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Abstract

We present and compare two different approaches to conditional risk
measures. One approach draws from convex analysis in vector spaces and
presents risk measures as functions on Lp spaces, while the other approach
utilizes module-based convex analysis where conditional risk measures are
defined on Lp type modules. Both approaches utilize general duality the-
ory for vector–valued convex functions in contrast to the current litera-
ture in which we find ad hoc dual representations. By presenting several
applications such as monotone and (sub)cash invariant hulls with corre-
sponding examples we illustrate that module-based convex analysis is well
suited to the concept of conditional risk measures.
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1 Introduction

When [ADEH99] introduced the notion of monetary risk measures they inspired
a lively and fruitful discussion about duality theory of risk measures in finan-
cial mathematics, cf. [CL08, Del00, Del02, Del06, FS08b, FS02, FS04, FRG02,
KR09, RS06, Web06] and the various references therein. Subsequently, there
have been many contributions addressing the question how dual representation
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results for real-valued risk measures translate into conditional and eventually
dynamic discrete time frameworks, cf. [ADE+07, BN04, CDK06, DS05, FP06,
Rie04].

Within these articles, a technique referred to as scalarization is commonly
applied to establish dual representation results for conditional risk measures in
an ad hoc manner. The corresponding proofs are performed by reducing the
originally given conditional problem to the static case in a first step. In a second
step one applies standard duality theory, and in the third step one translates
the results obtained back into the multi period framework. As a consequence,
many intuitive structures are disguised.

The aim of the present article is to present two different approaches to duality
theory of conditional risk measures which do not follow the ad hoc path. In
contrast to the literature, both approaches start and remain on the “conditional
level” by utilizing duality theory for vector valued functions. Thereby, the
scalarization method is avoided for the convex analysis, but is used instead for
a more fundamental representation result of some special linear operators on Lp

spaces (Proposition 2.5). The results become more natural and their proofs are
intuitive.

The two approaches differ in one fundamental way. The first one is vector
space based and therefore closer to what has been established in the literature
so far. Within the second one, vector space theory is only of minor interest as
this approach assumes modules as the naturally underlying structure in a frame-
work with contingent initial data. Both approaches reveal the key properties of
conditional risk measures in contrast to general convex functions. Especially the
module approach leads to a theory almost entirely analogous to that of static
risk measures.

The present article is conceptual in nature with a focus on intuition. The
ideas of most of the proofs will seem familiar to anyone who is familiar with the
theory of static risk measures. Nevertheless, it requires non trivial machinery
from vector and module based duality theory. This article shall be seen as an
application of the theory established in [FKV09] and [KV09] to conditional risk
measures. In fact, it provides a financial motivation for the module based convex
analysis presented in [FKV09] and [KV09].

The remainder of this paper is as follows. In Section 2 we introduce condi-
tional risk measures on Lp spaces. This approach is vector space based and it
extends the current literature where conditional risk measures are studied on
the significantly smaller Banach space L∞. This approach draws from a general
vector space duality result, established in [Zow75]. As outlined above, this result
forms the base of our observations from which we will subsequently derive more
specific results for conditional risk measures. This approach can be regarded as
a top down approach as it originates from a dual representation result for gen-
eral vector valued convex functions and then reveals how additional properties
of the represented functions translate to properties of the representing continu-
ous linear functions. This translation is of particular interest in the context of
conditional risk measures as it clarifies under which conditions the represented
convex function can be interpreted as the maximum of expected losses under
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different scenarios possibly subject to penalization.
In Section 3 we present a module based approach to duality theory of condi-

tional risk measures. In contrast to Section 2 the spirit of this approach can be
referred to as bottom up. The reason for this is that from the beginning on we
establish that continuous module homomorphisms, which now take the place
of continuous linear functions, are necessarily conditional expectations. As a
consequence, dual representations of conditional risk measures can immediately
be interpreted as the maximum of expected losses subject to penalization. It is
due to this approach that the discussion of Section 2 becomes obsolete to a large
extent. Nevertheless, this comes at the cost of module based convex analysis
which is a technically involved matter. The main advantage of this approach
however is that the derived duality theory for conditional risk measures is very
similar to that of static risk measures.

In Section 4 we present further applications of module based duality the-
ory to conditional risk measures and thereby illustrate further advantages of
the module approach over the vector space one. The aim of this section is to
approximate convex functions by monotone and (sub)cash invariant functions.
Duality theory is utilized to find a monotone and (sub)cash invariant function
“closest”, expressed in dual terms, to a given function. These approximating
functions are called monotone and (sub)cash invariant hulls. The idea of this
duality based construction principle is already presented in [FK07] which, how-
ever, only covers the static case.

In Section 5 we present examples of convex functions and their monotone
(sub)cash invariant hulls and explicitly construct their subgradients. The pur-
pose of this section is to illustrate the theory.

Throughout this article, we fix a probability space (Ω, E , P ) as stochastic
basis. By L0(G) we denote the space of real valued G–measurable random
variables, where G ⊂ E is a generic sub σ–algebra, and we note that L0(G)
is also a ring. Random variables and measurable sets which coincide almost
surely are identified. Equalities and inequalities between random variables are
understood in the almost sure sense. Further, L0

+(G) = {X ∈ L0(G) | X ≥ 0},
L0
++(G) = {X ∈ L0(G) | X > 0}. L̄0(G) denotes the set of G–measurable

random variables which take values in R ∪ {±∞} and L̄0
+(G) = {X ∈ L̄0(G) |

X ≥ 0}. Further, we consider non trivial initial information given by a σ–algebra
F ⊂ E . Throughout, we define 0 · (±∞) = 0.

2 The vector space approach

For all of this section we fix 1 ≤ r ≤ p < ∞. We denote by s and q the
respective dual exponents of r and p. That is, s = r/(r − 1), q = p/(p − 1)
with the convention s, q =∞ if r, p = 1. By Lk(G) = Lk(Ω,G, P ) we denote the
space of G–measurable functions with finite kth moments, that is,

Lk(G) = {X ∈ L0(G) | E[|X|k] < +∞}
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where G ⊂ E denotes a generic sub σ–algebra of E and k ∈ [1,+∞). L∞(G) =
L∞(Ω,G, P ) denotes the space of essentially bounded G–measurable random
variables.

In this paper we do not cover the case of p = +∞. The reason for this is
that numerous articles from the vast literature on financial risk measures deal
with conditional risk measures on L∞(E); we refer to [ADE+07, BN04, CDK06,
DS05, FP06, Rie04] and the references therein.

2.1 Preliminaries

Definition 2.1. A function f : Lp(E)→ Lr(F) is

(i) monotone if f(X) ≤ f(X ′) for all X,X ′ ∈ Lp(E) with X ≥ X ′,

(ii) subcash invariant if f(X + Y ) ≥ f(X) − Y for all X ∈ Lp(E) and Y ∈
L∞(F) with Y ≥ 0,

(iii) cash invariant if f(X+Y ) = f(X)−Y for all X ∈ Lp(E) and Y ∈ L∞(F).

Recall that a function f : Lp(E)→ Lr(F) is convex if f(αX + (1− α)X ′) ≤
αf(X) + (1− α)f(X ′) for all X,X ′ ∈ Lp(E) and α ∈ [0, 1]. f is local if

1Af(X) = 1Af(1AX) for all X ∈ Lp(E) and A ∈ F . (1)

In line with the literature, we refer to a convex function f : Lp(E)→ Lr(F)
which is monotone and cash invariant as a conditional (monetary) risk mea-
sure. The reason for this is the economic interpretation of f(X) as a capital
requirement a financial institution has to meet on assuming the uncertain profit
X ∈ Lp(E) adherent to a financial position.

By the Riesz representation theorem any continuous linear function µ :
Lp(E)→ R is of the form

µX = E[ZX]

for some Z ∈ Lq(E). Further, any proper lower semicontinuous (l.s.c.) convex
function f : Lp(E) → (−∞,+∞] admits the Fenchel–Moreau dual representa-
tion

f(X) = sup
Z∈Lq(E)

(E[ZX]− f∗(Z)), (2)

where f∗(Z) = supX∈Lp(E)(E[ZX] − f(X)) denotes the conjugate function of
f .

Dual representations as in (2) and subdifferentiability are of distinct in-
terest in various contexts such as optimal investment problems with respect
to robust utility functionals [SW05, Sch07], portfolio optimization under risk
constraints [GW07, GW08], risk sharing [BEK05, BR06, Acc07, BR08, FS08a,
FK08, JST08, LR08, Che09], equilibrium pricing [KS07, FK08], efficient hedging
[FL00, Rud07, Che09, İJS09] as well as the numerous references therein.

Moreover, such representations provide us with a plausible interpretation
of the subjective risk assessment of an economic agent. More precisely, let us
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assume an agent faces the uncertain payoff X ∈ Lp(E). Dual representations
of the form (2) suggest that the agent computes the expected payoff E[ZX]
within the specific model Z ∈ Lq(E) selected from a variety of probabilistic
models which are penalized by −f∗(Z). The higher f∗(Z) the less plausible
the agent views model Z. In evaluating the capital requirement f(X) for the
uncertain payoff X the agent then takes a worst case approach.

For these reasons, the question arises as to what extent representations of
the form (2) are preserved in the context of conditional risk measures when R
is replaced by Lr(F).

To address this question, we denote by L(Lp(E), Lr(F)) the space of all
continuous linear functions from Lp(E) into Lr(F) and consider a function f :
Lp(E)→ Lr(F). We define f∗ : L(Lp(E), Lr(F))→ L̄0(F) by

f∗(µ) = ess.sup
X∈Lp(E)

(µX − f(X))

and domf∗ = {µ ∈ L(Lp(E), Lr(F)) | f∗(µ) ∈ Lr(F)}. By convention, the
essential supremum of an empty family of random variables is −∞. Further, we
define f∗∗ : Lp(E)→ Lr(F) by

f∗∗(X) = ess.sup
µ∈domf∗

(µX − f∗(µ)).

An element µ ∈ L(Lp(E), Lr(F)) is a subgradient of f at X0 ∈ Lp(E) if

µ(X −X0) ≤ f(X)− f(X0)

for all X ∈ Lp(E).
The set of all subgradients of f at X0 is called the subdifferential of f at X0

and denoted by ∂f(X0). By definition of the subdifferential ∂f(X0) we have
the well known relation

µ0 ∈ ∂f(X0) if and only if µ0 ∈ domf∗ and f(X0) = µ0X0 − f∗(µ0). (3)

It should be noted that in Section 3.1 below we encounter slightly different
notion of conjugate functions, effective domains and subdifferentials. Neverthe-
less, there will be no source of ambiguity as the respective sections are entirely
self contained.

Example 2.2. Let us assume that F = σ(An) is generated by a countable
partition (An) of Ω (i.e. Ai∩Aj = ∅ for i 6= j and

⋃
n∈NAn = Ω). In this case,

we can identify Lr(F) with lr(F), the space of all real valued sequences (xn)
with

∑∞
n=1 pn|xn|r <∞, where pn = P [An] for all n ≥ 1. Hence, any function

f : Lp(E)→ Lr(F) is of the form

f = (f1, f2, f3, . . .)

with a sequence of functions fn : Lp(E)→ R, n ∈ N, such that
∑∞
n=1 pn|fn(X)|r <

∞ for all X ∈ Lp(E).
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Localness of the function f is now reflected by the intuitive relation

1An
f(X) = ( 0, . . . , 0︸ ︷︷ ︸

n−1–times

, fn(X), 0, . . .) = ( 0, . . . , 0︸ ︷︷ ︸
n−1–times

, fn(1An
X), 0, . . .) for all n ∈ N,

that is, the nth component fn of f only depends on the coordinate spanned by
the vector 1An .

Example 2.3. The local structure of Example 2.2 becomes even more apparent
if E is generated by a finite partition B1, . . . , Bn of Ω. In this case, Aj =⋃
i∈Ij Bi, where {1, . . . , n} =

⋃
1≤j≤m Ij so that Lp(E) = L0(E) = Rn as well as

Lr(F) = L0(F) = Rm.
The function f : Rn → Rm is now of the form f = (f1, . . . , fm) with arbitrary

functions f1, . . . , fm : Rn → R. Localness of f now means that for each 1 ≤
j ≤ m the function fj only depends on the coordinates Ij. We abuse notation
and identify fj with its restriction to the coordinates Ij. In other words, f =
(f1, . . . , fm) for functions f1 : RI1 , . . . , fm : RIm → R (after rearranging the
coordinates 1, . . . , n suitably).

Moreover, if f is C1(Rn,Rm) then

Df(X) =


Df1(XI1) 0 · · · 0

0 Df2(XI2) · · · 0
...

...
...

0 0 · · · Dfm(XIm)


for all X ∈ Rn. (Note that the zeroes in the above matrices are understood as
generic vector zeroes possibly differing in their dimensions.)

Zowe proves in [Zow75] the following dual representation result which, in
fact, he establishes in a more general setup.

Theorem 2.4. Let f : Lp(E)→ Lr(F) be a convex function. If f is continuous
at X0 ∈ Lp(E) then ∂f(X0) 6= ∅ and

f(X0) = f∗∗(X0). (4)

For the sake of completeness, we provide a self contained proof in the Ap-
pendix A, tailored to our setup.

The relevant questions can now be specified as follows. Which linear µ :
Lp(E)→ Lr(F) is of the form

µX = E[ZX | F ] (5)

for some Z ∈ Lq(E)? And further, for which convex f : Lp(E)→ Lr(F) is each
µ ∈ domf∗ of the form (5) so that

f(X) = ess.sup
Z∈domf∗

(E[ZX | F ]− f∗(Z)), (6)

where f∗(Z) is understood as f∗(E[Z· | F ])?
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2.2 Linear functions on Lp(E)

In this section we study representation results and corresponding continuity
properties of linear functions from Lp(E) to Lr(F). The results are of prelimi-
nary nature for the following section on convex functions.

Proposition 2.5. A function µ : Lp(E)→ Lr(F) is

(i) continuous linear and

(ii) local

if and only if it is of the the form (5) for some unique representing Z ∈ Lq(E)

which satisfies the integrability condition E[|Z|q | F ] ∈ L
r(p−1)
p−r (F), where r(p−

1)/(p− r) is understood as +∞ if p = r.

Proof. To prove the if statement, let µ = E[Z· | F ], Z ∈ Lq(E) with E[|Z|q |
F ] ∈ L

r(p−1)
(p−r) (F). Inspection shows that µ is linear and local. To establish

continuity we assume 1 < r < p, the other cases work analogously. By Hölder’s
inequality

E [|E[ZX | F ]|r] ≤ E
[
E[|Z|q | F ]

r
qE[|X|p | F ]

r
p

]
≤ E

[
E[|Z|q | F ]

pr
q(p−r)

] p−r
p

E [|X|p]
r
p .

Since

E [|Z|q | F ]
pr

q(p−r) = E [|Z|q | F ]
r(p−1)
p−r ∈ L1(F),

we deduce ‖E[ZX | F ]‖r ≤ c‖Z‖p for some c ∈ R+. Hence, µ is continuous.
Conversely, if µ : Lp(E) → Lr(F) is a continuous linear function then so is

E ◦ µ : Lp(E)→ R and by the Riesz representation theorem there is Z ∈ Lq(E)
such that E[µX] = E[ZX] for all X ∈ Lp(E). Since µ is local we derive
E[1AµX] = E[µ(1AX)] = E[Z1AX] for all A ∈ F and X ∈ Lp(E). Thus, µX =

E[ZX | F ] for all X ∈ Lp(E). It remains to show that E[|Z|q | F ] ∈ L
r(p−1)
(p−r) (F).

We distinguish between two different cases. If r = 1 then E[|Z|q | F ] ∈ L1(F)
as E[|E[|Z|q | F ]|] = E[|Z|q] ∈ R. It remains to show the case 1 < r ≤ p. To
this end, consider the adjoint µ′ : Ls(F)→ Lq(E) of µ. By definition,

(µ′Y )(X) = E[Y E[ZX | F ]] = E[Y ZX], X ∈ Lp(E). (7)

Since µ : Lp(E) → Lr(F) is continuous so is µ′ : Ls(F) → Lq(E), and conse-
quently, for all Y ∈ Ls(F)

‖µ′Y ‖q ≤ c‖Y ‖s,

for some real constant c. Since the Lq–norm coincides with the corresponding
operator norm we find that for all Y ∈ Ls(F)

sup
X∈Lp(E),‖X‖p≤1

|(µ′Y )(X)| = sup
X∈Lp(E),‖X‖p≤1

E[Y ZX] ≤ cE[|Y |s] 1
s . (8)
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With equation (7) we know that E[Y Z·] is a continuous linear function from
Lp(E) to R. Since the topological dual of Lp(E) can be identified with Lq(E) we
see that necessarily Y Z ∈ Lq(E). Therefore, we can define

XY = sign(Y Z)× |Y Z|
1

(p−1) /E[|Y Z|q]
1
p

(with the convention 0/0 = 0). Then XY ∈ Lp(E) and ‖XY ‖p ≤ 1 for all
Y ∈ Ls(F). Hence, we conclude from (8) that for all Y ∈ Ls(F)

E[|Y Z|q]
1
q = E[Y ZXY ] ≤ cE[|Y |s] 1

s .

In particular, Y 7→ E[E[|Z|q | F ]Y ] is a linear, continuous function from
L

s
q (F) to R. Again, since the topological dual of L

s
q (F) can be identified with

L
r(p−1)
p−r (F) we find that necessarily E[|Z|q | F ] ∈ L

r(p−1)
p−r (F).

The next proposition provides a different set of conditions that are suffi-
cient for µ to be of the form (5). These conditions spotlight the emphasis on
conditional risk measures.

Proposition 2.6. A function µ : Lp(E)→ Lr(F)

(i) is continuous linear,

(ii) satisfies µY ≥ −Y for all Y ∈ L∞(F) with Y ≥ 0, and

(iii) and is monotone, i.e. µX ≤ 0 for all X ∈ Lp(E), X ≥ 0,

if and only if it is of the form (5) for some representing Z ∈ Lq(E) with E[Z |
F ] ≥ −1 and Z ≤ 0 and which satisfies E[|Z|q | F ] ∈ L

r(p−1)
(p−r) (F).

Proof. The if statement follows by inspection, where continuity follows as in
Proposition 2.5.

As to the only if statement we show that (i), (ii) and (iii) imply that µ is
local. To this end, let X ∈ Lp(E) be essentially bounded in a first step. Then
X ≤ 1AX + ‖X − 1AX‖∞, where for X ′ ∈ Lp(E),

‖X ′‖∞ = ess.inf{Y ∈ L0(F) | Y ≥ |X ′|}.

Since µ is positive and µY ≥ −Y for all Y ∈ L∞(F) with Y ≥ 0 we derive

µX ≥ µ(1AX + ‖X − 1AX‖∞) ≥ µ(1AX)− ‖X − 1AX‖∞.

On exchanging X and 1AX we derive

|1AµX − 1Aµ(1AX)| = 1A|µX − µ(1AX)| ≤ 1A‖X − 1AX‖∞ = 0.

Thus, µ is local for all essentially bounded X. By a standard truncation and
approximation argument we conclude that µ is local for all X ∈ Lp(E). Thus, we
established that µ is continuous linear local and hence by Proposition 2.5 of the
form (5) for some representing Z ∈ Lq(E) which satisfies the desired integrability
condition. Further, (ii) and (iii) imply E[Z | F ] ≥ −1 and Z ≤ 0.
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Remark 2.7. Proposition 2.6 remains valid if (ii) is replaced by the projection
property

µY = −Y for all Y ∈ L∞(F),

and E[Z | F ] ≥ −1 is replaced by E[Z | F ] = −1.

Example 2.8. Property (iii) is needed in Proposition 2.6, as the following ex-
ample shows. Let Ω = {ω1, ω2, ω3}, E = σ({ω1}, {ω2}, {ω3}), P [ω1] = 1/2,
P [ω2] = P [ω3] = 1/4 and F = σ(A1, A2) with A1 = {ω1} and A2 = {ω2, ω3}.
Define the random variables

Z1 = (−2, 1,−1), Z2 = (0,−2,−2)

and the linear map µ : L0(E)→ L0(F) by

µ(X) =

2∑
i=1

E[ZiX]1Ai .

Then µ satisfies (i) and (ii) of Proposition 2.6, but not (iii) since µ(0, 4, 0) =
(1,−2,−2).

Now suppose µ were of the form (5) for some (not necessarily positive) Z ∈
L0(E). This implies, in particular, that

E[1A1µX] = E[1A1ZX]

for all X ∈ L0(E). But for X = (0, 4, 0) we obtain zero on the right hand side
and 1/2 on the left hand side, which is absurd. Hence µ cannot be of the form
(5).

2.3 Monotone (sub)cash invariant convex functions on Lp(E)

Given the results of the preceding section we now turn our attention to convex
functions.

Lemma 2.9. Let f : Lp(E)→ Lr(F) be a function.

(i) If f is local then every µ ∈ domf∗ is local.

(ii) If f is monotone then µ is monotone for each µ ∈ domf∗.

(iii) If f is subcash invariant then µY ≥ −Y for all Y ∈ L∞(F) with Y ≥ 0
for each µ ∈ domf∗.

(iv) If f is cash invariant then −µ is a projection for each µ ∈ domf∗.

Proof. (i) Take a non local µ ∈ L(Lp(E), Lr(F)). Then there are X ∈ Lp(E),
A,B ∈ F , A ⊂ B, with P [A] > 0 and µ(1BX) < µX on A. Then µ(−1BcX) =
µ(1BX −X) < 0 on A or, equivalently, µ(1BcX) > 0 on A. This implies for all
n ∈ N

µ(1BcnX)− f(1BcnX) = nµ(1BcX)− f(0)
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on A. As n tends to ∞, we conclude µ /∈ domf∗.
(ii) Let µ ∈ L(Lp(E), Lr(F)) and suppose there is X ≥ 0 such that µX > 0

with positive probability. By monotonicity of f , f(nX) ≤ f(X) for all n ∈ N.
Hence,

f∗(µ) ≥ µ(nX)− f(nX) ≥ nµX − f(X)

for all n ∈ N. This implies µ /∈ domf∗.
(iii) Let µ ∈ L(Lp(E), Lr(F)). By subcash invariance of f we have

f∗(µ) ≥ ess.sup
X∈Lp(E)

(µ(X)− f(X + nY )− nY )

X′=X+nY
= ess.sup

X′∈Lp(E)
(µ(X ′ − nY )− f(X ′)− nY )

= ess.sup
X′∈Lp(E)

(µ(X ′)− f(X ′) + n(−µY − Y ))

= f∗(µ) + n(−µY − Y )

for all Y ∈ L∞(F) with Y ≥ 0 and n ∈ N. Hence, µ /∈ domf∗ if µY < −Y with
positive probability.

(iv) Let µ ∈ L(Lp(E), Lr(F)). Since f is cash invariant we derive for all
Y ∈ L∞(F)

f∗(µ) ≥ µY − f(Y ) = µY + Y − f(0).

This implies that µ ∈ domf∗ only if µY = −Y for all Y ∈ L∞(F); whence −µ
is a projection.

We derive a variant of Proposition 2.5 for convex functions.

Proposition 2.10. A continuous convex function f : Lp(E) → Lr(F) is local

if and only if domf∗ ⊂ {Z ∈ Lq(E) | E[|Z|q | F ] ∈ L
r(p−1)
p−r (F)}. Moreover, in

this case

f(X) = ess.sup

Z∈Lq(E),E[|Z|q|F ]∈L
r(p−1)
p−r (F)

(E[ZX | F ]− f∗(Z)). (9)

Proof. In view of Theorem 2.4 holds f(X) = ess.supµ∈domf∗(µX − f∗(µ)) for
all X ∈ Lp(E). In case that f is local, it follows from Lemma 2.9 (i) that any
µ ∈ domf∗ is local and in view of Proposition 2.5 it is of the form (5) for some

representing Z ∈ Lq(E) with E[|Z|q | F ] ∈ L
r(p−1)
p−r (F). Conversely, any function

of the form (9) is local.

In the same manner, we can derive from Lemma 2.9 (ii) and (iii) an analogue
of Proposition 2.6, for convex functions.

Proposition 2.11. A continuous convex function f : Lp(E)→ Lr(F) is

(i) monotone and

(ii) subcash invariant
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if and only if domf∗ ⊂ C = {Z ∈ Lq(E) | E[Z | F ] ≥ −1, Z ≤ 0, E[|Z|q | F ] ∈
Lr(p−1)/(p−r)(F)}. Moreover, in this case

f(X) = ess.sup
Z∈C

(E[ZX | F ]− f∗(Z)). (10)

Remark 2.12. We obtain the convex variant of Remark 2.7; that is, in Propo-
sition 2.11 we can replace subcash invariance by cash invariance and then write
E[Z | F ] = −1 in place of E[Z | F ] ≥ −1 in the definition of C.

2.4 Conditional mean variance

In this section, we let p = 4, r = 2 and fix β ∈ R, β > 0. The conditional mean
variance f : L4(E)→ L2(F) is defined by

f(X) = E[−X | F ] +
β

2
V ar[X | F ],

where V ar[X | F ] = E[X2 | F ]−E[X | F ]2 denotes the conditional variance of
X ∈ L4(E).

Based on the following lemma, we explicitly construct a subgradient of f .

Lemma 2.13. Let f : L4(E) → L2(F) denote the conditional mean variance.
Then,

domf∗ = {Z ∈ L 4
3 (E) | E[Z | F ] = −1, E[|Z| 43 | F ] ∈ L3(F)}. (11)

Moreover, for all Z ∈ domf∗

f∗(Z) =
1

2β
E[(1 + Z)2 | F ]

and, in particular, (1 + Z)/β ∈ ∂f∗(Z).

Proof. Inspection shows that the conditional mean variance is cash invariant
continuous convex and local. Thus, by Lemma 2.9 (i) and (iv) −µ is local and
a projection for each µ ∈ domf∗ which proves the inclusion ”⊂” in (11).

To prove the reverse inclusion, let Z ∈ L
4
3 (E) with E[Z | F ] = −1 and

E[|Z| 43 | F ] ∈ L3(F). We will show that f∗(Z) = 1
2βE[(1 + Z)2 | F ]. To this

end, observe

f∗(Z) = ess.sup
X∈L4(E)

(E[ZX | F ]− f(X))

= ess.sup
X∈L4(E)

(
E[(1 + Z)X | F ]− β

2
V ar[X | F ]

)
= ess.sup

X∈L4(E),E[X|F ]=0

(
E[(1 + Z)X | F ]− β

2
V ar[X | F ]

)
= ess.sup

X∈L4(E),E[X|F ]=0

E

[
(1 + Z)X − β

2
X2 | F

]
. (12)

11



An element X ′ ∈ L4(E) which satisfies the first order condition

1 + Z − βX ′ = 0 (13)

is necessarily a pointwise maximizer of the integrands (1 + Z)X − β
2X

2 in (12)
(maximized over all of L4(E)). In view of (13) we therefore define the maximizer
X∗ = (1 + Z)/β; fortunately, E[X∗ | F ] = 0. Plugging X∗ into (12) yields the
assertion.

Combining (3) and Lemma 2.13 we conclude: if Z∗ ∈ L(L4(E), L2(E)) max-
imizes

f(X) = ess.sup
Z∈C

(E[ZX | F ]− f∗(Z))

= ess.sup
Z∈C

(
E[ZX | F ]− 1

2β
E[(1 + Z)2 | F ]

)
(14)

that is

f(X) = E[Z∗X | F ]− 1

2β
E[(1 + Z∗)2 | F ]

for some X ∈ L4(E), then Z∗ ∈ ∂f(X).

Theorem 2.14. Let f : L4(E)→ L2(F) denote the conditional mean variance.
Then, for all X ∈ L4(E)

β(X − E[X | F ])− 1 ∈ ∂f(X).

Proof. Let X ∈ L4(E). Since f(X − E[X | F ]) = f(X) + E[X | F ] we have
∂f(X − E[X | F ]) = ∂f(X). If Z ′ ∈ L(L4(E), L2(F)) satisfies the first order
condition

X − E[X | F ]− 1

β
(1 + Z ′) = 0 (15)

then Z ′ is necessarily a pointwise maximizer of the integrands

Z(X − E[X | F ])− 1

2β
(1 + Z)2

in (14) (adjusted for −E[X | F ] and maximized over all of L4(E)). In view of
(15) we therefore define the maximizer Z∗ = β(X − E[X | F ])− 1; fortunately

E[Z∗ | F ] = −1 as well as E[|Z∗| 43 | F ] ∈ L3(F) which means that Z∗ maximizes
(14).

To summarize, standard vector space based convex analysis is applicable to
a selected class of conditional risk measures. This class contains risk measures
which map Lp(E) into Lr(F).

12



3 The module approach

In this section we follow a module approach to conditional risk measures. We
briefly repeat the most important features of Lp type modules, a comprehensive
treatment of which can be found in [KV09] and for further background we refer
to [FKV09].

3.1 Preliminaries

Unless stated otherwise, we let p ∈ [1,+∞] throughout this section. Recall that
the classical conditional expectation E[· | F ] : L1(E) → L1(F) extends to the
conditional expectation E[· | F ] : L0

+(E)→ L̄0
+(F) by

E[X | F ] = lim
n→∞

E[X ∧ n | F ]. (16)

We define the function ‖ · ‖p : L0(E)→ L̄0
+(F) by

‖X‖p =

{
E[|X|p | F ]1/p if p ∈ [1,∞)

ess.inf{Y ∈ L̄0
+(F) | Y ≥ |X|} if p =∞

, (17)

and
LpF (E) = {X ∈ L0(E) | ‖X‖p ∈ L0(F)}.

The standard properties of the conditional expectation guarantee that ‖ · ‖p is
an L0(F)–norm on LpF (E), that is, ‖ · ‖p : LpF (E)→ L0

+(F) satisfies

(i) ‖X‖p = 0 if and only if X = 0,

(ii) ‖Y X‖p = |Y |‖X‖p for all Y ∈ L0(F) and X ∈ LpF (E),

(iii) ‖X +X ′‖p ≤ ‖X‖p + ‖X ′‖p for all X,X ′ ∈ LpF (E).

We endow LpF (E) = (LpF (E), ‖ · ‖p) with the module topology induced by the
L0(F)–norm ‖ · ‖p and we endow L0(F) = (L0(F), | · |) with the ring topology
induced by the absolute value | · |. Then LpF (E) becomes a topological L0(F)–
module over the topological ring L0(F). For further details we refer to [FKV09,
KV09]. We work with the convention that the conditional expectation E[· | F ] :
LpF (E)→ L0(F) is understood as

E[X | F ] = E[X+ | F ]− E[X− | F ],

the right hand side of which is understood as in (16).

Example 3.1. Let us assume that F = σ(A1, . . . , Am) is generated by a finite
partition A1, . . . , Am of Ω.

The local structure, formerly a property in reference to the functions we
studied, now also appears as a property of the model spaces LpF (E) in the sense
that on each F–atom Ai, 1 ≤ i ≤ m, we consider a classical Lp space, namely

13



Lp(E ∩ Ai) = Lp(Ω ∩ Ai, E ∩ Ai, Pi), where Pi denotes P [· | Ai]. Over all of E,
these spaces are “pasted” together to become

LpF (E) =

m∑
i=1

1Ai
Lp(E ∩Ai).

Consequently, if F is finitely generated, Lp(E) = LpF (E) and no additional struc-
ture is provided.

However, if F is generated by a countable partition (An) of Ω then LpF (E)
becomes

LpF (E) =
∑
n∈N

1AnL
p(E ∩An)

which in fact is an L0(F)–module significantly larger than Lp(E). Indeed, it
is not hard to see that Xn ∈ Lp(E ∩ An) for all n ∈ N is not sufficient for∑
n∈N 1An

Xn ∈ Lp(E) in general.

A function µ : LpF (E)→ L0(F) is L0(F)–linear if µ(Y X+X ′) = Y µX+µX ′

for all Y ∈ L0(F) and X,X ′ ∈ LpF (E). In (1) we have already defined localness
for functions from Lp(E) into Lr(F). We adapt this to functions f : LpF (E) →
L̄0(F) with the convention 0 · (±∞) = 0.

A function f : LpF (E) → L̄0(F) is proper if f(X) > −∞ for all X ∈ LpF (E)
and if there is at least one X ∈ LpF (E) such that f(X) < +∞. We define

PI(f) = ess.sup{A ∈ F | 1Af = 1A(+∞)}
MI(f) = ess.sup{A ∈ F | ∃X ∈ LpF (E) : 1Af(X) = 1A(−∞)}
R(f) = (PI(f) ∪MI(f))c

so that f is proper on R(f), f ≡ +∞ on PI(f) and f may take the value −∞
on MI(f). The effective domain domf of f is defined by

domf = {X ∈ LpF (E) | 1PI(f)cf(X) < +∞}. (18)

Trivially, P [PI(f) ∩MI(f) ∩R(f)] = 0 so that f is proper only if P [PI(f)] =
P [MI(f)] = 0. If f is local then we even have “if and only if”.

In [FKV09, KV09] L0(F)–convexity is only defined for proper functions. For
the purposes of Section 4 below in which we use dual techniques to construct
hulls of proper L0(F)–convex functions, we have to extend this definition in a
consistent way to functions that are not proper.

In vector space theory one agrees on the convention that −∞ +∞ = +∞
and defines a function f : V → [−∞,+∞] on a real vector space V to be convex
if f(αv + (1 − α)w) ≤ αf(v) + (1 − α)f(w) for all v, w ∈ V , α ∈ [0, 1]. In line
with this, we set −∞+∞ = +∞ and define L0(F)–convexity as follows.

Definition 3.2. A function f : LpF (E)→ L̄0(F) is L0(F)–convex if

f(Y X + (1− Y )X ′) ≤ Y f(X) + (1− Y )f(X ′)

for all X,X ′ ∈ LpF (E) and Y ∈ L0(F) with 0 ≤ Y ≤ 1. (Recall the convention
0 · (±∞) = 0.)
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Remark 3.3. Inspection shows that a function f : LpF (E) → L̄0(F) is L0(F)–
convex if and only if for all X,X ′ ∈ LpF (E) and Y ∈ L0(F) with 0 ≤ Y ≤ 1,

f(Y X + (1− Y )X ′) ≤ Y f(X) + (1− Y )f(X ′) (19)

on the set ({f(X) = −∞, f(X ′) = +∞} ∪ {f(X) = +∞, f(X ′) = −∞})c.
Lemma 3.4. Any L0(F)–convex function f : LpF (E)→ L̄0(F) is local.

Proof. Let X ∈ LpF (E) and A ∈ F . Then, we derive the inequalities

f(1AX) ≤ 1Af(X) + 1Acf(0)

= 1Af(1A(1AX) + 1AcX) + 1Acf(0)

≤ 1Af(1AX) + 1Acf(0)

which become equalities on multiplying by 1A.

Consider a local function f : LpF (E) → L̄0(F). As in [FKV09], we call f
lower semicontinuous (l.s.c.) if for any convergent net XN → X in LpF (E) we
have

ess.liminf
N

f(XN ) ≥ f(X),

where we define ess.liminfYN = ess.supNess.infM≥NYM for a net (YN ) in LpF (E).

Definition 3.5. Let f : LpF (E) → L̄0(F) be a local function. The closure
cl(f) : LpF (E)→ L̄0(F) of f is given by

cl(f) = 1MI(f)cg + 1MI(f)(−∞),

where g is the greatest l.s.c. L0(F)–convex function majorized by 1MI(f)cf . The
function f is closed if f = cl(f).

By definition, cl(f) is l.s.c. L0(F)–convex and in particular local. By defi-
nition, a closed local function is L0(F)–convex.

For p ∈ [1,+∞) we have the following analogy to (2). Any continuous
L0(F)–linear function µ : LpF (E)→ L0(F) is of the form

µX = E[ZX | F ] (20)

for some Z ∈ LqF (E), where q = p/(p − 1) if p ∈ (1,∞) and q = ∞ if p = 1,
cf. [KV09]. The conjugate function f∗ : LqF (E) → L̄0(F) of a local function
f : LpF (E)→ L̄0(F) is defined by

f∗(Z) = ess.sup
X∈Lp

F (E)
(E[ZX | F ]− f(X)) = ess.sup

X∈domf
(E[ZX | F ]− f(X))

and the conjugate f∗∗ : LpF (E)→ L̄0(F) of f∗ is defined by

f∗∗(X) = ess.sup
Z∈Lq

F (E)
(E[ZX | F ]− f∗(Z)) = ess.sup

Z∈domf∗
(E[ZX | F ]− f∗(Z)), (21)

where the second equality follows from the definition of the effective domain
in (18). The next theorem presents an L0(F)–convex duality relation which
slightly generalizes the Fenchel–Moreau type dual representation of Theorem 3.8
in [FKV09].
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Theorem 3.6. Let f : LpF (E)→ L̄0(F) be a local function. Then,

f∗∗ = cl(f).

In particular, if f is proper l.s.c. L0(F)–convex then f = f∗∗.

Proof. We first prove the auxiliary claim that an L0(F)–convex l.s.c. function
g : LpF (E)→ L̄0(F) with g > −∞ satisfies the L0(F)–convex duality relation

g = g∗∗ (22)

which proves the second statement. Indeed, let X ∈ LpF (E) and define A =
{g(X) < +∞}. Then, on Ac the relation (22) is trivially valid for X. To see
that (22) is also valid for X on A it suffices to observe that 1Ag is a proper
L0(F)–convex l.s.c. function and to apply Theorem 3.8 in [FKV09] by which
1Ag = (1Ag)∗∗. Since g is local by L0(F)–convexity we conclude

g(X) = 1Ag(X) + 1Acg(X) = (1Ag)∗∗(X) + (1Acg)∗∗(X) = g∗∗(X)

which proves the auxiliary claim.
Next, define f1 = 1MI(f)cf and f2 = 1MI(f)f . We show separately that

f∗∗1 = cl(f1) and f∗∗2 = cl(f2)

which by localness of f∗∗ and cl(f) yields the assertion.
To see that f∗∗1 = cl(f1) observe that by definition f∗∗1 is L0(F)–convex l.s.c.

and −∞ < f∗∗1 ≤ f1. Further, from

cl(f1) ≤ f1 implies cl(f1)∗ ≥ f∗1 implies cl(f1) = cl(f1)∗∗ ≤ f∗∗1

we derive f∗∗1 = cl(f1).
To establish f∗∗2 = cl(f2) we show that there is some X−∞ ∈ LpF (E) with

f2(X−∞) = 1MI(f)(−∞). Indeed, since f is local the collection

S = {A ∈ F | ∃X ∈ LpF (E) : f(X) = −∞ on A}

is directed upwards and by definition we have ess.supS = MI(f). Hence, there
exists an increasing sequence (An) ⊂ F and a corresponding sequence (Xn) in
LpF (E) with An ↗ M−∞ and f(Xn) = −∞ on An for each n ∈ N. Since f is
local

X−∞ =

∞∑
i=1

1Ai\
⋃i−1

j=1 Aj
Xi

is as required with A0 = ∅. We conclude that

f∗2 = ess.sup
X∈Lp

F (E)
(E[·X | F ]− f2(X))

≥ E[·X−∞ | F ]− f2(X−∞) ≥ 1MI(f)(+∞).

This together with (22) and localness of f implies f∗∗2 = 1MI(f)(−∞) = cl(f2).
(Note, that MI(f) = MI(f2).)
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Remark 3.7. The epigraph epif = {(X,Y ) ∈ LpF (E) × L0(F) | f(X) ≤ Y }
of a closed function f : LpF (E) → L̄0(F) is closed w.r.t. the product topology.
To see this, it suffices to observe that 1MI(f)cepif1 is closed cf. [FKV09] and
that 1MI(f)epif2 = 1MI(f)(L

p
F (E) × L0(F)) is closed as well; f1 and f2 are

understood as in the above proof. Since MI(f) and MI(f)c are disjoint the
sum of the two 1MI(f)cepif1 + 1MI(f)(L

p
F (E)× L0(F)) = epif is also closed.

Lemma 3.8. Let f : LpF (E)→ L̄0(F) be a local function. Then,

PI(f) ⊂MI(f∗) and MI(f) ⊂ PI(f∗). (23)

If f is closed L0(F)–convex we have equalities.

Proof. Since f is local (23) follows from the definitions of PI(·),MI(·) and f∗.
On replacing f with f∗ the reverse inclusions follow as for closed L0(F)–convex
f we have f = f∗∗, cf. Theorem 3.6.

The preceding lemma reveals in particular that for a closed L0(F)–convex
function f : LpF (E)→ L̄0(F) we have the following decompositions

f∗ = 1PI(f)(−∞) + 1MI(f)(+∞) + 1R(f)f
∗ (24)

f = f∗∗ = 1PI(f)(+∞) + 1MI(f)(−∞) + 1R(f)f
∗∗. (25)

Definition 3.9. Let p ∈ [1,+∞), q be as above and f : LpF (E) → L̄0(F) be a
proper function. An element Z ∈ LqF (E) is a subgradient of a f at X0 ∈ domf
if

E[Z(X −X0) | F ] ≤ f(X)− f(X0), for all X ∈ LpF (E).

The set of all subgradients of f at X0 is denoted by ∂f(X0).

Example 3.10. Let F = σ(A1, A2, A3) be finitely generated, where (Ai)1≤i≤3 ⊂
E is pairwise disjoint with P [Ai] > 0, 1 ≤ i ≤ 3 and Ω =

⋃3
i=1Ai. We consider

a function f : LpF (E) → L̄0(F) and we identify L̄0(F) with (R ∪ {±∞})3 so
that f = (f1, f2, f3) for three functions f1, f2, f3 : LpF (E) → [−∞,+∞]. Let us
further assume that f1 ≡ +∞, f2 is proper and there exists X ∈ LpF (E) such
that f3(X) = −∞.

Then PI(f) = A1 and MI(f) = A3. Further, X ∈ domf if and only if
f2(X), f3(X) < +∞ irrespectively of the fact that f1(X) = +∞. The function
f would be proper if and only if f1, f2 and f3 were proper at the same time.
Thus, 1A2

f is proper while f is not. In the same way we see that f is L0(F)–
convex if and only if each fi is convex, 1 ≤ i ≤ 3.

If, in addition, f is local then we can identify f with three functions f1, f2, f3 :
Lp(E ∩Ai)→ [−∞,+∞] defined on classical Lp spaces. Then f is l.s.c. if and
only if each fi is l.s.c., 1 ≤ i ≤ 3, and its closure is given by

cl(f) = (cl(f1), cl(f2), cl(f3)) = (+∞, f∗∗2 ,−∞).
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The main advantage of the module approach over the vector space approach
from Section 2 is the fact that we can consider conditional risk measures on
LpF (E) which is a much larger model space than Lp(E). Furthermore, within
the module approach, duality results are applicable to functions which may take
values in L̄0(F). As a consequence, examples such as the conditional entropic
risk measure is fully covered.

Further, within the vector space approach, continuous linear functions µ :
Lp(E)→ Lr(F) are not necessarily conditional expectations. One has to employ
the results of Section 2.2 to derive that only those continuous linear functions
which are conditional expectations are relevant for conditional risk measures.

In contrast to this, continuous L0(F)–linear functions from LpF (E) into L0(F)
are conditional expectations as stated in (20). Results analogous to Propo-
sition 2.5, Proposition 2.6 and Remark 2.7 presented in Section 2.2 are not
required. In this sense, the module approach provides us a priori with an inter-
pretation of (21) in terms of expected losses under different scenarios which, by
virtue of f∗, are taken more or less seriously.

3.2 Monotone (sub)cash invariant L0(F)–convex functions
on Lp

F(E)

In this section, we fix p ∈ [1,+∞) and define q dual to p, as usual. The next
definition is similar to that of 2.1. However, as we work in a module setup, a
few amendments are needed.

Definition 3.11. A function f : LpF (E)→ L̄0(F)

(i) is monotone if f(X) ≤ f(X ′) for all X,X ′ ∈ LpF (E) with X ≥ X ′,

(ii) is subcash invariant if f(X + Y ) ≥ f(X) − Y for all X ∈ LpF (E) and
Y ∈ L0

+(F),

(iii) is cash invariant if f(X + Y ) = f(X) − Y for all X ∈ LpF (E) and Y ∈
L0(F).

A set P ⊂ LpF (E) is L0(F)–convex if Y X+(1−Y )X ′ ∈ P whenever X,X ′ ∈
P and Y ∈ L0(F) with 0 ≤ Y ≤ 1. The epigraph of an L0(F)–convex function
is L0(F)–convex. P is an L0(F)–cone if Y X ∈ P for all X ∈ P and Y ∈
L0
+(F). For the same reasons as in the vector space case we refer to L0(F)–

convex functions f : LpF (E)→ L̄0(F) which are monotone and cash invariant as
conditional risk measures.

From now on, let P = {X ∈ LpF (E) | X ≥ 0} and observe that P is a
closed L0(F)–convex L0(F)–cone. P induces the partial order of almost sure
dominance on LpF (E) via

X ≥ X ′ ⇔ X −X ′ ∈ P.

Inspection shows that (LpF (E),≥) is an ordered module, cf. [KV09]. The polar
L0(F)–cone P◦ of P is

P◦ = {Z ∈ LqF (E) | ∀X ∈ P : E[ZX | F ] ≤ 0}.
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Inspection shows that P◦ = {Z ∈ LqF (E) | Z ≤ 0} by definition of P. Further,
define

sD ={Z ∈ LqF (E) | E[Z | F ] ≥ −1}
D ={Z ∈ LqF (E) | E[Z | F ] = −1}.

Note that if Z ∈ sD then E[−ZY | F ] ≤ Y and if Z ∈ D then E[−ZY | F ] = Y
for all Y ∈ L0(F). The next proposition is a variant of the bipolar theorem, for
modules.

Proposition 3.12. Let X,X ′ ∈ LpF (E). Then X ≥ X ′ if and only if E[Z(X −
X ′) | F ] ≤ 0 for all Z ∈ P◦.

Proof. This follows from the corresponding definitions.

Lemma 3.13. Let f : LpF (E)→ L̄0(F) be a closed L0(F)–convex function.

(i) f is monotone if and only if 1R(f)domf∗ ⊂ 1R(f)P◦.

(ii) f is subcash–invariant if and only if 1R(f)domf∗ ⊂ 1R(f)sD.

(iii) f is cash–invariant if and only if 1R(f)domf∗ ⊂ 1R(f)D.

Proof. Let X0 ∈ LpF (E) be such that f(X0) ∈ L0(F) on R(f).
(i) To prove the only if statement, assume by way of contradiction that there

is Z ∈ domf∗ with P [B ∩R(f)] > 0, where B := {Z > 0}. By monotonicity of
f we have f(X0 + n1B) ≤ f(X0) for all n ∈ N. Thus, on R(f) holds

f∗(Z) ≥ E[Z(X0+n1B) | F ]−f(X0+n1B) ≥ nE[Z1B | F ]+E[ZX0 | F ]−f(X0)

which contradicts f∗(Z) < +∞. To establish the if statement, recall the de-
compositions (24) and (25). Thus, 1R(f)domf∗ ⊂ 1R(f)P◦ implies

f(X) = ess.sup
Z∈Lq

F (E)
(E[ZX | F ]− f∗(Z))

= ess.sup
Z∈domf∗

(E[ZX | F ]− f∗(Z))

= ess.sup
Z∈P◦

(E[ZX | F ]− f∗(Z)),

for all X ∈ LpF (E). Hence, by Proposition 3.12, f is monotone.
(ii) To prove the only if statement, let Z ∈ domf∗ and assume that P [{E[Z |

F ] < −1} ∩R(f)] > 0. By subcash invariance of f ,

f∗(Z) ≥ ess.sup
X∈Lp

F (E)
(E[ZX | F ]− f(X + nY )− nY )

X′=X+nY
= ess.sup

X′∈Lp
F (E)

(E[Z(X ′ − nY ) | F ]− f(X ′)− nY )

= ess.sup
X′∈Lp

F (E)
(E[ZX ′ | F ]− f(X ′)− nY (E[Z | F ] + 1))

= f∗(Z)− nY (E[Z | F ] + 1)
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for all Y ∈ L0
+(F) and n ∈ N which contradicts f∗(Z) < +∞ on R(f). To

establish the if statement, observe that the decompositions in (24) and (25)
together with 1R(f)domf∗ ⊂ 1R(f)sD imply

f(X + Y ) = ess.sup
Z∈Lq

F (E)
(E[Z(X + Y ) | F ]− f∗(Z))

= ess.sup
Z∈domf∗

(E[Z(X + Y ) | F ]− f∗(Z))

= ess.sup
Z∈sD

(E[Z(X + Y ) | F ]− f∗(Z)) ≥ f(X)− Y

for all X ∈ LpF (E) and Y ∈ L0
+(F).

(iii) To prove the only if statement, assume that there is Z ∈ domf∗ with
P [{E[Z | F ] 6= −1} ∩ R(f)] > 0. Since f is cash invariant we derive for all
Y ∈ L0(F)

f∗(Z) ≥ E[Z(X0+Y ) | F ]−f(X0+Y ) = Y (E[Z | F ]+1)+E[ZX0 | F ]−f(X0).

This contradicts f∗(Z) < +∞ on R(f). Conversely, to establish the if state-
ment, let X ∈ LpF (E) and Y ∈ L0(F). From the decompositions (24) and (25)
together with 1R(f)domf∗ ⊂ 1R(f)D we derive

f(X + Y ) = ess.sup
Z∈Lq

F (E)
(E[Z(X + Y ) | F ]− f∗(Z))

= ess.sup
Z∈domf∗

(E[Z(X + Y ) | F ]− f∗(Z))

= ess.sup
Z∈D

(E[Z(X + Y ) | F ]− f∗(Z)) = f(X)− Y.

Two immediate consequences are the following representation results for
monotone subcash invariant L0(F)–convex functions and conditional risk mea-
sures.

Corollary 3.14. Let f : LpF (E)→ L̄0 be proper l.s.c. L0(F)–convex.

(i) If f is monotone and subcash invariant, then for all X ∈ LpF (E)

f(X) = ess.sup
Z∈P◦∩sD

(E[ZX | F ]− f∗(Z)). (26)

(ii) If f is monotone and cash invariant, then for all X ∈ LpF (E)

f(X) = ess.sup
Z∈P◦∩D

(E[ZX | F ]− f∗(Z)). (27)

Elements of P◦ ∩ D can be viewed as transition densities which serve as
probabilistic models relative to the initial information F and uncertain future
events E . In this sense, the economic interpretation of static risk measures is
preserved under assuming non trivial initial information.
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4 Monotone and (sub)cash invariant hulls

4.1 Indicator and support functions

Let C ⊂ LpF (E) be an L0(F)–convex set. We define the mapping M(· | C) :
LpF (E)→ F by

M(X | C) = ess.sup{A ∈ F | 1AX ∈ 1AC}.

The set C has the closure property if for all X ∈ LpF (E)

1M(X|C)X ∈ 1M(X|C)C,

cf. [FKV09]. The closure property should not be seen as a property in reference
to the topology of LpF (E). In fact, if 0 ∈ C (which implies that 1AC ⊂ C
for all A ∈ F) the closure property is closely related to order completeness as
it states that a family (1AX)A ⊂ C has a least upper bound in C, namely
ess.supA1AX = 1M(X|C)X.

From now on we assume that C has the closure property. The indicator
function δ(· | C) : LpF (E)→ L̄0

+(F) of C is defined by

δ(X | C) =

{
0 on M(X | C)

+∞ on M(X | C)c
.

By the closure property of C, epiδ(· | C) = C×L0
+(F). A proper local function

is l.s.c. if and only if its epigraph is closed, cf. Proposition 3.4 in [FKV09].
Thus, δ(· | C) is l.s.c. if and only if C is closed.

The support function δ∗(· | C) : LqF (E)→ L̄0(F) of C is defined by

δ∗(Z | C) = ess.sup
X∈C

E[ZX | F ].

Since C is L0(F)–convex (in particular 1AX + 1AcX ′ ∈ C for all A ∈ F when-
ever X,X ′ ∈ C) the support function of C coincides with the conjugate of the
indicator function δ(· | C), i.e. for all Z ∈ LqF (E)

ess.sup
X∈Lp

F (E)
(E[ZX | F ]− δ(X | C)) = ess.sup

X∈C
E[ZX | F ]. (28)

Note that this is also the case if C = ∅. (28) justifies the notation δ∗(· | C) of
the support function.

We define δ∗∗(· | C) : LpF (E) → L̄0(F) as the conjugate of the support
function, i.e.

δ∗∗(X | C) = ess.sup
Z∈Lp

F (E)
(E[ZX | F ]− δ∗(Z | C)).

If C is closed, we have
δ(· | C) = δ∗∗(· | C). (29)
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Lemma 4.1. Let P = {X ∈ LpF (E) | X ≥ 0} be the order inducing L0(F)–cone
and P◦ its polar L0(F)–cone. Then

δ(· | P) = δ∗(· | P◦) (30)

δ∗(· | P) = δ(· | P◦) (31)

δ∗(X | D) =

{
−X on M(X | L0(F))

∞ on M(X | L0(F))c
for all X ∈ LpF (E). (32)

Proof. To see (30), recall that δ∗(X | P◦) = ess.supZ∈P◦E[ZX | F ]. Further,
1M(X|P)X ≥ 0 implies 1M(X|P)ZX ≤ 0 for all Z ∈ P◦. Since M(X | P) ∈ F
and since P◦ is an L0(F)–cone we derive

1M(X|P) ess.sup
Z∈P◦

E[ZX | F ] = ess.sup
Z∈P◦

E[1M(X|P)ZX | F ] = 0.

This proves (30) on M(X | P).
By definition of M(X | P), 1AX /∈ P for all A ∈ F with P [A] > 0 and

A ⊂ M(X | P)c. Since P is closed L0(F)–convex Theorem 2.8 in[FKV09]
implies that there exists Z ′0 ∈ L

q
F (E) and ε ∈ L0

++(F) with

E[Z ′0X
′ | F ] + ε ≤ E[Z ′0X | F ] (33)

on M(X | P)c for all X ′ ∈ P. The same is true if Z ′0 is replaced by Z0 =
1M(X|P)Z

′
0. Since P is an L0(F)–cone we derive that E[Z0X

′ | F ] ≤ 0 for all
X ′ ∈ P; whence Z0 ∈ P◦. Further, since 0 ∈ P◦ we derive from (33) that
E[Z0X | F ] > 0 on M(X | F)c. Thus,

1M(X|P)c ess.sup
Z∈P◦

E[ZX | F ] ≥ 1M(X|P)c ess.sup
Y ∈L0

+(F)

Y E[Z0X | F ] = 1M(X|P)c(+∞)

as P◦ is an L0(F)–cone. This proves (30) on all of Ω.
The identity (31) follows by a dual argument as in (29).
To prove (32) we define f : LpF (E)→ L̄0(F),

f(X) = −1M(X|L0(F))X +∞1M(X|L0(F))c

and show that f∗ = δ(· | D). (Note that f is the function on the right hand side
of (32).) The identity in (32) then follows from a dual argument since D has
the closure property and is L0(F)–convex closed. By definition of f , we have

f∗(Z) = ess.sup
X∈Lp

F (E)
(E[ZX | F ]− f(X))

= ess.sup
X∈L0(F)

(XE[Z | F ] +X)

= ess.sup
X∈L0(F)

X(E[Z | F ] + 1)

for all Z ∈ LqF (E). The equality f∗ = δ(· | D) now follows from the observation
that M(Z | D) = {E[Z | F ] = −1} for all Z ∈ LqF (E).
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4.2 Hulls

Proposition 4.2. Let f : LpF (E)→ L̄0(F) be a proper L0(F)–convex function.

(i) The greatest monotone closed L0(F)–convex function majorized by f is
given by fP◦ : LpF (E)→ L̄0(F),

fP◦(X) = ess.sup
Z∈P◦

(E[ZX | F ]− f∗(Z)).

(ii) The greatest (sub)cash invariant closed L0(F)–convex function majorized
by f is given by f(s)D : LpF (E)→ L̄0(F),

f(s)D(X) = ess.sup
Z∈sD

(E[ZX | F ]− f∗(Z)).

(iii) The greatest monotone (sub)cash invariant closed L0(F)–convex function
majorized by f is given by fP◦,(s)D : LpF (E)→ L̄0(F),

fP◦,(s)D(X) = ess.sup
Z∈P◦∩sD

(E[ZX | F ]− f∗(Z)).

Accordingly, we call fP◦ , f(s)D and fP◦,(s)D the monotone, (sub)cash invariant
and monotone (sub)cash invariant hull of f , respectively.

Proof. (i) Monotonicity of fP◦ follows from Lemma 3.13 (i) and closeness follows
from its definition. Further, fP◦ ≤ f∗∗ ≤ f . Now let g : LpF (E) → L̄0(F) be
a monotone closed L0(F)–convex function with g ≤ f . By Lemma 3.13 (i),
1P (g)domg∗ ⊂ 1P (g)P◦. Thus, g∗ = g∗ + δ(· | P◦) ≥ f∗ + δ(· | P◦). Let
f : LpF (E) → L̄0(F) be a proper L0(F)–convex function. Since P◦ is closed
L0(F)–convex and has the closure property δ(· | P◦) is l.s.c. L0(F)–convex and
hence

(fP◦)
∗ = f∗ + δ(· | P◦). (34)

Hence, g = g∗∗ ≤ fP◦ .
(ii) follows similarly.
(iii) As in (34), one checks that (fP◦,(s)D)∗ = f∗+ δ(· | P◦ ∩ (s)D). Now the

assertion follows as in (i).

The next remark provides us with an interpretation of monotone and cash
invariant hulls.

Remark 4.3. Let f : LpF (E)→ L̄0(F) be proper L0(F)–convex.

(i) Define g : LpF (E)→ L̄0(F) by

g(X) = ess.inf
X′∈Lp

F (E),X′≤X
f(X ′).

Note that g need not be proper. For instance, take f = E[· | F ] : L1
F (E)→

L0(F), then g ≡ −∞. Nevertheless, g is L0(F)–convex and monotone
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with g ≤ f , and g = f if and only if f is monotone. Moreover, if g is
closed then g = g∗∗ = fP◦ is the greatest monotone closed L0(F)–convex
function majorized by f . Indeed, for all X ∈ LpF (E)

g(X) = ess.inf
X1,X2∈Lp

F (E),X1+X2=X
(f(X1) + δ(X2 | P)).

With (31) of Lemma 4.1 one checks that the conjugate of the right hand
side equals f∗ + δ(· | P◦). Hence, g∗ = (fP◦)

∗ by (34) and in turn
g∗∗ = fP◦ .

(ii) Define h : LpF (E)→ L̄0(F) by

h(X) = ess.inf
Y ∈L0(F)

(f(X − Y )− Y ).

Then h is L0(F)–convex and cash invariant with h ≤ f , and h = f if and
only if f is cash invariant. Moreover, if h is closed then h = h∗∗ = fD is
the greatest cash invariant closed L0(F)–convex function majorized by f .
Indeed, by Lemma 4.1 (32) we have for all X ∈ LpF (E)

h(X) = ess.inf
X1,X2∈Lp

F (E),X1+X2=X
(f(X1) + δ∗(X2 | D)).

Inspection shows that the dual of the right hand side equals f∗ + δ(· | D).
As in (34) we have (fD)∗ = f∗ + δ(· | D). Hence, h∗ = (fD)∗ and in turn
h∗∗ = fD.

Let f : LpF (E)→ L̄0(F) be a proper L0(F)–convex function. Since

δ(· | P◦) + δ(· | (s)D) = δ(· | P◦ ∩ (s)D)

we derive
fP◦,(s)D = (fP◦)(s)D = (f(s)D)P◦ .

Further, note that if for instance f is (sub)cash invariant then fP◦,(s)D = fP◦ .
However, if f is monotone (sub)cash invariant we only have fP◦,(s)D = f∗∗ ≤ f
as f need not be closed in general.

5 Examples

5.1 Conditional mean variance as cash invariant hull

In this section, we consider the L2 type module L2
F (E) and fix β ∈ R, β > 0. We

define a conditional variant f : L2
F (E) → L0(F) of the L2(E)–(semi)–deviation

risk measure by

f(X) = E[−X | F ] +
β

2
E[X2 | F ].
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One checks that f is proper L0(F)–convex and by Hölder’s inequality in the
form of (4.13) in [KV09] f is continuous. Next, we consider the mapping h :
L2
F (E)→ L0(F) defined by

h(X) = ess.sup
Y ∈L0(F)

(f(X−Y )−Y ) = ess.sup
Y ∈L0(F)

(
E[−X | F ]− β

2
E[(X − Y )2 | F ]

)
.

(35)
An element Y ′ ∈ L0(F) which satisfies the first order condition

β(E[X | F ]− Y ′) = 0

is necessarily a maximizer of the integrands E[−X | F ]− β
2E[(X − Y )2 | F ] of

the right hand side of (35). Thus, plugging in the maximizer Y ∗ = E[X | F ]
we derive that h is of the form

h(X) = E[−X | F ] +
β

2
V ar[X | F ],

where V ar[X | F ] = E[X2 | F ] − E[X | F ]2 denotes the (generalized) condi-
tional variance of X ∈ L2

F (E). From this we derive that h is proper L0(F)–
convex continuous and in particular closed. By Remark 4.3 (ii) we therefore
know that h = fD is the greatest cash invariant closed L0(F)–convex function
majorized by f .

In line with the relevant literature we refer to fD as conditional mean vari-
ance. Since fD is continuous Theorem 3.7 in [FKV09] implies that ∂fD(X) 6= ∅
for all X ∈ L2

F (E). In particular, for all X ∈ L2
F (E) fD admits a representation

of the form
fD(X) = ess.sup

Z∈L2
F (E)

(E[ZX | F ]− f∗D(Z)).

In what follows we will construct a subgradient of fD by means of the following
lemmas.

Lemma 5.1. Let g : L2
F (E)→ L0(F) be a function. If Z∗ ∈ L2

F (E) satisfies

g(X) = E[Z∗X | F ]− g∗(Z∗),

then Z∗ ∈ ∂g(X).

Proof. By definition,
g∗(Z) ≥ E[ZX | F ]− g(X) (36)

for all X,Z ∈ L2
F (E). Now, let X,Z∗ ∈ L2

F (E) and assume g(X) = E[Z∗X |
F ]− g∗(Z∗). Then, (36) implies g(X) ≤ E[Z∗X | F ]−E[Z∗X ′ | F ] + g(X ′) for
all X ′ ∈ L2

F (E), and hence Z∗ ∈ ∂g(X).

Lemma 5.2. Let fD : L2
F (E) → L0(F) denote the conditional mean variance.

Then,
domf∗D = {Z ∈ L2

F (E) | E[Z | F ] = −1}. (37)
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Moreover, for all Z ∈ domf∗D

f∗D(Z) =
1

2β
E[(1 + Z)2 | F ]

and, in particular, (1 + Z)/β ∈ ∂f∗D(Z).

Proof. The conditional mean variance is cash invariant closed L0(F)–convex
and R(fD) = Ω. Hence, Lemma 3.13 (iii) yields the inclusion ”⊂” in (37).

To prove the reverse inclusion in (37), let Z ∈ L2
F (E) with E[Z | F ] = −1.

We will show that f∗(Z) = 1
2βE[(1 + Z)2 | F ]. To this end, observe

f∗(Z) = ess.sup
X∈L2

F (E)
(E[ZX | F ]− f(X))

= ess.sup
X∈L2

F (E)

(
E[(1 + Z)X | F ]− β

2
V ar[X | F ]

)
= ess.sup

X∈L2
F (E),E[X|F ]=0

(
E[(1 + Z)X | F ]− β

2
V ar[X | F ]

)
= ess.sup

X∈L2
F (E),E[X|F ]=0

E

[
(1 + Z)X − β

2
X2 | F

]
. (38)

An element X ′ ∈ L2
F (E) which satisfies the first order condition

1 + Z − βX∗ = 0 (39)

is necessarily a pointwise maximizer of the integrands (1 + Z)X − β
2X

2 in (38)
(maximized over all of L2

F (E)). In view of (39) we therefore define the maximizer
X∗ = (1 + Z)/β; fortunately, E[X∗ | F ] = 0. Plugging X∗ into (38) yields the
assertion.

Combining lemmas 5.1 and 5.2 we conclude: if Z∗ ∈ L2
F (E) maximizes

fD(X) = ess.sup
Z∈L2

F (E)
(E[ZX | F ]− f∗D(Z))

= ess.sup
Z∈L2

F (E),E[Z|F ]=−1

(
E[ZX | F ]− 1

2β
E[(1 + Z)2 | F ]

)
(40)

that is

fD(X) = E[Z∗X | F ]− 1

2β
E[(1 + Z∗)2 | F ]

for some X ∈ L2
F (E), then Z∗ ∈ ∂fD(X).

Theorem 5.3. Let fD : L2
F (E)→ L0(F) denote the conditional mean variance.

Then, for all X ∈ L2
F (E)

β(X − E[X | F ])− 1 ∈ ∂fD(X).
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Proof. Let X ∈ L2
F (E). Since fD(X − E[X | F ]) = fD(X) + E[X | F ] we have

∂fD(X −E[X | F ]) = ∂fD(X). If Z ′ ∈ L2
F (E) satisfies the first order condition

X − E[X | F ]− 1

β
(1 + Z∗) = 0 (41)

then Z ′ is necessarily a pointwise maximizer of the integrands

Z(X − E[X | F ])− 1

2β
(1 + Z)2

in (40) (adjusted for −E[X | F ] and maximized over all of L2
F (E)). In view of

(41) we define the maximizer Z∗ = β(X − E[X | F ]) − 1; fortunately E[Z∗ |
F ] = −1 which means that Z∗ maximizes (40).

Example 5.4. If we let F = σ(An) as in Example 3.1 we can nicely relate the
preceding results to the static case results presented in [FK07]. More precisely,
we can identify f : L2

F (E) → L0(F) with a sequence of static L2(E)–(semi)–
deviation risk measures f = (f1, f2, f3, . . .), where fn : L2(E ∩Ai)→ R is given
by

fn(X) = EPi [−X] +
β

2
EPi

[X2],

where EPi
[·] denotes the expectation with respect to the probability measure Pi.

As derived above, the greatest cash invariant closed L0(F)–convex function ma-
jorized by f is given by the conditional mean variance fD : L2

F (E) → L0(F)
which we can also identify with a sequence of static conditional mean variances
fD = (f1,D, f2,D, f3,D, . . .), where fn,D : L2(E ∩An)→ R is given by

fn,D(X) = EPn [−X] +
β

2
V arPn

[X]

where V arPn
[·] denotes the variance w.r.t. the probability measure Pn, n ∈ N.

Further, by Theorem 5.3 we know that for all X ∈ L2
F (E)

(β(X1−EP1
[X1])−1, β(X2−EP2

[X2])−1, β(X3−EP3
[X3])−1, . . .) ∈ ∂fD(X),

where Xn denotes the restriction of X to Ω∩An which lies in L2(E∩An), n ∈ N.
Alternatively, we could apply the results of Section 5.3 in [FK07]. Ac-

cording to [FK07] the greatest cash invariant closed convex function majorized
by fn is given by the classical mean variance fn,D for each n ∈ N. Conse-
quently, the greatest cash invariant closed L0(F)–convex function majorized by
f = (f1, f2, f3, . . .) must be fD = (f1,D, f2,D, f3,D, . . .). In the same way, one
could proceed with the subgradient, which however is not computed in [FK07].

5.2 Conditional monotone mean variance as monotone hull

As in the previous section we consider the L2 type module L2
F (E) and fix β ∈

R, β > 0. To ease notation we denote by f : L2
F (E) → L0(F) (in place of
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fD) the conditional mean variance as introduced in the previous section. In
line with Proposition 4.2 we define the conditional monotone mean variance
fP◦ : L2

F (E)→ L0(F) as the greatest monotone (cash invariant) closed L0(F)–
convex function majorized by f . That is,

fP◦(X) = ess.sup
Z∈P◦

(E[ZX | F ]− f∗(Z))

= ess.sup
Z∈P◦∩D

(
E[ZX | F ]− 1

2β
E[(1 + Z)2 | F ]

)
(42)

By Theorem 3.2 in [KV09] the conditional monotone mean variance fP◦ is
continuous and ∂fP◦(X) 6= ∅ for all X ∈ L2

F (E). Again, in what follows,
we explicitly construct a subgradient.

Lemma 5.5. Let f : L2
F (E) → L0(F) and α : L2

F (E) → L̄0(F) be functions
such that α represents f in the sense that f = ess.supZ∈L2

F (E)
(E[Z· | F ]−α(Z)).

If Z∗ ∈ L2
F (E) satisfies

f(X) = E[Z∗X | F ]− α(Z∗)

then Z∗ ∈ ∂f(X).

Proof. Since α represents f we have

α(Z) ≥ E[ZX | F ]− f(X). (43)

Now, let X,Z∗ ∈ L2
F (E) and assume f(X) = E[Z∗X | F ]− α(Z∗). Then, (43)

implies f(X) ≤ E[Z∗X | F ] − E[Z∗X ′ | F ] + f(X ′) for all X ′ ∈ L2
F (E), hence

Z∗ ∈ ∂f(X).

Lemma 5.6. For all X ∈ L2
F (E) and Z ∈ L0

+(F) there exists Y ∈ L0(F) such
that

E[(X + Y )− | F ] = Z.

Proof. Let X ∈ L2
F (E), Z ∈ L0

+(F) and define

Y = ess.sup{Y ′ ∈ L0(F) | E[(X + Y ′)− | F ] ≥ Z}.

Then Y is as required. Indeed, observe that the function L0(F)→ L0
+(F), Y 7→

E[(X + Y )− | F ], is antitone, that is E[(X + Y1)− | F ] ≥ E[(X + Y2)− | F ]
whenever Y1 ≤ Y2. Further,

E[(X − n)− | F ]↗ +∞ a.s.

as n tends to +∞. Thus, there exists Y ′ ∈ L0(F) with E[(X + Y ′)− | F ] ≥ Z.
Hence Y ∈ L0(F) and by construction E[(X + Y )− | F ] ≥ Z. By way of
contradiction, assume that P [A] > 0, A = {E[(X + Y )− | F ] > Z}. Let
Yn = Y + 1/n, n ∈ N. Then

E[(X + Yn)− | F ]↗ E[(X + Y )− | F ] a.s.
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Hence, An = {E[(X + Yn)− | F ] > Z} ↗ A. Thus, there exists n0 ∈ N with
P [An0 ] > 0. But then,

E[(X + 1Ac
n0
Y + 1An0

Yn0
)− | F ] ≥ Z

and 1Ac
n0
Y + 1An0

Yn0 > Y on An0 in contradiction to the maximality of Y .

Thus, E[(X + Y )− | F ] = Z.

Theorem 5.7. Let fP◦ : L2
F (E) → L0(F) denote the conditional monotone

mean variance. For X ∈ L2
F (E) let Y ∈ L0(F) be such that E[−β(X + Y )− |

F ] = −1. Then
−β(X + Y )− ∈ ∂fP◦(X).

(Due to Lemma 5.6, such a Y exists.)

Proof. Let X ∈ L2
F (E). In view of Lemma 5.5, it suffices to show that Z∗ =

−β(X + Y )− maximizes (42).
Step 1. Due to f(X+Y ) = f(X)+Y for all Y ∈ L0(F) an element Z∗ ∈ P◦

maximizes

ess.sup
Z∈P◦

(
E[ZX | F ]− 1

2β
E[(1 + Z)2 | F ]

)
(44)

if and only if it maximizes

ess.sup
Z∈P◦

(
E[Z(X + Y ) | F ]− 1

2β
E[(1 + Z)2 | F ]

)
.

Thus, we can assume that E[−βX− | F ] = −1 since else we could replace X by
X + Y for the unique Y ∈ L0(F) with E[−β(X + Y )− | F ] = −1.

Step 2. For all Z ∈ P◦

E[ZX | F ]− 1

2β
E[(1 + Z)2 | F ] = E

[
ZX − 1

2β
Z2 | F

]
+

1

2β
.

Hence, Z∗ ∈ P◦ maximizes (44) if and only if it maximizes

ess.sup
Z∈P◦

E

[
ZX − 1

2β
Z2 | F

]
.

For Z∗ ∈ P◦ the following statements are equivalent:

(i)

E

[
Z∗X − 1

2β
Z∗2 | F

]
= ess.sup

Z∈P◦
E

[
ZX − 1

2β
Z2 | F

]
.

(ii) For all Z ∈ P◦ and ε ∈ [0, 1],

E

[
Z∗X − 1

2β
Z∗2 | F

]
≥ E

[
ZεX −

1

2β
Z2
ε | F

]
,

where Zε = εZ + (1− ε)Z∗. (Note that Zε ∈ P◦ for all Z ∈ P◦.)
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(iii) For all Z ∈ P◦,

d

dε
E

[
ZεX −

1

2β
Z2
ε | F

]
|ε=0 ≤ 0.

Indeed, for all Z ∈ P◦ and ε ∈ [0, 1]

E

[
ZεX −

1

2β
Z2
ε | F

]
= εY1 −

ε2

2β
E[(Z − Z∗)2 | F ] + Y2

for some Y1 = Y1(Z,Z∗), Y2 = Y2(Z,Z∗) ∈ F . In particular, ε 7→ εY1 −
ε2

2βE[(Z − Z∗)2 | F ] + Y2 is point wise concave on [0, 1] and hence (iii)

implies (ii).

(iv) For all Z ∈ P◦, E
[
(Z − Z∗)

(
X − 1

βZ
∗
)
| F
]
≤ 0.

Hence, in view of (iv) it follows that Z∗ = −βX− ∈ P◦ maximizes (44).

Example 5.8. Again we employ the results of Section 5.3 in [FK07] to derive
the above results for the specific case of F = σ(An), cf. Example 5.4. We
identify the conditional mean variance, this time simply denoted by f , with its
corresponding sequence of static mean variances f = (f1, f2, f3, . . .).

According to the above results, the greatest monotone closed L0(F)–convex
function majorized by f is given by fP◦ : L2

F (E)→ L0(F) identified with fP◦ =
(f1,P◦ , f2,P◦ , f3,P◦ , . . .), where fn,P◦ : L2(E ∩An)→ R is given by

fn,P◦(X) = sup
Z∈L2(E∩An),Z≤0,EPn [Z]=−1

(
EPn [ZX]− 1

2β
EPn

[(1 + Z)2]

)
,

for all n ∈ N.
Alternatively, due to Section 5.3 in [FK07] the greatest monotone closed

convex function majorized by fn is given by the static monotone mean variance
fn,P◦ for each n ∈ N. Consequently, the greatest monotone closed L0(F)–convex
function majorized by f = (f1, f2, f3, . . .) must be fP◦ = (f1,P◦ , f2,P◦ , f3,P◦ , . . .).

A Proof of Theorem 2.4

In this appendix we provide a prove of Zowe’s convex duality result in the form
of Theorem 2.4. The setup and notation are as in Section 2. We first present a
topological lemma.

Lemma A.1. There exists a base of neighborhoods V of 0 ∈ Lk(G) such that

V = (V + Lk+(G)) ∩ (V − Lk+(G)), (45)

where Lk+(G) = {X ∈ Lk(G) | X ≥ 0}, k ∈ [1,+∞] and G ⊂ E denotes a generic
sub σ–algebra of E.
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Proof. For each n ∈ N we denote by B1/n the ball of radius 1/n centered

at 0 ∈ Lk(G). The collection (B1/n) is the canonical base of neighborhoods in

Lk(G). We claim that V1/n = (B1/n+Lk+(G))∩(B1/n−Lk+(G)), n ∈ N, defines a
neighborhood base as required. Indeed, each V1/n satisfies (45) by construction.
Further, B1/n ⊂ V1/n and V1/(2n) ⊂ B1/n for each n ∈ N implies that (V1/n) is
a base of neighborhoods.

The epigraph epif of a function f : Lp(E) → Lr(F) is understood as
{(X,Y ) ∈ Lp(E) × Lr(F) | f(X) ≤ Y }. The next lemma proves the first
assertion of Theorem 2.4.

Lemma A.2. Let f : Lp(E)→ Lr(F) be a convex function. If f is continuous
at X0 ∈ Lp(E) then f has a subgradient at X0.

Proof. The set

A = epif − {(X0, Y ) ∈ {X0} × Lr(F) | Y ≤ f(X0)}

is nonempty and convex. Thus,

B =
⋃

λ∈[0,+∞)

λA

is a convex cone in Lp(E) × Lr(F), that is B + B ⊂ B and λB ⊂ B for all
λ ∈ [0,+∞). Using B we will construct a sublinear mapping p : Lp(E)→ Lr(F),
that is, p is subadditive p(X1+X2) ≤ p(X1)+p(X2) and positively homogeneous
p(λX1) = λp(X1) for allX1, X2 ∈ Lp(E) and λ ∈ [0,+∞). To this end, we define

SX = {Y ∈ Lr(F) | (X,Y ) ∈ B},

for all X ∈ Lp(E). We will show that SX is nonempty and bounded from below
for all X ∈ Lp(E).

Since B is a convex cone we observe first that

SX1
+ SX2

⊂ SX1+X2
, for all X1, X2 ∈ Lp(E). (46)

For X ∈ Lp(E) we have

(X, f(X0 +X)− f(X0)) = (X0 +X, f(X0 +X))− (X0, f(X0)) ∈ A,

and hence (X, f(X0 +X)− f(X0)) ∈ B. Thus,

SX 6= ∅ for all X ∈ Lp(E). (47)

Let (0, Y ) ∈ B, Y 6= 0. Then (0, Y ) = λ((X1, Y1) − (X2, Y2)) for some
λ ∈ (0,+∞), X1 = X2 = X0 and Y1 ≥ f(X0) ≥ Y2. Thus, Y = λ(Y1 − Y2) ≥ 0,
and hence

S0 ⊂ Lr+(F). (48)
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For X ∈ Lp(E) take Y ∈ S−X which is possible due to (47). From (46) and
(48) we derive for all Z ∈ SX

Z + Y ∈ SX + S−X ⊂ S0 ⊂ Lr+(F).

Hence −Y is a lower bound for SX . Since Lr(F) is order complete the mapping
p : Lp(E)→ Lr(F),

p(X) = ess.inf{Y | Y ∈ SX}

is well defined. Next, we show that p is sublinear.
For λ ∈ (0,+∞) we have λB = B, and hence λp(X) = ess.inf{λY | (X,Y ) ∈

B} = ess.inf{λY | (λX, λY ) ∈ B} = p(λX). Since p(0) = 0 it follows that p is
positively homogeneous. Further, from (46) we derive for all X1, X2 ∈ Lp(E)

p(X1 +X2) ≤ Y1 + Y2, for all Y1 ∈ SX1
, Y2 ∈ SX2

.

Thus, p(X1+X2) ≤ p(X1)+p(X2). Hence, p is subadditive and in turn sublinear.
By the Hahn–Banach extension theorem in the form of Theorem 8.30 in [AB06]
there exists a linear mapping µ : Lp(E) → Lr(F) such that µX ≤ p(X) for all
X ∈ Lp(E). Since f(X)− f(X0) ∈ SX−X0

for all X ∈ Lp(E) we have

µ(X −X0) ≤ p(X −X0) ≤ f(X)− f(X0). (49)

for all X ∈ Lp(E). Thus, µ is a subgradient of f at X0 if we can show that µ is
continuous.

To this end, let V be a neighborhood of 0 ∈ Lr(F). We can assume that
V = −V and, due to Lemma A.1, V = (V + Lr+(F)) ∩ (V − Lr+(F)). Since f
is continuous at X0 there exists a symmetric neighborhood W (W = −W ) of
0 ∈ Lp(E) such that

f(X0 +W ) ⊂ f(X0) + V.

Hence, f(X0 +W )− f(X0) ⊂ V and therefore

f(X0 +X)− f(X0) ∈ V for all X ∈W.

From (49) we find for all X ∈ Lp(E) that µX = µ(X0 + X − X0) ≤ f(X0 +
X)− f(X0). Hence for all X ∈W = −W

µX ∈ f(X0 +X)− f(X0)− Lr+(F) ⊂ V − Lr+(F)

and

µX ∈ −(f(X0 −X)− f(X0)− Lr+(F)) ⊂ −V + Lr+(F) = V + Lr+(F).

We conclude that µ(W ) ⊂ (V + Lr+(F)) ∩ (V − Lr+(F)) = V and continuity of
µ follows at 0 ∈ Lp(E). Linearity of µ yields continuity on all of Lp(E).

The second assertion of Theorem 2.4 can be proved as follows. We let f :
Lp(E) → Lr(F) be a convex function which is continuous at X0 ∈ Lp(E). We
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define domf∗∗ = {X ∈ Lp(E) | f∗∗(X) ∈ Lr(F)}. Lemma A.2 together with
(3) yields domf∗ 6= ∅ and we get

µX0 − f∗(µ) ≤ µX0 − (µX0 − f(X0)) = f(X0), for all µ ∈ domf∗.

Hence, X0 ∈ domf∗∗ and f∗∗(X0) ≤ f(X0). The reverse inequality follows from
the observation that again Lemma A.2 together with (3) yields the existence of
µ0 such that f(X0) = µ0X0 − f∗(µ0) which concludes the proof.
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allocation problem. Statist. Decisions, 24(1):153–171, 2006.

[BR08] Christian Burgert and Ludger Rüschendorf. Allocation of risks and
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