖ · ‖n ∈ P,

for every pairwise disjoint sequence (An) ⊂ F and for every sequence of L0–semi norms
(‖ · ‖n) in P.

If P is a family of L0–semi norms which has the countable concatenation property then
(E,T ) has the countable concatenation property in the sense of Definition 2.7. Conversely,
if (E,T ) is a topological L0–module which has the countable concatenation property,
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where T is induced by a family P of L0–semi norms, we can always assume that P has
the countable concatenation property. Indeed, inspection shows that

{
∑

n∈N

1An‖ · ‖n | (An) ⊂ F pairwise disjoint, (‖ · ‖n) ⊂ P

}

also induces T .
In view of Lemma 2.18 we can always assume that a finite family of L0–semi norms

has the countable concatenation property.

2.3.2 The index set of nets

The neighborhood base U of 0 ∈ E given in (2.2) is indexed with the collection of all finite
subsets of P and L0

++. We introduce a direction ” ≥ ” on this index set as follows:

(R2, α2) ≥ (R1, α1) if and only if R2 ⊂ R1 and α1 ≤ α2 (2.19)

for all finite R1,R2 ⊂ P and α1, α2 ∈ L0
++. We denote nets w.r.t. this index set by (XR,α).

If E is a topological L0–module, not necessarily locally L0–convex, nets are denoted by
(Xα)α∈D or (Xα) for corresponding index set D.

2.4 The gauge function

Let E be an L0–module.

Definition 2.21 The gauge function pK : E → L̄0
+ of a set K ⊂ E is defined by

pK(X) := ess.inf{Y ∈ L0
+ | X ∈ Y K}. (2.20)

The gauge function pK of an L0–absorbent set K ⊂ E maps E into L0
+. Moreover:

Proposition 2.22 The gauge function pK of an L0–absorbent set K ⊂ E satisfies:

(i) pK(X) ≤ 1 for all X ∈ K.

(ii) 1ApK(1AX) ≥ 1ApK(X) for all X ∈ E and A ∈ F .

(iii) Y pK(1{Y >0}X) = pK(Y X) for all X ∈ E and Y ∈ L0
+; in particular, Y pK(X) =

pK(Y X) if Y ∈ L0
++.

Proof. (i) This assertion follows immediately from the definition of pK .
(ii) Let X ∈ E and A ∈ F . We have

1A ess.inf
X∈ZK

Z = 1A ess.inf
X∈ZK

1AZ

≥ 1A ess.inf
1AX∈1AZK

1AZ (2.21)

= 1A ess.inf
1AX∈ZK

1AZ = 1A ess.inf
1AX∈ZK

Z,
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where the inequality in (2.21) follows since X ∈ ZK implies 1AX ∈ 1AZK. Hence,
1ApK(X) ≥ 1ApK(1AX).

(iii) Let X ∈ E, Y ∈ L0
+ and define A := {Y > 0}. We have

Y ess.inf
1AX∈ZK

Z = ess.inf
1AX∈ZK

Y Z

Z′:=Y Z
= ess.inf

1AXY ∈1AZ′K
Z ′

= ess.inf
1AXY ∈ZK

Z = ess.inf
XY ∈ZK

Z,

and hence Y pK(1AX) = pK(Y X). �

A non empty L0–absorbent L0–convex set K ⊂ E always contains the origin; indeed,
let X ∈ E and Y1, Y2 ∈ L0

++ be such that X/Y1,−X/Y2 ∈ K. Then, since K is L0–convex,

Y1

Y1 + Y2

X

Y1
+

Y2

Y1 + Y2

−X

Y2
=

X − X

Y1 + Y2
= 0 ∈ K. (2.22)

Depending on the choice of K ⊂ E, the gauge function pK can be L0–sublinear or an
L0–semi norm.

Proposition 2.23 The gauge function pK of an L0–absorbent L0–convex set K ⊂ E
satisfies:

(i) pK(X) = ess.inf{Y ∈ L0
++ | X ∈ Y K} for all X ∈ E.

(ii) Y pK(X) = pK(Y X) for all Y ∈ L0
+ and X ∈ E.

(iii) pK(X + Y ) ≤ pK(X) + pK(Y ) for all X,Y ∈ E.

(iv) For all X ∈ E there exists a sequence (Zn) in L0 such that

Zn ց pK(X) a.s. (2.23)

In particular, since 0 ∈ K (cf. (2.22)), pK is L0–sublinear.
If in addition to this K is L0–balanced then pK satisfies:

(v) pK(Y X) = |Y |pK(X) for all Y ∈ L0 and for all X ∈ E.

In particular, pK is an L0–semi norm.

Proof. (i) As ”≤” follows from the definition of pK we only prove the reverse inequality.
To this end, let Y ∈ L0

+ with X = Y Z for some Z ∈ K. Then {Y = 0} ⊂ {X = 0} and
in turn A := {Y > 0} ⊃ {X 6= 0}. Thus, with Yε := 1AY + 1Acε for ε ∈ L0

++ we have

X = 1AX = Y 1AZ = Yε1AZ ∈ Yε1AK ⊂ YεK.

The claim now follows since ess.infε∈L0
++

Yε = Y .
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(ii) To prove this assertion we first show that

1ApK(1AX) = 1ApK(X) for all X ∈ E and A ∈ F . (2.24)

(ii) then follows from (iii) of Proposition 2.22 together with (2.24).
To establish (2.24), we only have to prove the reverse inequality in (2.21). To this end,

let Y1, Y2 ∈ L0
+ with 1AX = 1AY1Z1,X = Y2Z2 for Z1, Z2 ∈ K and A ∈ F . In particular,

1AcX = 1AcY2Z2. We have

X = 1AY1Z1 + 1AcY2Z2 = (1AY1 + 1AcY2)(1AZ1 + 1AcZ2)

and since L0–convexity of K implies that 1AZ1 + 1AcZ2 = 1AZ1 + (1 − 1A)Z2 ∈ K the
required inequality follows.

(iii) Let X1,X2 ∈ E and Y1, Y2 ∈ L0
++ such that X1/Y1,X2/Y2 ∈ K. Since K is

L0–convex
Y1

Y1 + Y2

X1

Y1
+

Y2

Y1 + Y2

X2

Y2
=

X1 + X2

Y1 + Y2
∈ K.

Thus, pK(X1+X2
Y1+Y2

) ≤ 1, and hence pK(X1 + X2) ≤ Y1 + Y2. Since Y1 and Y2 are arbitrary,
we may take the essential infimum over all such pairs Y1, Y2 and – in view of (i) – we derive

pK(X1 + X2) ≤ pK(X1) + pK(X2).

(iv) As in the proof of (2.24), L0–convexity of K implies that the set

{Y ∈ L0
+ | X ∈ Y K}

is directed downwards (and upwards) for all X ∈ E.
(v) Let X ∈ E,Y ∈ L0 and A := {Y ≥ 0}. Then (2.24) and (ii) imply

pK(Y X) = 1A|Y |pK(X) + 1Ac |Y |pK(−X),

and hence it remains to prove that pK(−X) = pK(X). But since K is L0–balanced we
have −K = K and hence

pK(−X) = p−K(−X) = pK(X).

�

As a consequence of Proposition 2.23, we can now complete the proof of Theorem 2.4:

Corollary 2.24 Any locally L0–convex topology T on E is induced by a family of L0–semi
norms.

Proof. Let U be a neighborhood base of 0 ∈ E such that every U ∈ U is L0–absorbent,
L0–convex and L0–balanced. Then, the family of gauge functions

P := {pU | U ∈ U},

by Proposition 2.23, is a family of L0–semi norms and the topology induced by P coincides
with T . �
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Proposition 2.25 The gauge function pK of an L0–absorbent L0–convex set K ⊂ E
(recall that 0 ∈ K, cf. (2.22)) satisfies:

(i) pK(X) ≥ 1 for all X ∈ E with 1AX /∈ 1AK for all A ∈ F with P [A] > 0.

If in addition to this, E is a locally L0–convex module, then pK satisfies:

(ii) pK(X) < 1 for all X ∈
◦
K.

Proof. To prove (i) let us assume that {pK(X) < 1} has positive P–measure for some
X ∈ E with X1A /∈ K for all A ∈ F with P [A] > 0. With (iv) of Proposition 2.23 we
know that there is Y ∈ L0

+ such that B := {Y < 1} has positive P–measure and

X ∈ Y K.

But this is a contradiction as we derive

X1B ∈ Y 1BK ⊂ 1BK,

where the last inclusion follows from the L0–convexity of 1BK. (Note that 0 ∈ K.)

(ii) Let X ∈
◦
K. Then there exists a neighborhood UQ,ε (Q ⊂ P finite and ε ∈ L0

++)
of 0 ∈ E such that X + UQ,ε ⊂ K. In view of Proposition 2.18 we can assume that P is
closed under finite suprema and that UQ,ε = U{‖·‖sup},ε, where ‖ · ‖sup := sup‖·‖∈Q ‖ · ‖.

Then, for all δ ∈ L0
++,

‖X − X(1 + δ)‖sup = δ‖X‖sup.

Thus, choosing δ such that δ‖X‖sup ≤ ε, we derive X(1 + δ) ∈ K and hence pK(X) ≤
1/(1 + δ) < 1. �

2.5 Hyperplane separation

Let E be a locally L0–convex module.
Let X ∈ E be such that there is an L0–linear bijection µ : spanL0(X) → L0. Then,

necessarily
µ(Y X) = Y µX for all Y ∈ L0 (2.25)

and µ−1 : L0 → spanL0(X) is L0–linear as well. Since µ is a surjection we derive from
(2.25) that P [µX 6= 0] = 1. Further,

Y = µ(µ−1(Y )) = µ(Ȳ X) = Ȳ µX

for all Y ∈ L0. Hence, Ȳ = Y/µX and in turn µ−1(Y ) = Y X/µX. On replacing µ by
µ/(µX), we can always assume that µX = 1. In this case, µ(Y X) = Y and µ−1Y = Y X
for all Y ∈ L0.
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Lemma 2.26 Let K,M ⊂ E be L0–convex, K open and non empty. If 1AM ∩ 1AK = ∅
for all A ∈ F with P [A] > 0, then there is an L0–linear function µ : E → L0 such that

µY < µZ for all Y ∈ K and Z ∈ M. (2.26)

Proof. We can assume that M is non empty.
Step 1: Suppose first that M = {X} is a singleton.
Without loss of generality, we may assume that 0 ∈ K. Indeed, if 0 /∈ K replace X

by X − Y and K by K − Y for some Y ∈ K which is possible since K 6= ∅. Note that
{X − Y },K − Y remain L0–convex, that K − Y remains open non empty and that an
L0–linear function µ : E → L0 separates {X} from K – in the sense of (2.26) – if and only
if it separates {X − Y } from K − Y .

Thus, let K be L0–convex open non empty and 0 ∈ K. (Note that K is L0–absorbent.)
By assumption, 1AX /∈ K for all A ∈ F with P [A] > 0. In particular, 1AX 6= 0 for all
A ∈ F with P [A] > 0. Hence, Y X = Y ′X implies Y = Y ′ for all Y, Y ′ ∈ L0 and
µ : spanL0(X) → L0,

µ(Y X) := Y for all Y ∈ L0, (2.27)

is a well-defined L0–linear bijection of spanL0(X) into L0. By Proposition 2.23, the gauge
function pK : E → L0 is L0–sublinear. We show pK(Z) ≥ µZ for all Z ∈ spanL0(X). For
Z ∈ spanL0(X) let Y ∈ L0 be the unique element with Z = Y X. From (2.24) in the proof
of Proposition 2.23 we derive

pK(Y X) = 1ApK(1AY X) + 1AcpK(1AcY X) (2.28)

for A := {Y ≥ 0}. Further, with (ii) of Proposition 2.23 and (i) of Proposition 2.25 we
know that

1ApK(1AY X) = 1AY pK(X) ≥ 1AY = 1Aµ(Y X) (2.29)

and since pK ≥ 0
1AcpK(1AcY X) ≥ 1AcY = 1Acµ(Y X). (2.30)

Adding up (2.29) and (2.30), together with (2.28), yield

pK(Y X) ≥ µ(Y X).

Hence, pK(Z) ≥ µZ for all Z ∈ spanL0(X) and therefore µ extends by the Hahn–Banach
Theorem 2.14 to µ : E → L0 such that

µY ≤ pK(Y ) for all Y ∈ E.

In particular, for all Y ∈ K
µY ≤ pK(Y ) < 1 = µX,

where the strict inequality follows from (ii) of Proposition 2.25 and the equality follows
from (2.27).
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Step 2: Now let M be as in the lemma. Then, K −M is L0–convex open non empty
and 1A{0} ∩ 1A(K − M) = ∅ for all A ∈ F with P [A] > 0. Thus, from the first step of
this proof, there is an L0–linear function µ : E → L0 with

µ(Y − Z) < 0 for all Y ∈ K and Z ∈ M

and the assertion is proved. �

Lemma 2.27 Let K ⊂ E be open L0–convex with 0 ∈ K. If µ : E → L0 is L0–linear
such that

µ(X) ≤ pK(X) for all X ∈ E

then µ is continuous.

Proof. It suffices to show that µ−1Bε is a neighborhood of 0 ∈ E for each ball Bε centered
at 0 ∈ L0. Thus, let ε ∈ L0

++. The set U := εK ∩ −εK is a neighborhood of 0 ∈ E.
(Indeed, let V := UQ,δ ⊂ K, be a neighborhood of 0 ∈ E, which exists since K is open and
0 ∈ K. Then, εV = UQ,εδ is an L0–balanced neighborhood of 0 ∈ E. Further, εV ⊂ εK,
−εV ⊂ −εK and since εV is L0–balanced εV = −εV and in turn εV ⊂ εK ∩ −εK.)
Further, for all X ∈ U we have

µ(X) ≤ pK(X) ≤ ε and

−µ(X) = µ(−X) ≤ pK(−X) ≤ ε.

Thus, |µ(X)| ≤ ε and hence U ⊂ µ−1Bε. �

We can now prove Theorem 2.6.

Proof. We can assume that M is non empty. Define L := K − M . For X ∈ L, the set
L − X is L0–convex open and 0 ∈ L − X. By assumption, 0 /∈ 1AL for all A ∈ F with
P [A] > 0 and so 1A(−X) /∈ 1A(L − X). From the first step of the proof of Lemma 2.26
we know that there is an L0–linear function µ : E → L0 such that

µY ≤ pL−X(Y ) for all Y ∈ E.

By Lemma 2.27, µ is continuous. Further,

µY < µ(−X) for all Y ∈ L − X.

and Theorem 2.6 is proved. �

Lemma 2.28 Let P be a family of L0–semi norms inducing a locally L0–convex topology
on E and let K ⊂ E be closed with 1AX + 1AcX ′ ∈ K for all A ∈ F and X,X ′ ∈ K.
If P has the countable concatenation property and X ∈ E satisfies 1A{X} ∩ 1AK = ∅
for all A ∈ F with P [A] > 0, then there is an L0–convex, L0–absorbent and L0–balanced
neighborhood U of 0 ∈ E such that

1A(X + U) ∩ 1A(K + U) = ∅

for all A ∈ F with P [A] > 0.
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Proof. We can assume that K 6= ∅. Via translation by X, it suffices to construct an
L0–convex, L0–absorbent and L0–balanced neighborhood U of 0 ∈ E such that

1AU ∩ 1A(K + U) = ∅

for all A ∈ F with P [A] > 0.
Step 1: In this step we construct an L0–convex, L0–absorbent, L0–balanced neigh-

borhood U of 0 ∈ E such that 1AU ∩ 1AK = ∅ for all A ∈ F with P [A] > 0. To this end,
define

ε∗ := 1 ∧ ess.sup
Q⊂P finite

ess.inf{ε ∈ L0
++ | UQ,ε ∩ K 6= ∅}

(Note that for all Q ⊂ P finite there is ε ∈ L0
++ such that UQ,ε ∩ K 6= ∅ since all

neighborhoods of 0 ∈ E are L0–absorbent.) Successively we show that ε∗ satisfies:

(i) ε∗ ∈ L0
++.

(ii) There is an L0–semi norm ‖ · ‖∗ ∈ P such that

ε∗

2
< ess.inf{ε ∈ L0

++ | U{‖·‖∗},ε ∩ K 6= ∅}.

(iii) 1AU{‖·‖∗},ε∗/2 ∩ 1AK = ∅ for all A ∈ F with P [A] > 0. (Note that U{‖·‖∗},ε∗/2 is
L0–convex, L0–absorbent, L0–balanced and closed.)

(i) Suppose P [A] > 0, A := {ε∗ = 0}. Then for all Q ⊂ P finite and for all α ∈ L0
++

there is XQ,α ∈ K such that

1AXQ,α ∈ UQ,1/α ∩ 1AK.

Hence, for X ∈ K the net (1AXQ,α + 1AcX) converges to 1AcX and 1AXQ,α + 1AcX ∈ K
for all Q ⊂ P finite and for all α ∈ L0

++. Since K is closed, we derive 1AcX ∈ K, which
is impossible as it would imply 0 = 1A1AcX ∈ 1AK.

(ii) For all finite Q ⊂ P, let

εQ := ess.inf{ε ∈ L0
++ | UQ,ε ∩ K 6= ∅}.

For finite Q,Q′ ⊂ P, UQ∪Q′,ε ⊂ UQ,ε, UQ′,ε. Thus, the collection {εQ | Q ⊂ P finite} is
directed upwards and hence there is an increasing sequence (εQn) with 1 ∧ εQn ր ε∗ a.s.
Let

A1 := {εQ1 > ε∗/2},

An := {εQn > ε∗/2} \ An−1 for all n ≥ 2.

Then,
⋃

n∈N
An ր Ω since ε∗ > ε∗/2. Further, the L0–semi norm

‖ · ‖∗ :=
∑

n∈N

1An sup
‖·‖∈Qn

‖ · ‖
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is an element of P since P has the countable concatenation property and ‖ · ‖∗ is as
required.

(iii) Finally, assume there is A ∈ F , P [A] > 0, and X ∈ K such that 1AX ∈
1AU{‖·‖∗},ε∗/2. Then

1Aess.inf{ε ∈ L0
++ | U{‖·‖∗},ε ∩ K 6= ∅} ≤ 1A

ε∗

2
,

in contradiction to the statement in (ii).
Step 2: From the first step we have ‖·‖ ∈ P and ε ∈ L0

++ such that 1AU{‖·‖},ε∩1AK =
∅ for all A ∈ F with P [A] > 0. This implies 1AU{‖·‖},ε/2 ∩ 1A(K + U{‖·‖},ε/2) = ∅ for all
A ∈ F with P [A] > 0 and the assertion follows. �

The next example illustrates, that the countable concatenation property, as an as-
sumption on P in Lemma 2.28, cannot be omitted.

Example 2.29 Let (Ω,F , P ), An, and the family P of L0–semi norms on E = L0 be
as in Example 2.19. From Example 2.19 we know that P does not have the countable
concatenation property. We now further derive the following:

(i) The set K := {X ∈ E | X ≥ 1} is closed with respect to the locally L0–convex
topology on E induced by P.

Indeed, if X /∈ K then there is n ∈ N such that 0 < 1−X =: c ∈ R on An. But then
X + U{1An |·|},c/2 defines a neighborhood of X which is disjoint of K. Hence Kc is
open.

(ii) 1AK ∩ {0} = ∅ for all A ∈ F with P [A] > 0.

This follows as 1AnK ∩ {0} = ∅, for all atoms An, n ∈ N.

(iii) For every neighborhood U of 0 ∈ E there exists A ∈ F with P [A] > 0 such that
1AK ∩ U 6= ∅.

Indeed, for every neighborhood U of 0 ∈ E there is n ∈ N and ε ∈ L0
++ such that

U{1Bn |·|},ε ⊂ U . Note that P [Bn] < 1. But now, 1Bc
n
K ⊂ 1Bc

n
E = 1Bc

n
U{1Bn |·|},ε ⊂ U .

We can now prove Theorem 2.8.

Proof. Recall we can assume a family P of L0–semi norms induces the locally L0–convex
topology on E and that P inherits the countable concatenation property from E.

By Lemma 2.28, there is an L0–convex, L0–absorbent and L0–balanced neighborhood
U of 0 ∈ E such that

1A(X + U) ∩ 1A(K + U) = ∅

for all A ∈ F with P [A] > 0. Since K +
◦
U,X +

◦
U are L0–convex open and K +

◦
U is non

empty Theorem 2.6 yields a continuous L0–linear function µ : E → L0 such that

µY < µZ for all Y ∈ K +
◦
U and Z ∈ X +

◦
U.
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Further, from the first step of the proof of Lemma 2.26 we know that there is X0 ∈ E
such that

µ(Y X0) = Y for all Y ∈ L0.

Since
◦
U is L0–absorbent and L0–balanced there is ε ∈ L0

++ such that −εX0 ∈
◦
U . Thus,

µY < µ(X − εX0) = µX − ε for all Y ∈ K +
◦
U.

In particular,
µY + ε < µX for all Y ∈ K,

whence Theorem 2.8 is proved. �

We provide an example which illustrates that the countable concatenation property,
as an assumption on P in Theorem 2.8, cannot be omitted.

Example 2.30 Let (Ω,F , P ), An, and the family P of L0–semi norms on E = L0 be as
in Example 2.29. Then the closed subset K := {X ∈ E | X ≥ 1} of E cannot be separated
from 0 by a continuous L0–linear function.

Indeed, as every L0–linear function µ : E → L0 is of the form

µX =
∑

n∈N

1AnanX for all X ∈ E,

for some sequence (an) ⊂ R, we conclude that an > 0 for all n ∈ N if µ separates 0 from
K. Such µ, however, is not continuous at 0. To see this, let Z :=

∑
n∈N

1Anan, ε ∈ L0
++

and observe that
µ−1{Y ∈ L0 | |Y | ≤ ε} = {X ∈ E | |X/Z| ≤ ε}

is not a neighborhood of 0 ∈ E.

3 Part II. Duality in locally L
0–convex modules

3.1 Main results

We first recall and introduce some terminology. Let E be an L0–module. The effective
domain of a function f : E → L̄0 is denoted by domf := {X ∈ E | f(X) ∈ L0}. The
epigraph of f is denoted by epif := {(X,Y ) ∈ E × L0 | f(X) ≤ Y }. The function f is
proper if f(X) > −∞ for all X ∈ E and domf 6= ∅.

Definition 3.1 Let E be an L0–module and f : E → L̄0 a proper function.

(i) f is L0–convex if f(Y X1 +(1−Y )X2) ≤ Y f(X1)+ (1−Y )f(X2) for all X1,X2 ∈ E
and Y ∈ L0 with 0 ≤ Y ≤ 1.

(ii) f has the local property if 1Af(X) = 1Af(1AX) for all X ∈ E and A ∈ F .
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As a first result in this part, we obtain that L0–convexity enforces the local property.
The proof is given in Section 3.3 below.

Theorem 3.2 Let E be an L0–module. A proper function f : E → L̄0 is L0–convex if
and only if f has the local property and epif is L0–convex.

We now address some topological properties of L0–convex functions.

Definition 3.3 Let E be a topological L0–module. A function f : E → L̄0 is lower semi
continuous if for all Y ∈ L0 the level set {X ∈ E | f(X) ≤ Y } is closed.

As one expects from the real case, lower semi continuity of an L0–convex function can
also be characterized in terms of its epigraph. In fact, the following result is proved in
Section 3.4.

Proposition 3.4 Let E be a locally L0–convex module that has the countable concatena-
tion property. A proper function f : E → L̄0 that has the local property is lower semi
continuous if and only if epif is closed.

A subset B of a topological L0–module E is an L0–barrel if it is L0–convex, L0–
absorbent, L0–balanced and closed. A locally L0–convex module E is an L0–barreled
module if every L0–barrel is a neighborhood of 0 ∈ E. It follows by inspection that
L0–normed modules are L0–barreled. The following result is proved in Section 3.5.

Proposition 3.5 Let E be an L0–barreled module. A proper lower semi continuous L0–

convex function f : E → L̄0 is continuous on
◦

domf .

We now turn to our main, Fenchel–Moreau type, duality results. Let E be a topological
L0–module, and denote by L(E,L0) the L0–module of continuous L0–linear functions
µ : E → L0. The conjugate f∗ : L(E,L0) → L̄0 of a function f : E → L̄0 is defined by

f∗(µ) := ess.sup
X∈E

(µX − f(X)). (3.31)

Further, the conjugate f∗∗ : E → L̄0 of f∗ is defined by

f∗∗(X) := ess.sup
µ∈L(E,L0)

(µX − f∗(µ)). (3.32)

Definition 3.6 Let E be a topological L0–module. An element µ of L(E,L0) is a subgra-
dient of a function f : E → L̄0 at X0 ∈ domf if

µ(X − X0) ≤ f(X) − f(X0), for all X ∈ E.

The set of all subgradients of f at X0 is denoted by ∂f(X0).
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A pre stage of Theorem 3.7 below, which we will prove in Section 3.6, is given in Ku-
tateladze [16, 17, 18]. However, Kutateladze entirely remains within an algebraic scope as
he does not address topological aspects such as continuity. More precisely, he provides nec-
essary and sufficient conditions for the existence of algebraic subgradients of L0–sublinear
functions in terms of the underlying ring. Further, Kutateladze only covers the case of
L0–sublinear functions which take values in L0 adjoint +∞, that is, L0 ∪ {+∞} rather
than functions which take values in L̄0.

Theorem 3.7 Let E be an L0–barreled module that has the countable concatenation prop-
erty. Let f : E → L̄0 be a proper lower semi continuous L0–convex function. Then,

∂f(X) 6= ∅ for all X ∈
◦

domf.

Here is the generalized Fenchel–Moreau duality theorem, the proof of which is given
in Section 3.7.

Theorem 3.8 Let E be a locally L0–convex module that has the countable concatenation
property. Let f : E → L̄0 be a proper lower semi continuous L0–convex function. Then,

f = f∗∗.

3.2 Financial applications

In this section we illustrate the scope of applications that can be covered by our results.
The entropic risk measure ρ0 : L̄0 → [−∞,+∞] is defined as

ρ0(X) := log E[exp(−X)].

Its restriction to the locally convex vector space Lp, p ∈ [1,+∞], is proper, convex, lower
semi continuous. Classical convex analysis yields the dual representation

ρ0(X) = sup
Z∈Lq

(E[ZX] − ρ∗0(Z))

with conjugate function

ρ∗0(Z) = sup
X∈Lp

(E[ZX] − ρ0(X)) (= E[−Z log(−Z)] if defined and = +∞ otherwise)

where q := p/(p−1) (:= +∞ if p = 1), cf. [8]. For p = +∞, in particular, ρ0 is continuous

and subdifferentiable on
◦

domρ0 = L∞ with unique subgradient − exp(−X)/E[exp(−X)]
at X ∈ L∞.

Market models in stochastic finance involve filtrations which represent the flow of
information provided by the market. Let (Ω,F , (Ft)t∈N, P ) be a filtered probability space.
We shall write L0(F), L0(Ft), etc. to express the respective reference σ-algebra. The
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[−∞,+∞]–valued entropic risk measure ρ0 can be made contingent on the information
available at t by modifying it to ρt : L̄0(F) → L̄0(Ft),

ρt(X) := log E[exp(−X) | Ft].

As in the deterministic case, subdifferentiability and dual representation of ρt are impor-
tant aspects in risk management applications. For this reason, ρt must be restricted to a
space which allows for convex analysis.

The restriction ρt to bounded risks, that is L∞(F), has been analyzed in [2, 5, 6, 9].
It turns out that ρt maps L∞(F) into L∞(Ft). Convex analysis of ρt can then be carried
out by means of scalarization, an idea which goes back to [12, 19, 21].

However, L∞(F) is a too narrow model space for financial risks. For instance, it does
not contain normal distributed random variables. The space Lp(F), for p ∈ [1,+∞), is
larger and already sufficient for many applications. But ρt restricted to Lp(F) takes values
in L̄0(Ft) and the scalarization method used in the previous literature can no longer be
applied.

Exploiting our results, we thus propose to view ρt as a function on the L0(Ft)–module
Lp
Ft

(F), defined in Example 2.5, which in fact is much larger than Lp(F) and thus even
better apt for applications. The function ρt : Lp

Ft
(F) → L̄0(Ft) is proper L0–convex. Fa-

tou’s generalized lemma and lemma 3.10 show that ρt is lower semi continuous. Moreover,
from Theorem 3.8 we know that the following dual representation applies

ρt(X) = ess.sup
Z∈Lq

Ft
(F)

(E[ZX | Ft] − ρ∗t (Z))

= ess.sup
Y ∈L0(Ft),Z′∈Lq(F)

(Y E[Z ′X | Ft] − ρ∗t (Y Z ′)).

For time-consistent dynamic risk assessment, compositions of the form ρt ◦ (−ρt+1) are
another important aspect, cf. [5, 9]. For the entropic risk measure we derive in an ad hoc
manner that ρt ◦ (−ρt+1) = ρt on L̄0(F). Hence, our results immediately apply to the
dynamic risk assessment by means of the entropic risk measure. An extension to more
general dynamic risk measures and lower semi continuity as well as subdifferentiability
aspects of compositions of lower semi continuous functions is subject to future research.

3.3 Proof of Theorem 3.2

To prove the if statement, let X1,X2 ∈ E and Y ∈ L0, 0 ≤ Y ≤ 1. The inequality

f(Y X1 + (1 − Y )X2) ≤ Y f(X1) + (1 − Y )f(X2) (3.33)

is trivially valid on {f(X1) = +∞}∪{f(X2) = +∞}. Since f is proper there is X ∈ domf .
Since f has the local property

X ′
1 := 1{f(X1)<+∞}X1 + 1{f(X1)=+∞}X ∈ domf

X ′
2 := 1{f(X2)<+∞}X2 + 1{f(X2)=+∞}X ∈ domf.
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From L0–convexity of epif we derive

f(Y X ′
1 + (1 − Y )X ′

2) ≤ Y f(X ′
1) + (1 − Y )f(X ′

2). (3.34)

The local property of f together with (3.33) and (3.34) yields

f(Y X1 + (1 − Y )X2) ≤ Y f(X1) + (1 − Y )f(X2),

that is, f is L0–convex.
To establish the only if statement, observe that epif is L0–convex if f is L0–convex.

Thus, it suffices to prove that f has the local property. This, however, follows from the
inequalities

f(1AX) = f(1AX + 1Ac0) ≤ 1Af(X) + 1Acf(0)

= 1Af(1A(1AX) + 1AcX) + 1Acf(0)

≤ 1Af(1AX) + 1Acf(0)

which become equalities if multiplied with 1A.

3.4 Lower semi continuous functions

Lemma 3.9 Let E be a topological L0–module. The essential supremum of a family of
lower semi continuous functions fi : E → L̄0, i ∈ I, I an arbitrary index set, is lower
semi continuous.

Proof. The assertion follows from the identity

{X | X ∈ E and ess.sup
i∈I

fi(X) ≤ Y } =
⋂

i∈I

{X | X ∈ E and fi(X) ≤ Y }

for all Y ∈ L0. �

The essential limit inferior ess.liminfαXα of a net (Xα) ⊂ L0 is defined by

ess.liminf
α

Xα := ess.sup
α

ess.inf
β≥α

Xβ

Lemma 3.10 Let E be a locally L0–convex module that has the countable concatenation
property. A proper function f : E → L̄0 that has the local property is lower semi continuous
if and only if

ess.liminf
α

f(Xα) ≥ f(X) (3.35)

for all nets (Xα) ⊂ E with Xα → X for some X ∈ E.

Proof. Assume that f has the local property, is lower semi continuous and let (Xα) ⊂ E be
such that Xα → X for some X ∈ E. Let Y ∈ L0 be such that Y < f(X) which is possible
since f is proper. By lower semi continuity of f , the set V := {Z ∈ E | f(Z) ≤ Y } is
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closed and by the local property we have 1AX ′+1AcX ′′ ∈ V for all A ∈ F and X ′,X ′′ ∈ V .
Further,

1AX /∈ 1AV

for all A ∈ F with P [A] > 0. By Lemma 2.28 there is a neighborhood U of 0 ∈ E such
that 1A(X + U) ∩ 1AV = ∅ for all A ∈ F with P [A] > 0. Since Xα → X there is α0 such
that Xβ ∈ X + U for all β ≥ α0. Due to the local property, 1AXβ /∈ 1AV for all β ≥ α0

and A ∈ F with P [A] > 0. Hence, f(Xβ) > Y for all β ≥ α0 and in turn

ess.liminf
α

f(Xα) = ess.sup
α

ess.inf
β≥α

f(Xβ)

≥ ess.inf
β≥α0

f(Xβ) ≥ Y.

Since Y was arbitrary, we deduce (3.35).
Now assume (3.35) and let Y ∈ L0. We have to show that the set

V := {Z ∈ E | f(Z) ≤ Y }

is closed. To this end, let (Xα) ⊂ V and X ∈ E with Xα → X for some X ∈ E. Then,
from the inequality f(Xα) ≤ Y for each α, we obtain

f(X) ≤ ess.liminf
α

f(Xα) ≤ Y,

so X ∈ V . That is, V is closed, and hence f is lower semi continuous. �

Next, we prove Proposition 3.4.

Proof. Define φ : E × L0 → L̄0 by

φ(X,Y ) := f(X) − Y.

From Lemma 3.10 and the definition of the product topology we derive that lower semi
continuity of f on E is equivalent to lower semi continuity of φ on E ×L0. For all Z ∈ L0

we have
{(X,Y ) ∈ E × L0 | φ(X,Y ) ≤ Z} = epif − (0, Z).

Since E ×L0 is a topological L0–module we derive that {(X,Y ) ∈ E ×L0 | φ(X,Y ) ≤ Z}
is closed if and only if epif is closed. This proves Proposition 3.4. �

3.5 Lower semi continuous L
0–convex functions

Lemma 3.11 Let E be a topological L0–module. If in the neighborhood of X0 ∈ E a
proper L0–convex function f : E → L̄0 is bounded above by Y0 ∈ L0 then f is continuous
at X0.
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Proof. On replacing f by f(·+X0)−f(X0), we assume that X0 = f(X0) = 0. Let δ ∈ L0
++

and f(X) ≤ Y0 for all X in a neighborhood V of 0 ∈ E. We have to show that there is a
neighborhood Wδ of 0 ∈ E such that |f(X)| ≤ δ for all X ∈ Wδ.

Without loss of generality we can assume that Y0 is such that ε := δ/Y0 > 0 is well
defined and ε < 1. Since E is a topological L0–module W := V ∩ −V is a symmetric
(W = −W ) neighborhood of 0 ∈ E. We will show that the neighborhood Wδ := εW is as
required. Indeed, for all X ∈ εW we have ±X/ε ∈ V and hence L0–convexity of f implies

f(X) ≤ (1 − ε)f(0) + εf(X/ε) ≤ εY0 = δ

and f(X) ≥ (1 + ε)f(0) − εf(−X/ε) ≥ −εY0 = −δ.

Thus, |f(X)| ≤ δ for all X ∈ Wδ, whence the required continuity follows. �

Proposition 3.12 Let E be a topological L0–module. Let f : E → L̄0 be a proper L0–
convex function. The following statements are equivalent:

(i) There is a non empty open set O ⊂ E on which f is bounded above by Y0 ∈ L0.

(ii) f is continuous on
◦

domf and
◦

domf 6= ∅.

Proof. (ii) implies (i) since for every X0 ∈
◦

domf and for every δ ∈ L0
++(F) there is a

neighborhood V of X0 such that f(X0) − δ ≤ f(X) ≤ f(X0) + δ for all X ∈ V . O :=
◦
V

and Y0 := f(X0) + δ are then as required.

Conversely, let O and Y0 be as in (i) and take X0 ∈ O. Then, X0 ∈
◦

domf , whence
◦

domf 6= ∅. To see that f is continuous on
◦

domf , let X1 ∈
◦

domf . Observe that there is

Y1 ∈ L0
++, Y1 > 1, such that X2 := X0 + Y1(X1 − X0) ∈

◦
domf . Since E is a topological

L0–module the map H : E → E given by

H(X) := X2 −
Y1 − 1

Y1
(X2 − X) for all X ∈ E

is continuous and has continuous inverse H−1. As H transforms X0 into X1, it transforms
O into an open set H(O) containing X1. By L0–convexity of f , we have for all X ∈ H(O)

f(X) = f

(
Y1 − 1

Y1
H−1(X) +

1

Y1
X2

)

≤
Y1 − 1

Y1
f(H−1(X)) +

1

Y1
f(X2)

≤
Y1 − 1

Y1
Y0 +

1

Y1
f(X2).

In other words, for every X1 ∈
◦

domf there is a neighborhood of X1 on which f is bounded
above by an element of L0. By Lemma 3.11, f is continuous at X1. �
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Corollary 3.13 Let E be a topological L0–module and X ∈ E. Every proper L0–convex

function f : spanL0(X) → L̄0 is continuous (with respect to the trace topology) on
◦

domf .

Proof. Without loss of generality we assume that 0 ∈
◦

domf , else translate. Then there

is a neighborhood U of 0 ∈ spanL0(X) and Y ∈ L0
++ such that X̃ := Y X ∈ U ⊂

◦
domf .

From L0–convexity it follows that f is bounded above by sup(f(0), f(X̃)) on the open set

{λX̃ | 0 < λ < 1, λ ∈ L0}

and hence, by Proposition 3.12, f is continuous on
◦

domf . �

We can now prove Proposition 3.5.

Proof. Assume that there is X0 ∈
◦

domf . By translation, we may assume X0 = 0. Take
Y0 ∈ L0 such that f(0) < Y0. By assumption, the level set C := {X ∈ E | f(X) ≤ Y0}
is closed. Further, for all X ∈ E the net (X/Y )Y ∈L0

++
converges to 0 ∈ E. By Corollary

3.13, the restriction of f to spanL0(X) is continuous at 0, hence f(X/Y ) < Y0 for large
Y which implies that C is L0–absorbent. Hence, C ∩ −C is an L0–barrel and in turn a
neighborhood of 0 ∈ E. Thus, C is a neighborhood of 0 ∈ E and since f is bounded above
by Y0 on all of C it is continuous at 0. This proves Proposition 3.5. �

3.6 Subdifferentiability

Let E be a topological L0–module. Recall the Definitions (3.31) and (3.32) of the conju-
gates f∗ and f∗∗ of a function f : E → L̄0 and f∗, respectively. The effective domain of
f∗ is given by the set

{
µ ∈ L(E,L0) | ∃Y ∈ L0 : ess.sup

X∈E
(µX − f(X)) ≤ Y

}
.

If f is proper, then f∗ maps its effective domain into L0 and f∗ is L0–convex if f is so.
The effective domain of f∗∗ is given by the set

{
X ∈ E | ∃Y ∈ L0 : ess.sup

µ∈L(E,L0)

(µX − f∗(µ)) ≤ Y

}
.

Again, if f∗ is proper f∗∗ maps its effective domain into L0 and f∗∗ is L0–convex if f∗ is
so. Since for all X ∈ E and µ ∈ L(E,L0),

f∗(µ) ≥ µX − f(X) (3.36)

we have for all X ∈ E
f(X) ≥ f∗∗(X). (3.37)
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For µ ∈ L(E,L0) and X0 ∈ domf we have

µ ∈ ∂f(X0) if and only if f(X0) = µX0 − f∗(µ). (3.38)

Indeed, µ ∈ ∂f(X0) by definition means

f(X0) ≤ µX0 − (µX − f(X)) for all X ∈ E.

This is equivalent to

f(X0) ≤ µX0 − ess.sup
X∈E

(µX − f(X)) = µX0 − f∗(µ)

which, by (3.36), is equivalent to f(X0) = µX0 − f∗(µ).
With (3.37) and (3.38) we know that µ ∈ ∂f(X0) maximizes (3.32) at X0, i.e.

f∗∗(X0) = µX0 − f∗(µ).

Lemma 3.14 Let E be an L0–barreled module that has the countable concatenation prop-
erty. Let f : E → L̄0 be a proper lower semi continuous function that has the local
property. Equivalent are:

(i)
◦

domf 6= ∅.

(ii)
◦

epif 6= ∅.

Further, for all X ∈ domf , (X, f(X)) ∈ ∂epif and 1A(X, f(X)) /∈ 1A

◦
epif for all A ∈ F

with P [A] > 0.

Proof. To prove that (i) implies (ii), let ε ∈ L0
++ and X ∈

◦
domf . We claim

(X, f(X) + ε) ∈
◦

epif . (3.39)

To verify this, we show that there is a neighborhood U of (X, f(X)+ε) such that U ⊂ epif .
By Proposition 3.5, f is continuous at X. Hence, there is a neighborhood UE of X such
that

f(X) + ε/3 ≥ f(X ′) for all X ′ ∈ UE .

This implies
(X, f(X) + ε) ∈ UE × UL0 ⊂ epif,

where
UL0 := {Y ∈ L0 | |f(X) + ε − Y | ≤ ε/3}.

U := UE × UL0 is as required and (3.39) is proved.
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Conversely, to prove that (ii) implies (i), let (X,Y ) ∈
◦

epif . Then there are neighbor-
hoods UE and UL0 of X and Y respectively such that U := UE×UL0 ⊂ epif . In particular,

f(X ′) < +∞ for all X ′ ∈ UE and hence X ∈
◦

domf .
Next, let X ∈ domf . To prove (X, f(X)) ∈ ∂epif we show that every U ⊂ E × L0 of

the form
U := UE × {Y ∈ L0 | |f(X) − Y | ≤ ε},

UE ⊂ E a neighborhood of X, satisfies

U ∩ epif 6= ∅ 6= U ∩ epif c.

Observe (X, f(X)−ε/2), (X, f(X)+ε/2) ∈ U and (X, f(X)−ε/2) /∈ epif and (X, f(X)+
ε/2) ∈ epif , which proves (X, f(X)) ∈ ∂epif . For fixed A ∈ F with P [A] > 0, we show in

a similar way that 1A(X, f(X)) /∈ 1A

◦
epif . Observe that every U ⊂ E × L0 of the form

U := UE × {Y ∈ L0 | |1Af(X) − Y | ≤ ε},

UE ⊂ E a neighborhood of 1AX, satisfies

U ∩ epif c 6= ∅.

Indeed, 1A(X, f(X)− ε/2) ∈ U and yet 1A(X, f(X)− ε/2) /∈ 1Aepif by the local property

of f . This proves 1A(X, f(X)) /∈ 1A

◦
epif . �

Next, we prove Theorem 3.7.

Proof. Let X0 ∈
◦

domf . We separate (X0, f(X0)) from
◦

epif by means of Theorem 2.6. By

Lemma 3.14,
◦

epif is non empty, (X0, f(X0)) ∈ ∂epif and

1A{(X0, f(X0))} ∩ 1A

◦
epif = ∅ for all A ∈ F with P [A] > 0.

Hence, there are continuous L0–linear functions µ1 : E → L0 and µ2 : L0 → L0 such that

µ1X + µ2Y < µ1X0 + µ2f(X0) for all (X,Y ) ∈
◦

epif . (3.40)

From (3.40) together with the fact that µ2Y = Y µ21 for all Y ∈ L0 we derive that µ21 < 0.
We will show that −µ1/µ21 ∈ ∂f(X0). To this end, let X ∈ E, A := {f(X) = +∞} and
X̃ := 1AX0 + 1AcX. Then, X̃ ∈ domf and in turn (X̃, f(X̃)) ∈ ∂epif . Thus, there is a

net (XR,α, YR,α) ⊂
◦

epif which converges to (X̃, f(X̃)) and for which

µ1XR,α + YR,αµ21 < µ1X0 + µ2f(X0) for all R, α. (3.41)

Since µ1 is continuous we may pass to limits in (3.41) yielding

−µ1(X̃ − X0)

µ21
≤ f(X̃) − f(X0).
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Finally, from the local property of f and µ1 we derive

−µ1(X − X0)

µ21
≤ f(X) − f(X0)

and since X ∈ E was arbitrary we conclude that −µ1/µ21 indeed is a subgradient of f at
X0. This proves Theorem 3.7. �

3.7 Proof of the Fenchel–Moreau duality theorem 3.8

In this section, we prove Theorem 3.8. The proof follows a known pattern, cf. Proposition
A.6 in [10]; however, it contains certain subtleties due to our L0–convex framework.

We fix X0 ∈ E, and proceed in two steps.
Step 1: Let β ∈ L0 with β < f(X0). In this step, we show there is a continuous

function h : E → L0 of the form

h(X) = µX + Z, (3.42)

where µ : E → L0 is continuous L0–linear and Z ∈ L0, such that h(X0) = β and
h(X) ≤ f(X) for all X ∈ E. To this end, we separate (X0, β) from epif by means of
Theorem 2.8. It applies since β < f(X0) and the local property of f imply

1A{(X0, β)} ∩ 1Aepif = ∅ for all A ∈ F with P [A] > 0.

(Note, epif is closed by Proposition 3.4.) Hence, there are continuous L0–linear functions
µ1 : E → L0 and µ2 : L0 → L0 such that

δ := ess.sup
(X,Y )∈epif

µ1X + µ2Y < µ1X0 + µ2β. (3.43)

This has two consequences:

(i) µ21 ≤ 0.

Indeed, µ2Y = Y µ21 for all Y ∈ L0. Further, (X,Y ) ∈ epif for arbitrarily large Y
as long as f(X) ≤ Y . Hence, for large Y ∈ L0, µ1X + µ2Y is large on {µ21 > 0}
and yet bounded above by µ1X0 + µ2β. This implies P [µ21 > 0] = 0.

(ii) {f(X0) < +∞} ⊂ {µ21 < 0}.

Indeed, define X̃0 := 1{f(X0)<+∞}X0 + 1{f(X0)=+∞}X for some X ∈ domf . (f is

proper by assumption.) By L0–convexity of f , X̃0 ∈ domf . Local property of f and
(3.43) imply on {f(X0) < +∞}

µ1X0 + µ2f(X0) = µ1X̃0 + µ2f(X̃0) < µ1X0 + µ2β.

Hence, f(X0)µ21 = µ2f(X0) < µ2β = βµ21 on {f(X0) < +∞} and so µ21 < 0 on
{f(X0) < +∞}.
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We distinguish the cases X0 ∈ domf and X0 /∈ domf .
Case 1. Assume X0 ∈ domf . By (ii), µ21 < 0. Thus, define h by

h(X) := −
µ1(X − X0)

µ21
+ β for all X ∈ E

which is as required. Indeed, h(X) ≤ f(X) for all X ∈ domf as a consequence of (3.43).
If X /∈ domf we have

1Bh(X) = 1Bh(X ′) ≤ 1Bf(X ′) = 1Bf(X), (3.44)

where X ′ = 1BX + 1BcX ′′ for some X ′′ ∈ domf and B = {f(X) < +∞}. Hence,
h(X) ≤ f(X) for all X ∈ E.

Case 2. Assume X0 /∈ domf . Then chose any X ′
0 ∈ domf and let h′ be the corre-

sponding L0–affine minorant as constructed in case 1 above. Define A1 := {µ21 < 0},
A2 := Ac

1 and h1, h2 : E → L0,

h1(X) : = 1A1

(
−

µ1(X − X0)

µ21
+ β

)
,

h2(X) : =





1A2 (h′(X) + β − h′(X0)) on {h′(X0) ≥ β}

1A2

(
h′(X) + β−h′(X0)

eh(X0)
h̃(X)

)
on {h′(X0) < β}

,

with the convention 0/0 := 0, where h̃ : E → L0,

h̃(X) := δ − µ1X.

Note that on {µ21 = 0}, h̃(X0) < 0 and h̃(X) ≥ 0 for all X ∈ domf . It follows that

h := h1 + h2

is as required. (As in (3.44) we see h(X) ≤ f(X) for all X ∈ E.)
Step 2: Recall f ≥ f∗∗, cf. (3.37). By way of contradiction, assume f(X0) > f∗∗(X0)

on a set of positive measure. Then there is β ∈ L0 with β > f∗∗(X0) on a set of positive
measure and β < f(X0). The first step of this proof yields h : E → L0,

h(X) = µX + Z for all X ∈ E,

for continuous L0–linear µ : E → L0 and Z ∈ L0, such that h(X0) = β and h(X) ≤ f(X)
for all X ∈ E. We derive a contradiction as

f∗∗(X0) ≥ µX0 − f∗(µ)

= µX0 − ess.sup
X∈E

(µX − f(X))

≥ µX0 − ess.sup
X∈E

(µX − h(X)) = β

negates β > f∗∗(X0) on a set of positive measure. This finishes the proof of Theorem 3.8.
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Séminaire de Probabilités XXXIII. Springer Lecture Notes in Mathematics. Vol. 1709
(1999) 349–354.

[4] Breckner, W. W., Scheiber, E.: A Hahn–Banach type extension theorem for linear
mappings into ordered modules. Mathematica 19(42) 1 (1977) 13–27.

[5] Cheridito, P., Delbaen F., Kupper M.: Del06Dynamic monetary risk measures for
bounded discrete-time processes. Electronic Journal of Probability. Vol. 11 (2006).

[6] Detlefsen, K., Scandolo, G.: Conditional and dynamic convex risk measures. Finance
and Stochastics. (4) 9 (2005) 539–561.

[7] Delbaen, F., Schachermayer, W.: The Mathematics of Arbitrage. Series: Springer
Finance. First Edition. Second Printing 16 (2008).
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