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Introduction
Risk is now a colloquial and widely used term. Nevertheless, its emergence in history is relatively re-
cent1. Actually, “the late apparition in history of circumstances indicated by means of the new term ’risk’
is probably due to the fact that it accommodates a plurality of distinctions within one concept, thus consti-
tuting the unity of this plurality”, Luhmann [42, Page 16]. Many scientific areas ranging from economics
and finance to sociology or medicine have now laid claim to this concept with their own instruments, lan-
guage, and objectives focusing on different types of risk such that, even today, when it comes to specify
this notion, ways are parting and no real consensus emerges. Yet, at the beginning of the twentieth cen-
tury, discussing in an economical context his famous distinction between measurable uncertainty, where
an objective probability can be assigned to uncertain outcomes, and unmeasurable uncertainty, where no
a priori probability can be provided, Knight proposed to identify risk with measurable uncertainty2. This
Knightian distinction between unmeasurable uncertainty and his notion of risk identified with measurable
uncertainty has strongly influenced modern economic thought; in particular the subsequent developments
of decision theory where properties reflecting a normative view of rationality in the expression of prefer-
ences in face of uncertainty are studied.

von Neumann and Morgenstern [53] initiated this approach with their work on preferences over lotter-
ies, which under some conditions admit a numerical representation in terms of an expected utility. An
important milestone though, beyond this paradigm of expected utility for which many extension were
given, is the axiomatic approach of Gilboa and Schmeidler [34]. Motivated from a decision theoreti-
cal viewpoint, they obtain a representation in terms of the worst expected utility of a random variable
evaluated with respect to different probability models. Such a robustification of the expected utility has
further been extended by Klibanoff, Marinacci, and Mukerji [39], Maccheroni, Marinacci, and Rustichini
[43], Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio [16]. From another viewpoint, motivated
by the need of regulatory agencies for a method of specifying capital requirements for financial institu-
tions, Artzner, Delbaen, Eber, and Heath [4] introduced an axiomatic framework to describe the risk of
financial products. This led to the concept of coherent cash additive risk measures which are character-
ized by representations taking the worst of expected losses of a random variable evaluated with respect
to different probability models. This concept has been further extended to the concept of convex cash ad-
ditive risk measures introduced independently by Föllmer and Schied [29], Frittelli and Rosazza Gianin
[33] and Heath [36].

In view of these normative approaches, let us come back to the Knightian identification between risk
and measurable uncertainty. Actually, the developments in the theory of preferences and cash additive risk
measures suggest to separate these two notions. Indeed, the well founded use of the term risk in the theory
of cash additive risk measures does not match Knight’s notion of risk. By way of their representation, cash
additive risk measures turn out to address risk in the sense of “unmeasurable uncertainty”, since different
probability models, rather than a single one, are taken into account just as in Gilboa and Schmeidler’s
robustification of expected utility. Throughout this work, in line with Knight [40] and Keynes [38, P. 213–
214], uncertainty describes merely the fact that a situation might have more than one possible outcome,
for instance, situations of prospective nature. Unmeasurable uncertainty corresponds to situations where
we simply can not know, and measurable uncertainty applies to situations where some quantification can
take place. Such a quantification might for instance involve a set of probability models as illustrated in

1The term “risicum” already appears in the Middle Ages in highly specific contexts, but Luhmann [41] traces its wider use and
the diversification of its meaning to the early Renaissance.

2“To preserve the distinction [. . . ] between the measurable uncertainty and an unmeasurable one we may use the term ‘risk’ to
designate the former and the term ‘uncertainty’ for the latter” [40, Part III, Chapter VIII, Paragraph 1].
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Section 3.1 or a set of discounting functions, as in Section 3.3. Now, even if risk is intimately related
to uncertainty, in contrast to Knight, we do not identify it with measurable uncertainty. Indeed, while
uncertainty, measurable or not, is an inherent quality of a situation, risk is not. Risk is definitively a
subjective notion since “causal terms and terms like risk or danger are not indications of ontological facts
about which one can have only true or false opinions. [. . . ] Risk evaluation is not simply a problem
of avoiding an error. The question rather is: who uses which frame to guide his observations; and then,
who observes others handle causal distinctions and how they discriminate external and internal attribution
depending upon whether they themselves or others make the decisions” [41, Page 6]. Luhmann underlines
thereby also that risk is rather a matter of perception which clearly depends on one’s perspective and the
surrounding context.

These different considerations on uncertainty and risk are our primary motivations to approach the risk
perception of uncertainty in a sense which firstly reflects its subjective nature and secondly allows for a
context and perspective dependent interpretation. The emphasis on the subjective dimension is the reason
to consider the risk perception of elements subject to uncertainty by means of a preference order4 where
the relation x 4 y means “the element x is perceived to be less risky than the element y”. To characterize
this preference order as a perception of risk while keeping track of the context dependency, we concentrate
on invariant key features commonly related to risk. These are expressed by the normative statements
“diversification should not increase the risk” and “the better for sure, the less risky”. A preference order
reflecting such properties will be called a risk order. Beyond the fact that there is a broad consensus
that diversification and monotonicity capture crucial features of risk perception, they leave full latitude
in which setting they are considered and how they might be specified. Since monotonicity is formulated
by means of an arbitrary preorder3 and diversification by an arbitrary convex structure, their specification
induces different notions and interpretations.

The first advantage of our approach is that it covers most of the instruments related in one way or
another to risk: von Neumann and Morgenstern’s expected utilities, Markowitz [45]’s mean variance,
Sharpe [52]’s ratio, “Value at Risk”, Gilboa and Schmeidler [34]’s robustification of expected utilities,
monetary risk measures, Aumann and Serrano [5]’s economic index of riskiness, or Cherny and Madan
[21]’performance measures, to name but a few. As for the second advantage, our approach provides the
key instruments for the interpretation of risk perception under different perspectives by means of our main
result, a robust representation of risk orders on general convex sets of the form

ρ (x) = sup
x∗

R (x∗, 〈x∗,−x〉) . (0.1)

In this representation, the risk measure ρ is a numerical representation of the considered risk order and R
is a uniquely characterized maximal risk function. As for the general meaning of such a representation,
the risk of the “losses” of an uncertain element x is estimated under a evaluation x∗ by means of the
operation 〈x∗,−x〉. However, since a risk perceiver is not sure which evaluation is adequate to estimate
the “losses”, other evaluations are considered weighted according to their plausibility by means of the
maximal risk function R. Finally, a precautious approach is adopted by taking the maximum of those
estimations justifying henceforth the terminology “robust”. This schema is generic as for the expression
of risk perception; as for the key instruments for the interpretation, they are given by the nature of the
uncertain elements x and the corresponding set of evaluations x∗. Let us briefly illustrate this robust
representation for different settings for which diversification and monotonicity correspond to radically
different notions and interpretations. On the level of random variables X with the standard notion of

3For instance the relation “. . . greater or equal than . . . almost surely” in the setting of random variables.
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monotonicity “greater than almost surely”, the robust representation reduces to

ρ (X) = sup
Q
R (Q,EQ [−X]) (0.2)

where the evaluations Q are probability measures allowing to view risk perception as model risk. On the
level of lotteries µ where diversification corresponds to some additional randomization, and the mono-
tonicity is specified by the first stochastic order, the risk perception is characterized by a robust represen-
tation

ρ (µ) = sup
l
R

l,∫ l (−x)µ (dx)

 (0.3)

where the evaluations l are increasing loss functions. Risk perception may here be interpreted as distri-
butional risk. On the level of consumption patterns c, the intertemporal dimension in the risk perception
has a representation of the form

ρ (c) = sup
β
R

β,− 1∫
0

βsdcs

 (0.4)

where the evaluations β are some discounting functions yielding a risk perception in terms of discounting
risk. In conclusion, our approach to risk perception is in accordance with Luhmann’s quotation in the
first paragraph, since it allows for a plurality of interpretations within one framework depending on the
context and one’s perspective.

We next discuss and compare related results to our robust representation (0.1). Penot and Volle [49]
have obtained some duality results of the form (0.1) for quasiconvex functionals. However, they do not
address the issues of monotonicity and uniqueness, the latter being crucial for comparative statics in terms
of the risk function R. Recently, Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio [16, 14, 15]
proved the uniqueness of the representation (0.1) under the denomination of a complete quasiconvex
duality result. We wish to point out that their results and the signification of quasiconvexity in preferences
theory were a crucial source of inspiration for the present work. While their results address a complete
quasiconvex duality for evenly or upper semicontinuous functions in the setting of M -spaces4 or Lp

spaces, our main result is a complete quasiconvex duality for lower semicontinuous functions on convex
subsets of general locally convex vector spaces. One of the advantages of the technical assumption of
lower semicontinuity is that it is often a consequence of the monotonicity, see Remark 2.8. Our approach
allows us in particular to consider other types of risk perceptions besides the setting of bounded random
variables such as lotteries or consumption patterns as studied in Section 3. In the specific setting of
lotteries, a related representation has independently been achieved by Cerreia-Vioglio [13]. There, convex
preferences on the set of simple lotteries over a general set are considered. He furthermore investigates
convex preferences over sets of so called menus, yielding a maxmin representation. In contrast, in Section
3.2, we study lower semicontinuous risk orders over general lotteries with compact support on the real
line, which are monotone with respect to the first stochastic order.

The subsequent work is structured as follows. In the first section, we introduce the concept of risk
orders on convex sets of uncertain elements. We further introduce risk measures which are quasiconvex
monotone functions playing the role of numerical representation of risk orders, and define risk acceptance
families. The main result of the first section is Theorem 1.7 which clarifies the one-to-one correspondence

4A typical example of an M -space is the set of bounded random variables.
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between risk orders, risk measures, and risk acceptance families. In Subsection 1.1 and 1.2, we study ad-
ditional properties of risk measures such as convexity, positive homogeneity, scaling invariance, affinity,
cash additivity or cash subadditivity. In the second section, we give a dual representation of lower semi-
continuous risk orders in the setting of locally convex topological vector spaces. The main Theorem 2.6,
shows that any lower semicontinuous risk measure ρ of a lower semicontinuous risk order 4 admits a ro-
bust representation of the form5 (0.1). Furthermore, we characterize the class of maximal6 risk functions
R for which the uniqueness in this representation holds. If the monotonicity preorder satisfies a regular-
ity condition, Theorem 2.7 states that the supremum in (0.1) can actually be taken over a smaller set of
normalized evaluations7. The delicate question of the existence and uniqueness of a robust representation
on a convex subset of a vector space is addressed in Subsection 2.1. Indeed, we provide an example
where the uniqueness in the class of maximal risk functions is no longer ensured when considering risk
measures on a convex subset. Under the assumption of continuous extensibility, which automatically
holds for many convex sets, we provide in Theorem 2.19 a characterization of a smaller class of maximal
risk functions for which a complete quasiconvex duality result holds on convex sets. This result covers
the important settings of lotteries, or consumption patterns. In the third section we study how our ro-
bust representation applies in several illustrative settings. Beside the interest in terms of a differentiated
interpretation of risk perception, it also illustrates how the risk acceptance family plays a central role in
explicit computations of maximal risk functions. In the setting of random variables, we discuss how the
Fatou property provides a robust representation of the form (0.2) in terms of probability measures. As
an example, we compute robust representations of various certainty equivalents, and the economic index
of riskiness. In the setting of lotteries, we derive a unique robust representation of the form (0.3) where
the set of maximal risk functions is remarkably identical with the one of the respective vector space. A
discussion and a robust representation of the “Value at Risk” illustrates then the importance of the setting
since it is quasiconvex on the level of lotteries but not on the level of random variables. Diversification on
the level of consumption patterns excerpts another interesting dimension of risk perception, namely the
one related to intertemporal relations. We derive a robust representation on this convex set of the form
(0.4) which we illustrate by an intertemporal risk measure inspired by Hindy, Huang, and Kreps [37].
Finally, Theorem 3.10 in Subsection 3.4 illustrate the interplay between model risk and distributional risk
in the setting of Anscombe and Aumann [3]. The appendix collects standard mathematical concepts and
all the technical proofs.

1 Risk Orders, Risk Measures and Risk Acceptance Families
Throughout, we study the risk of elements x in some nonempty space X . The risk perception is specified
by a total preorder8 on X denoted by 4. As usual, the notations ≺:= {4 & 6<} and ∼:= {4 & <}
respectively correspond to the antisymmetric and equivalence relation. A numerical representation of a
total preorder 4 is a mapping F : X → [−∞,+∞], such that

x 4 y if and only if F (x) ≤ F (y) (1.1)

5The set of evaluations over which the supremum in (0.1) is taken is the polar cone determined by the preorder used to define the
monotonicity of the risk order.

6The term “maximal” risk function is justified in a pointwise sense by Proposition 2.9.
7In the case of bounded random variables with monotonicity preorder “greater than almost surely”, the normalized subset corre-

sponds to the set of probability measures.
8A preorder is a binary relation 4 on X , which is reflexive and transitive. A binary relation 4 is reflexive if x 4 x for all x ∈ X ,

and transitive if x 4 y and y 4 z implies x 4 z. A total preorder is a preorder which in addition is complete, that is, x 4 y or
y 4 x for all x, y ∈ X . Note that a complete binary relation is reflexive.
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for all x, y ∈ X . It is well-known, see Debreu [24, 25], that a total preorder 4 admits a numerical repre-
sentation if and only if it is separable9. It is also straightforward to check that a numerical representation
of 4 is unique up to increasing transformation, that is, for any two numerical representations F, F̂ of 4
there exists an increasing function h : Im(F )→ Im(F̂ ) such that F̂ = h ◦ F .

Our aim is to characterize those total preorders which deserve the denomination “risk”. As evoked
in the introduction, the main properties related to risk perception are the diversification and some form
of monotonicity. In order to diversify risky elements, we need to express convex combinations, thus,
X is from now on a convex subset10 of a vector space V . As for the monotonicity, we need a relation
specifying that some elements are “better for sure” than others, which is expressed by a preorder Q on
X . Throughout, we assume that Q is even a vector preorder11. A total preorder 4 which reflects the
diversification and monotonicity properties is called a risk order.

Definition 1.1 (Risk Order). A total preorder 4 on X is a risk order if it is

• quasiconvex: λx+ (1− λ) y 4 y for any λ ∈ ]0, 1[ whenever x 4 y,

• monotone: x 4 y whenever x Q y.

Here, the relation x 4 y means “x is less risky than y”. The quasiconvexity axiom reflects exactly that
the diversification between two alternatives keeps the risk below the worse one. The monotonicity axiom
states that the risk order is compatible with the preorder Q. In the following, L (x) = {y ∈ X : y 4 x}
consists of those elements which are less risky than x ∈ X . Note that a total preorder 4 is quasiconvex
exactly when L (x) is convex for all x ∈ X .

Remark 1.2. Note that the monotonicity can be ruled out if the vector preorder Q is trivial, that is, the
relation x Q y holds if and only if x = y. In that case, we say that the risk order is monotone with respect
to the trivial preorder. �

The abstractness of the setting agrees with our declared intention to concentrate solely on the properties
characterizing the risk perception as such. This allows us to appreciate and interpret it under different
lights depending on the underlying context. We precise this thereafter with several illustrative settings
which will be studied in Section 3.

• Random Variables: In finance, risky positions—equities, credits, derivative products, insurance
contracts, portfolios, etc.—are commonly random variables defined on some state space Ω. Capital
letters X,Y, . . . are usually used instead of x, y, . . . to refer to those risky positions. A possible
choice for X is the vector space L∞ := L∞ (Ω,F , P )12, where P is a reference probability
measure defined on a σ-algebra of possible scenarios F . The diversification is expressed by the
state-wise convex combination λX (ω) + (1− λ)Y (ω) for P -almost all ω, and the canonical
preorder is given by the relation “greater than P -almost surely”.

9A total preorder 4 is separable if there exists a countable set Z ⊆ X such that for any x, y ∈ X with x ≺ y there is z ∈ Z for
which x 4 z 4 y.

10The framework of a mixture space could have been considered as well, at least in the first section. However, up to two reasonable
additional conditions (non triviality, and a weak form of associativity), mixture spaces can be embedded as a convex subset of a
vector space, see [46].

11A vector preorder Q is the restriction to X of a preorder Q defined on the vector space V ⊃ X such that x Q y implies x+ z Q
y + z for any z ∈ V and λx Q λy for any λ ≥ 0. A vector preorder is specified by the convex cone K := {x ∈ X : x Q 0},
for which x Q y exactly when x− y ∈ K.

12L∞ (Ω,F , P ) denotes the vector space of all essentially bounded random variables, where random variables are identified when
they coincide P -almost surely.
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• Lotteries: Historically, probability distributions, referred to as lotteries, play an important role in
decision theory. Here also, the tradition sees the use of the notation µ, ν, . . . instead of x, y, . . .
We will consider the setM1,c of lotteries with compact support on the real line. Here, a convex
combination λµ + (1− λ) ν can be interpreted as some additional randomization, since it corre-
sponds to the sampling of either the lottery µ or ν depending on the outcome of a binary lottery
with probability λ or (1− λ). As a convex set,M1,c spans the vector space cac of bounded signed
measures with compact support. Different orders might be considered onM1,c such as the first or
second stochastic order defined by µ Q ν if

∫
f dµ ≥

∫
f dν for all continuous nondecreasing,

respectively concave continuous nondecreasing functions f : R→ R.

• Consumption Patterns: They are particularly adequate to excerpt the intertemporal dimension
in the perception of successive consumption of a commodity, in particular the substitution effects.
To take into account gulps along continuity, these consumption patterns in time are modelled by
nondecreasing right-continuous paths c : [0, 1] → [0,+∞[, where the value ct represents the
cumulative amount of consumption up to time t ∈ [0, 1]. Diversification expressed by means of
the time-wise convex combination λc(1)

t + (1− λ) c
(2)
t for all 0 ≤ t ≤ 1. The set of consumption

patterns denoted by CS := CS ([0, 1]) is a convex cone. A possible preorder is defined by c(1) Q
c(2) exactly when c(1) − c(2) belongs to CS .

• Stochastic Kernels: They can be seen as lotteries which are additionally subject to model uncer-
tainty. These state dependant lotteries denoted by µ̃ := µ̃ (ω, dx) unify somehow lotteries and
random variables in one object and can be used to illustrate the interplay between model uncer-
tainty and distributional uncertainty in the risk perception13. Mathematically, the set of stochastic
kernels SK consists of all measurable mappings14 µ̃ : Ω → M1,c, where (Ω,F , P ) is a proba-
bility space. Convex combinations are ω-wise randomizations between state dependant lotteries,
λµ̃ (ω, dx) + (1− λ) ν̃ (ω, dx). As for the preorder we consider the P -almost sure second stochas-
tic order, that is, µ̃ Q ν̃ if the lottery ν̃ (ω, ·) dominates in the second stochastic order the lottery
ν̃ (ω, ·) for P -almost all ω ∈ Ω.

Remark 1.3. The notion of diversification strongly depends on the underlying setting. This can be seen in
the difference between the settings of random variables and lotteries. Indeed, the randomization λPX +

(1− λ)PY of lotteries PX and PY corresponding to the laws of random variables X and Y under a
probability measure P generally differs from the lottery PλX+(1−λ)Y corresponding to the law of the
state-wise convex combination λX + (1− λ)Y . This has crucial consequences for the interpretation in
terms of risk perception as illustrated in the following example. Suppose that a lender faces a choice
between two similar but independent loans each with a default probability of one percent. Assume also
that the risk perception of this lender is focused on the probability of loosing money. The lender estimates
therefore a mere convex combination of half a loan and half the other as more risky since the probability
of loosing money increases to almost two percents, even if the loss size is reduced. The perspective of
its perception is however explicitly in a distributional sense rather than in terms of values. From this
point of view, diversification is understood on the level of lotteries, where such a convex combination
corresponds to a coin toss before choosing one loan or the other. By doing so, the probability of loosing
money remains at one percent. �

13They were first used in economic theory by Anscombe and Aumann [3] and further by Gilboa and Schmeidler [34] for their
maximin expected utilities with multiple priors. See also [30, 39, 43, 14] among others.

14F -P (M1,c)-measurable, where P (M1,c) is the σ-algebra generated by the mapping µ 7→ µ (A) for any Borel set A ⊆ R.
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Numerical representations of risk orders inherit the key properties of risk perception and thus are from
now on called risk measures and generically denoted by ρ. In Theorem 1.7 a correspondence between
risk measures and risk orders will be given which justifies the following definition.

Definition 1.4 (Risk Measure). A mapping ρ : X → [−∞,+∞] is called a risk measure if it is

• quasiconvex: ρ (λx+ (1− λ) y) ≤ max{ρ (x) , ρ (y)} for all x, y ∈ X and λ ∈ ]0, 1[,

• monotone: ρ (x) ≤ ρ (y) whenever x Q y.

Example 1.5. The certainty equivalent of an expected loss can be considered on the level of lotteries,

ρ (µ) := l−1

∫ l (−x) µ (dx)

 , µ ∈M1,c, (1.2)

where l : R → R is a continuous increasing loss function. Since the increasing function l−1 is clearly
quasiaffine15 it follows that ρ is monotone with respect to the first stochastic order and

ρ (λµ+ (1− λ) ν) = l−1

λ ∫ l (−x) µ (dx) + (1− λ)

∫
l (−x) ν (dx)

 ≤ max {ρ (µ) , ρ (ν)} ,

for all µ, ν ∈M1,c and λ ∈ ]0, 1[ and so ρ is a risk measure.
On the level of random variables, the certainty equivalent of an expected loss is defined as

ρ̂ (X) := l−1
(
E
[
l (−X)

])
, X ∈ L∞. (1.3)

Even though ρ̂ (X) = ρ (PX), the diversification on the level of random variables is different and the
loss function l has to be additionally convex to ensure that ρ̂ is a risk measure, see [15] where a robust
version of it with more than an loss function has also been studied. Explicit computation of the robust
representation of this risk measure will be given in Section 3, Example 3.3. ♦

Before stating the relation between risk orders and risk measures, we introduce another concept crucial
for the further understanding of this work. Given a risk measure ρ, for any risk level m ∈ R, we define
the risk acceptance set of level m as the subset Amρ ⊆ X of those elements having a risk smaller than m,
that is

Amρ = {x ∈ X : ρ (x) ≤ m} , m ∈ R. (1.4)

We call Aρ =
(
Amρ
)
m∈R the risk acceptance family associated to ρ. Here again, the risk acceptance

family carries the specificities of the risk measure. In Theorem 1.7 we will state a one-to-one relation
between risk measures and risk acceptance families which satisfy the following conditions.

Definition 1.6 (Risk Acceptance Family). An increasing16 family A = (Am)m∈R of subsets Am ⊆ X
is a risk acceptance family if it is

• convex: Am is a convex subset of X for all m ∈ R,

• monotone: x ∈ Am and y Q x implies y ∈ Am,

15Any nondecreasing function from R to R is automatically quasiaffine, a definition of which is given in Appendix A.
16That is,Am ⊆ An for any m ≤ n.
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• right-continuous: Am =
⋂
n>mAn for all m ∈ R.

The risk acceptance family is not only a major instrument for the robust representation of risk measures
in Section 2, it can also be used to describe further structural properties or to model specific economical
features of risk, see Example 1.22.

The following Theorem states the one-to-one correspondence between risk orders, risk measures, and
risk acceptance families.

Theorem 1.7. Any numerical representation ρ4 : X → [−∞,+∞] of a risk order 4 is a risk measure.
Conversely, any risk measure ρ : X → [−∞,+∞] defines a risk order 4ρ through

x 4ρ y if and only if ρ (x) ≤ ρ (y) . (1.5)

Moreover, 4ρ4=4 and ρ4ρ = h ◦ ρ for some increasing transformation h.
Furthermore, for any risk measure ρ, the family Aρ given by

Amρ := {x ∈ X : ρ (x) ≤ m} , m ∈ R, (1.6)

is a risk acceptance family. Conversely, for any risk acceptance family A, the functional ρA given by

ρA (x) := inf {m ∈ R : x ∈ Am} , x ∈ X , (1.7)

defines a risk measure. Moreover, ρAρ = ρ and AρA = A.

Proof, Appendix C.1.
The idea of expressing the numerical representation of a total preorder by means of an increasing family

of acceptance sets as in (1.7) was recently used in other works: Cherny and Madan [21] characterize a
class of performance measures built upon a specific family of acceptance sets17 and Brown, De Giorgi,
and Sim [10] represent a type of prospective preferences also by means of acceptance sets which are not
necessarily convex.

Remark 1.8. While the convexity and monotonicity of a risk acceptance family reflect the key properties
of risk perception, the right-continuity is needed to ensure the one-to-one correspondence. Indeed, in the
proof of Theorem 1.7, it turns out that ρA is a risk measure even if the risk acceptance family A is not
right-continuous. Nevertheless, it plays a crucial role for the relation18 AρA = A. Be aware that the
right-continuity condition for the risk acceptance family is not of topological nature. �

For notational convenience we mostly drop the reference indices and simply writeA, 4, ρ instead ofAρ,
4ρ, ρ4 or ρA, respectively. We now illustrate the previous theorem with the following two families of
risk measures.

Example 1.9. Introduced by Föllmer and Schied [29], the shortfall risk measure is of additive nature and
given by

ρ (X) := inf {s ∈ R : E [l (−X − s)] ≤ c0} , X ∈ L∞, (1.8)

where E [l (−X)] is the expected loss of the position X according to a lower semicontinuous convex loss
function l : R → ]−∞,+∞] increasing on its domain and such that l (s0) < +∞ for some s0 > 0.
17The risk acceptance family corresponds to the acceptance sets of a family of coherent monetary risk measures, see Section 1.2.
18Indeed, on X = R, consider the family Am = ]−m,+∞[ which is monotone and convex but fails to be right-continuous

since Am 6= [−m,+∞[ =
⋂
n>m ]−n,+∞[. Here, ρA (x) = −x and AmρA = [−m,+∞[ for all m ∈ R, showing that

A 6= AρA .
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This risk measure accounts for the minimal amount of money which added to the position X pulls its
expected loss below a given threshold c0 in the range of l (]0,+∞[). By the strict monotonicity and the
lower semicontinuity of the loss function l holds

Am = {X ∈ L∞ : ρ (X) ≤ m} = {X ∈ L∞ : c0 ≥ E [l (−X −m)]} ,

for any risk level m ∈ R. Since X 7→ E [l (−X −m)] is convex and monotone, we deduce that A is a
risk acceptance family and therefore, by means of Theorem 1.7, ρ is a risk measure. ♦

Example 1.10. First introduced by Aumann and Serrano [5] in the exponential case and extended to
the logarithmic case by Foster and Hart [32], the economic index of riskiness, similar to the shortfall risk
measure but of multiplicative nature, fits particularly well for returns. It can be generalized and interpreted
as follows. We first define

λ (X) = sup {λ > 0 : E [l (−λX)] ≤ c0} ,

which represents the maximal exposure to a position X ∈ L∞ provided that the expected loss remains
below an acceptable level c0 in the range of l (]0 +∞[). Here, l is a loss function as in Example 1.9,
which in addition fulfills the growth condition19 limx→+∞ l (x) /x = +∞. The economic index of
riskiness is then defined20 as

ρ(X) :=
1

λ(X)
, X ∈ L∞.

Given a risk level21 m > 0 holds

Am = {X ∈ L∞ : λ (X) ≥ 1/m} = {X ∈ L∞ : c0 ≥ E [l (−X/m)]} .

Due to the convexity and the monotonicity ofX 7→ E [l (−λX)] it follows thatA is convex and monotone
and thus a risk acceptance family. Therefore, in view of Theorem 1.7, the economic index of riskiness
is a risk measure. The loss functions in [5, 32] correspond to l (s) = es − 1 and l (s) = − ln (1− s),
respectively. A computation of the robust representation will be given in Section 3, Example 3.4. ♦

Remark 1.11. Theorem 1.7 ensures that as soon as of one of these objects—risk order, risk measure or
risk acceptance family—is given, the other two are simultaneously precised. The notion of quasicon-
vexity and monotonicity are therefore global features, since any numerical representation of a risk order
shares these properties and vice versa. In the following subsections, we will study additional properties
of risk measures, such as convexity, affinity, or cash additivity amongst others. Unlike quasiconvexity
and monotonicity, most of them do not hold for the entire class of numerical representations of the corre-
sponding risk order and are in this sense no longer global. In the following, we call a risk order convex,
affine, cash additive, etc., when there exists at least one numerical representation having this property. �

1.1 Further Structural Properties
As mentioned in Remark 1.11, the properties of convexity, positive homogeneity, or affinity are no longer
global and are therefore defined on the level of risk measures.

19Due to the monotonicity and convexity of l this growth condition insures the intuitive idea that expected losses are inflated more
than gains since for any X ∈ L∞ taking negative values on a set of positive probability, E [l (−λX)]→ +∞ for λ→ +∞.

20With the usual conventions 1/0 = +∞ and 1/+∞ = 0.
21Clearly, for any m < 0 holdsAmρ = ∅, andA0

ρ = L∞+ which are both convex.
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Definition 1.12. A risk measure ρ : X → [−∞,+∞] is

• convex if ρ (λx+ (1− λ) y) ≤ λρ (x) + (1− λ) ρ (y) for all x, y ∈ X and λ ∈ ]0, 1[.

• positive homogeneous if ρ (λx) = λρ (x) for all x ∈ X and λ > 0.

• scaling invariant if ρ (λx) = ρ (x) for all x ∈ X and λ > 0.

• affine if ρ is real-valued and ρ (λx+ (1− λ) y) = λρ (x) + (1− λ) ρ (y) for all x, y ∈ X and
λ ∈ ]0, 1[.

The notions of positive homogeneity and scaling invariance require in addition thatX is a convex cone. In
line with Remark 1.11, we call a risk order 4 convex, positive homogeneous, etc. if it can be represented
by a risk measure which has this property.

Proposition 1.13. (i) A risk measure ρ is convex if and only if the corresponding risk acceptance
family A is level convex, that is, λAm + (1− λ)Am′ ⊆ Aλm+(1−λ)m′ for all m,m′ ∈ R and
λ ∈ ]0, 1[.

(ii) A risk measure ρ is positive homogeneous if and only if the corresponding risk acceptance family
A is positive homogeneous, that is, λAm = Aλm for allm ∈ R and λ > 0. Moreover, any positive
homogeneous risk order 4 satisfies λL (x) = L (λx) for all x ∈ X and λ > 0.

(iii) Any risk measure ρ corresponding to a risk order4 which satisfies λx ∼ x for all λ > 0, is scaling
invariant. Moreover, ρ is scaling invariant if and only if the corresponding risk acceptance family
A is scaling invariant, that is, λAm = Am for all m ∈ R and λ > 0.

(iv) A risk order 4 admits an affine risk measure ρ if and only if it fulfills the Independence and
Archimedean properties22. This affine risk measure is, up to increasing affine transformations,
unique in the class of affine risk measures.

Statement (iv) is a well-known result by von Neumann and Morgenstern [53], for the others we refer to
Appendix C.2.

Remark 1.14. Even if convexity, positive homogeneity or affinity are not global properties, the scaling
invariance though is global since any increasing transformation of a scaling invariant risk measure is
scaling invariant. �

Example 1.15. The Sharpe Ratio introduced by Sharpe [52] is given by

ρ (X) :=

−
E[X]√

E[X2−E[X]2]
if E [X] > 0

0 else
, X ∈ L∞, (1.9)

with convention that s/0 = −∞ for s < 0, is quasiconvex and scaling invariant. Even if it is not
monotone for the relation “greater than P -almost surely”, it is still a scaling invariant risk measure with
respect to the trivial preorder. For a monotone alternative to the Sharpe Ratio we refer to [12]. A general
study of scaling invariant risk measures can be found in [21].

22A risk order 4 satisfies the Independence property if x ≺ y implies λx + (1− λ) z ≺ λy + (1− λ) z for all z ∈ X and
λ ∈ ]0, 1[ and the Archimedian property if x ≺ z ≺ y implies the existence of λ, β ∈ ]0, 1[ such that λx+ (1− λ) y ≺ z ≺
βx+ (1− β) y.
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In the spirit of expected utilities by Savage [51], we define the expected loss of a random variable as

ρ (X) := EQ [l (−X)] , X ∈ L∞, (1.10)

for some probability measure Q absolutely continuous with respect to P and a continuous loss function
l : R → R. It is a convex risk measure if l is nondecreasing and convex. The expected loss is not affine
on the level of random variables, unless l is affine. However, since it is law invariant, it can also be
considered on the level of probability distribution by the identification QX = µ ∈M1,c through

ρ̃ (µ) :=

∫
l (−x)µ (dx) , µ ∈M1,c, (1.11)

which is an affine risk measure and corresponds to a von Neumann and Morgenstern [53] representation.
Note that a robust version of (1.10) over more than one probability measure yields the representation

of Gilboa and Schmeidler [34]. ♦

1.2 Monetary Risk Orders
Especially for financial applications, it is meaningful to express risk in monetary units by means of a
numéraire π Q 0, which often is a risk free bank account π = 1 + r for some interest rate r > −1.
Throughout this section, we assume that X is a vector space.

Definition 1.16. A risk measure ρ : X → [−∞,+∞] is cash additive if for any m ∈ R holds

ρ (x+mπ) = ρ (x)−m.

An axiomatic approach to monetary risk measure has first been given by Artzner, Delbaen, Eber, and
Heath [4] in terms of coherent23 monetary risk measures. Föllmer and Schied [29] and Frittelli and
Rosazza Gianin [33] generalized them to convex monetary risk measures, which by means of Proposi-
tion 1.18 correspond in our terminology to cash additive risk measures.

The cash additivity expresses that ρ (x) is precisely the minimal amount of money which has to be
reserved on the risk free bank account π to pull the risk of the position x below the level24 0. Here again,
the cash additivity is not a global property and we call a risk order cash additive if it can be represented
by at least one cash additive risk measure, see also Remark 1.11.

Theorem 1.17. A risk order 4 is cash additive if and only if the following two conditions hold

(i) Certainty equivalent: for any x ∈ X such that y ≺ x ≺ z for some y, z ∈ X there exists a unique
m ∈ R which satisfies x ∼ mπ,

(ii) Translation indifference: x 4 y implies x+mπ 4 y +mπ for all m ∈ R.

Proof, Appendix C.3.
Furthermore, cash additive risk measures share the property of convexity and a special shape of their

risk acceptance family.

23A coherent risk measure ρ is a positive homogeneous cash additive risk measure. By Proposition 1.18, ρ is convex, hence, the
positive homogeneity implies that ρ is subadditive, that is, ρ (x+ y) ≤ ρ (x) + ρ (y).

24Indeed, ρ (x+ ρ (x)π) = ρ (x)− ρ (x) = 0 and by monotonicity ρ (x+mπ) ≤ 0 for any m ≥ ρ (x).
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Proposition 1.18. A risk measure ρ is cash additive if and only if the related risk acceptance family A
satisfies

A0 = Am +mπ, for all m ∈ R. (1.12)

Furthermore, any cash additive risk measure is automatically convex.

Proof25, Appendix C.4.
This special shape of the risk acceptance family has a concrete economic interpretation. In the theory

of monetary risk measures,A0 is understood as the set of acceptable positions from a regulating agency’s
point of view. This agency enforces financial institutions with assets x in the risk class Am to reserve a
liquid amount of money m on a risk free bank account π to ensure that x+mπ is acceptable in the sense
that it belongs to A0.

Example 1.19. We here list some examples of cash additive risk measures on L∞.
The celebrated mean variance risk measure introduced by Markowitz [45],

ρ (X) := −E [X] +
γ

2
V ar (X) , X ∈ L∞, (1.13)

is monotone with respect to the trivial preorder but not with respect to the preorder26 “greater than P -
almost surely”.

Given q ∈ ]0, 1[, the so-called average value at risk is defined as

AV@Rq (X) := sup
Q∈Qq

EQ [−X] , X ∈ L∞, (1.14)

whereQq is the set of probability measuresQ absolutely continuous with respect toP such that dQ/dP ≤
1/q. This risk measure is positive homogeneous.

Another prominent example is the entropic risk measure given by

ρ (X) := ln

(
E
[

exp (−X)
])
, X ∈ L∞. (1.15)

Finally, an important class is the optimized certainty equivalent introduced and studied by Ben-Tal and
Teboulle [6, 7] which is defined as

ρ (X) := inf
m∈R
{E [l (m−X)]−m} , X ∈ L∞, (1.16)

where l : R → [−∞,+∞[ is a lower semicontinuous convex nondecreasing loss function such that
l (0) = 0 and 1 ∈ ∂l (0). ♦

Recently, El Karoui and Ravanelli [28] pointed out that in the framework of monetary risk measures,
the risk free bank account π could also be subject to discounting uncertainty. In consequence, a higher
amount of liquidity should be reserved today on the bank account π to ensure that risky positions remain
acceptable. For this purpose, they introduced the notion of cash subadditivity27 for convex risk measures,
which has been extended to quasiconvex risk measures in [15].
25The automatic convexity is a well-known result, see [26, 33, 15] and the references therein. However, an argumentation relying on

(1.12) is presented there. Furthermore, Cheridito and Kupper [18] showed that real-valued risk measure ρ satisfying ρ(mπ) =
−m for all m ∈ R are convex exactly when they are cash additive.

26A monotone version with respect to the preorder “greater than P -almost surely” has been studied in [44].
27Cash subadditive risk measures also appear naturally as the generators describing the one-step actualisation of dynamic cash

additive risk measures for stochastic processes, [see 19, 1].
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Definition 1.20. A risk measure ρ on X is cash subadditive if for any m > 0 holds

ρ (x+mπ) ≥ ρ (x)−m.

Here again, it is possible to characterize cash subadditive risk measures by the properties of their related
risk acceptance families.

Proposition 1.21. A risk measure ρ is cash subadditive if and only if the related risk acceptance family
A satisfies

An ⊆ An+m +mπ, for all m > 0 and n ∈ R. (1.17)

Proof, Appendix C.5
We finally illustrate with one example about numéraire uncertainty how monetary risk measures—not

necessarily cash additive nor cash subadditive—can be defined by economically motivated risk accep-
tance families.

Example 1.22. For global acting financial institutions, it is reasonable that regulating agencies require the
acceptability of risky positions with respect to a basket of currencies in reason of the different interest rate
policies. The financial institutions face here some numéraire uncertainty to assess the risk28. Modelling
this problem is particularly easy from the risk acceptance family point of view. Indeed, let A0 be the
acceptance set given by the regulating institution and let N ⊆ K be a set of possible numéraires, for
instance $, C, £ and ¥. Define

Am :=
{
X : X +mπ ∈ A0 for all π ∈ N

}
=
⋂
π∈N

{
A0 −mπ

}
, m ∈ R.

Here, a position is of risk level m if this amount, invested in any of the currencies, pulls the risk of
the position within the set of acceptable risky position specified by the regulatory agency. Since A is
obviously a risk acceptance family, it defines a risk measure by means of Theorem 2.6. ♦

2 Robust Representation of Risk Orders
The goal of this section is to provide a dual representation of risk orders, which is the key to get a differen-
tiated interpretation of risk perception depending on the underlying setup. To this end, we however need
some topological structure. Hence, we assume that X is a locally convex topological vector space29 and
denote by X ∗ its topological dual space endowed with the weak topology σ(X ∗,X ). Unless explicitly
precised, we denote x∗, y∗, . . . the elements of the dual space X ∗.

We assume that the preorder Q is upper semicontinuous, that is, the cone K = {x ∈ X : x Q 0} is
σ (X ,X ∗)-closed. The bipolar theorem30 states that x Q y exactly when 〈x∗, x− y〉 ≥ 0 for all x∗ in the
polar cone

K◦ := {x∗ ∈ X ∗ : 〈x∗, x〉 ≥ 0 for all x ∈ K} , (2.1)

which is σ (X ∗,X )-closed. By K̃ we denote those elements π ∈ K which are strictly positive with respect
to K◦, that is

K̃ = {π ∈ K : 〈x∗, π〉 > 0 for all x∗ ∈ K◦ \ {0}} . (2.2)

28Note that the question of the interest rate uncertainty is similar, since the regulator requires acceptability then with respect to a
set of possible interest rates.

29The study of X as a convex subset of a topological vector space is postponed to Section 2.1.
30See for instance [2, Theorem 5.103].
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The preorder Q is called regular if there exists a strictly positive element, that is, K̃ 6= ∅. In this case, for
any π ∈ K̃ holds K◦ = R+K◦π , for the normalized the polar set

K◦π = {x∗ ∈ K◦ : 〈x∗, π〉 = 1} . (2.3)

Note that the trivial relation Q corresponds to the convex cone K = {0} which is not regular as K̃ = ∅.
To illustrate the nature of these new elements, we briefly expose to what they concretely correspond in

two of the settings introduced in Section 1.

• Random Variables: The vector space of P -almost surely bounded random variables X = L∞

admits the cone K = L∞+ for the preorder “greater than P -almost surely”. Depending on the
considered topology we alternatively have:

1. For the ‖·‖∞-norm, the dual space X ∗ = ba (P ) is the set of bounded finitely additive signed
measures on F absolutely continuous with respect to P . The polar cone is then the set of
finitely additive measures denoted byK◦ = ba+ (P ). The preorder is regular since 1 ∈ K̃, for
which the normalized polar set K◦1 = M1,f (P ) is the set of all finitely additive probability
measures Q absolutely continuous with respect to P .

2. For the σ
(
L∞,L1

)
-topology, the dual space is X ∗ = L1. In this case, K◦ = L1

+. Here again,
the preorder is regular and by means of the Radon-Nikodým theorem, K◦1 = M1 (P ) is the
set of all σ-additive probability measures inM1,f (P ).

• Lotteries: Let cac be the vector space of bounded signed measures with compact support spanned
by the lotteriesM1,c. On cac we consider the σ (cac, C)-topology, where C is the vector space of
continuous functions f : R→ R. The dual pairing is given by 〈f, µ〉 =

∫
f dµ. The first stochastic

order corresponds to the cone

K =

µ ∈ cac :

∫
f dµ ≥ 0 for all f ∈ K◦

 ,

where K◦ is the set of those f ∈ C which are nondecreasing. Notice that this order is not regular
since K̃ = ∅.

Definition 2.1. A risk order 4 is lower semicontinuous if L (x) = {y ∈ X : y 4 x} is closed for all
x ∈ X .

The fact that separable lower semicontinuous risk orders admit lower semicontinuous risk measures is a
consequence of the so called gap theorem of Debreu [24, 25].

Proposition 2.2. A risk order 4 is separable and lower semicontinuous if and only if there exists a
corresponding lower semicontinuous risk measure ρ. Furthermore, the class of lower semicontinuous
risk measures of a lower semicontinuous risk order is stable under lower semicontinuous increasing
transformation.

Proof Appendix C.11. An alternative proof for the first assertion can be found in [9].
Note that any lower semicontinuous separable risk order can be represented by a risk measure which is

not lower semicontinuous. Even though, the second assertion states that the class of lower semicontinuous
risk measures is stable under lower semicontinuous increasing transformation. It can therefore be seen as
a global characteristic in a topological sense.
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Remark 2.3. The risk acceptance family A of a lower semicontinuous risk measure ρ is closed, that is,
Am is closed for all m ∈ R. Conversely, the risk measure ρ corresponding to a closed risk acceptance
family A is lower semicontinuous. �

Aside the numerous technicalities, the core idea of the proof leading to the robust representation of
the subsequent Theorem 2.6 is insightful since the risk acceptance family plays a central role. To get
an intuition of the objects in play and how they get involved, we informally sketch the key steps of the
proof in the special case of random variables. To begin with, by way of relation (1.7), we express the risk
measure ρ in terms of its risk acceptance family

ρ (X) = inf {m ∈ R : ρ (X) ≤ m} = inf {m ∈ R : X ∈ Am} .

We now exploit the fact that each of these risk acceptance sets Am has the polar representation

X ∈ Am if and only if EQ [−X] ≤ αmin (Q,m) for all probability measures Q,

where αmin (Q,m) = supX∈Am EQ [−X] is the so called minimal penalty function31. Hence

ρ (X) = inf {m ∈ R : X ∈ Am} = inf {m ∈ R : EQ [−X] ≤ αmin (Q,m) for all Q} .

Without duality gap in interchanging the supremum over Q with the infimum over m, we finally get the
robust representation

ρ (X) = sup
Q

inf
m
{m ∈ R : EQ [−X] ≤ αmin (Q,m)}

= sup
Q
R (Q,EQ [−X]) ,

where R is the left inverse of the nondecreasing function m 7→ αmin (Q,m), that is

R (Q, s) = inf {m ∈ R : s ≤ αmin (Q,m)} .

Following this sketch of the proof, we define the minimal penalty function of a risk acceptance family
A by

αmin (x∗,m) := sup
x∈Am

〈x∗,−x〉, x∗ ∈ K◦ and m ∈ R. (2.4)

Notice that even if the risk acceptance family is right-continuous, the penalty functionm 7→ αmin (x∗,m)

is generally neither right nor left-continuous32.

Definition 2.4. A risk function is a mapping R : K◦ × R → [−∞,+∞], which is nondecreasing and
left-continuous in the second argument. The set of risk functions is denoted byR.

The left inverse of the minimal penalty function will be the corner stone of the robust representation and
is a specific risk function which belongs to the following class.

31This terminology was introduced in the theory of monetary risk measures, see [29].
32Indeed, consider Ω = [0, 1] with the Borel σ-algebra F = B[0,1] and the Lebesgue measure P = dx and define Am = ∅

for m < 0, Am = {X ∈ L∞ : X1[m,1] ≥ 0} for 0 ≤ m ≤ 1 and Am = L∞ for m > 1. Obviously, A is a
closed risk acceptance family, and for x∗ = P holds αmin (x∗,m) = −∞ for m < 0, αmin (x∗,m) = 0 for m = 0 and
αmin (x∗,m) = +∞ for m > 0, which is neither right nor left-continuous.
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Definition 2.5. ByRmax we denote the set of those risk functions R ∈ R for which

(i) R is jointly quasiconcave,

(ii) R (λx∗, s) = R (x∗, s/λ) for all x∗ ∈ K◦, s ∈ R and λ > 0,

(iii) R has a uniform asymptotic minimum, that is, lims→−∞R (x∗, s) = lims→−∞R (y∗, s) for all
x∗, y∗ ∈ K◦,

(iv) its right-continuous version, R+ (x∗, s) := infs′>sR (x∗, s′), is upper semicontinuous in the first
argument.

Risk functions in Rmax are referred to as maximal risk functions. In most examples, see Section 3, the
function m 7→ α (x∗,m) is continuous and increasing, in which case the maximal risk function is in fact
the true inverse of the minimal penalty function, that is, R (x∗, ·) = α−1

min (x∗, ·).
After this preliminary definitions and notations, we present our robust representation results.

Theorem 2.6 (Robust Representation of Risk Orders). Any lower semicontinuous risk measure ρ :

X → [−∞,+∞] corresponding to a lower semicontinuous risk order 4 has the robust representation

ρ (x) = sup
x∗∈K◦

R
(
x∗, 〈x∗,−x〉

)
, x ∈ X , (2.5)

for a unique R ∈ Rmax, which is the left inverse of the minimal penalty function αmin.
Conversely, for any R ∈ R, the function ρ defined by (2.5) is a lower semicontinuous risk measure.

Proof, Appendix C.6.
The terminology “robust” in robust representation has been introduced in the theory of monetary risk

measures. In the context of risk orders, the “loss” −x is tested under the evaluation x∗ by means of the
operation 〈x∗,−x〉. Since a risk perceiver is not sure which exact evaluation is adequate to compute the
expected loss, s/he takes a precautionary estimation by considering all possible evaluations weighted ac-
cording to their plausibility by a risk functionR (x∗, ·). This precautionary estimation, core characteristic
of risk perception, justifies henceforth the term “robust” for the representation (2.5).

In the case where the preorder Q is regular, we obtain a finer robust representation. Here, in line
with Definitions 2.4 and 2.5, the set of normalized risk functions Rπ with respect to π ∈ K̃ consists of
those mappings R : K◦π × R → [−∞,+∞], which are nondecreasing and left-continuous in the second
argument. Moreover, Rmax

π is the set of those R ∈ Rπ , for which R is jointly quasiconcave, R has a
uniform asymptotic minimum on K◦π and R+ is upper semicontinuous in the first argument.

Theorem 2.7 (Robust Representation in the Regular Case). Let Q be a regular preorder. Any lower
semicontinuous risk measure ρ : X → [−∞,+∞] corresponding to a lower semicontinuous risk order
4 has the robust representation

ρ (x) = sup
x∗∈K◦π

R (x∗, 〈x∗,−x〉) , x ∈ X , (2.6)

for a unique R ∈ Rmax
π , which is the left inverse of the minimal penalty function αmin.

Conversely, for any R ∈ Rπ , the function ρ defined by (2.6) is a lower semicontinuous risk measure.

Proof, Appendix C.7.
The one-to-one relation between risk measures ρ and their risk functions R ∈ Rmax is crucial for the

dual classification of risk orders and makes comparative statics meaningful. To this aim, Cerreia-Vioglio,
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Maccheroni, Marinacci, and Montrucchio [14] introduced the notion of a complete duality, in the sense
that there exists a one-to-one relation between functions and their respective dual functions within a
specified primal and dual class33. They give complete duality results for the class of monotone evenly34

quasiconvex functions and for different subclasses of it including the upper semicontinuous monotone
quasiconvex functions. In the spirit of those results, Theorem 2.7 states the complete duality result for
the class of lower semicontinuous quasiconvex functions, which is not treated in [15].

Remark 2.8. The technical assumption of lower semicontinuity is often a direct consequence of the mono-
tonicity, see [47, 8, 50, 20, 27, 17]. Furthermore, by means of Proposition 2.2, lower semicontinuous
risk orders can be represented by lower semicontinuous risk measures; a similar statement for evenly
quasiconvex risk orders is to our knowledge still open. Finally, for some topologies [11] the lower semi-
continuity of the risk order automatically ensures the separability, see Section 3.1 and Section 3.2. �

In contrast to [14], Theorem 2.6 holds for functions which are monotone with respect to any preorder
including the trivial one which corresponds toK = {0} and which are defined on locally convex topolog-
ical vector spaces. The representation part of our proofs are in line with Penot and Volle [49, Proposition
3.6 and Theorem 3.8]. However, in [49], the robust representation is stated in terms of elements in
X ∗ rather than K◦ or K◦π , and more important, uniqueness considerations and characterizations of the
maximal risk function are not treated. For further references on quasiconvex duality theory, we refer to
de Finetti [23], Greenberg and Pierskalla [35], Crouzeix [22] and the references therein.

The denomination “maximal” risk function is justified by the following result.

Proposition 2.9. Suppose that a lower semicontinuous risk measure ρ : X → [−∞,+∞] admits the
robust representations

ρ (x) = sup
x∗∈K◦

R (x∗, 〈x∗,−x〉) = sup
x∗∈K◦

R̃ (x∗, 〈x∗,−x〉) , x ∈ X , (2.7)

for some risk functions R, R̃ with R ∈ Rmax. Then, R is pointwise greater than R̃, that is

R (x∗, s) ≥ R̃ (x∗, s) , for all x∗ ∈ X ∗ and s ∈ R. (2.8)

Proof, Appendix C.8.

Remark 2.10. Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio [14, 15] state a complete dual-
ity result between upper semicontinuous risk measures and risk functions which are jointly upper semi-
continuous. The lower semicontinuous case is different and is stated in terms of an upper semicontinuity
condition for the right-continuous version R+ of the risk function R. Actually, the property (iv) in Defi-
nition 2.5 cannot be expressed in terms of a semicontinuity condition for the risk function R as illustrated
in Appendix C.9. Furthermore, in Appendix C.9 it is shown that the regularity assumption on the preorder
Q in Theorem 2.7 cannot be dropped. �

In the following proposition we sum up the impact on the robust representation of additional properties
of the risk measure as discussed in Section 1. Similar results have been established in [14] in the context
of M -spaces.

33For instance, the Fenchel-Moreau theorem states a complete duality between proper lower semicontinuous convex functions f
and their proper lower semicontinuous convex conjugates f∗.

34The level sets are evenly convex, that is, they are the intersection of a family of open half-spaces.
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Proposition 2.11. A lower semicontinuous risk measure ρ with corresponding R ∈ Rmax is convex,
positive homogeneous or scaling invariant if and only if s 7→ R (x∗, s) is respectively convex, positive
homogeneous or scaling invariant for all x∗ ∈ K◦.

If the preorder Q is π-regular, a lower semicontinuous risk measure ρ with corresponding R ∈ Rmax
π

is cash additive if and only if R (x∗, s+m) = R (x∗, s) + m for all x∗ ∈ K◦π and s,m ∈ R, in which
case R (x∗, s) = s − αmin (x∗, 0). It is cash subadditive if and only if R (x∗, s−m) ≥ R (x∗, s) −m
for all x∗ ∈ K◦π , s ∈ R and m > 0.

The proof, in Appendix C.10, relies on the properties of m 7→ αmin (x∗,m) inherited from the risk
acceptance family.

2.1 Robust Representation of Risk Orders on Convex Sets
In the Theorems 2.6 and 2.7, we assumed that the risk order is defined on a vector space. This is however
not the case for many important settings35. To address this problem, we continuously extend the risk order
to a vector space and then apply Theorem 2.6. Throughout this subsection we assume that X is a convex
subset of a locally convex topological vector space V and that the preorder Q corresponds to the closed
convex cone K ⊆ V . The main difficulty here beyond the continuous extension is to specify for which
set of maximal risk functions the uniqueness result in the robust representation is guaranteed. Indeed, the
following example illustrates the fact thatRmax is in general too big to state a uniqueness results for risk
orders on convex sets as in Theorem 2.6.

Example 2.12. Consider the risk measure ρ (x) = 0 on the convex set X = R+ in V = R with K =

K◦ = R+. For any c ∈ [0,+∞], the risk measure ρc(x) = 0 for x ≥ 0 and ρ (x) = c otherwise is an
extension of ρ on the real line. Direct inspection36 yields for all x∗ ∈ R+ and s ∈ R,

Rc (x∗, s) :=


0 if s ≤ 0

c if s > 0 and x∗ > 0

+∞ if s > 0 and x∗ = 0

.

Hence Rc ∈ Rmax for all c ∈ [0,+∞]. On the other hand, since ρ = ρc on R+ it follows

ρ (x) = sup
x∗≥0

Rc (x∗,−x∗x) , x ∈ R+,

for any c ∈ [0,+∞], showing that the uniqueness statement inRmax fails. ♦

Definition 2.13. A lower semicontinuous37 risk order 4 on X is continuously extensible if

L (x) +K ∩ X = L (x) for all x ∈ X . (2.9)

A risk order ρ : X → [−∞,+∞] is continuously extensible if its risk acceptance family A fulfills

Am +K ∩ X = Am for all m ∈ R. (2.10)

Remark 2.14. Actually, this rather technical assumption automatically holds for many convex sets. For
instance, if X is open or compact, or if K is a subset of X as in the case of consumptions patterns, then
35Lotteries or consumption patterns for instance.
36Computing first the minimal penalty function and then taking the left inverse.
37The considered topology on X is the relative topology induced by the topology on V .
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any lower semicontinuous risk order and any lower semicontinuous risk measure on X is continuously
extensible38. �

Yet, a lower semicontinuous risk measure corresponding to a continuously extensible lower semicon-
tinuous risk measure is not necessarily continuously extensible. However, an assertion in the spirit of
Proposition 2.2 holds.

Proposition 2.15. A lower semicontinuous risk order 4 is separable and continuously extensible if and
only if there exists a corresponding continuously extensible lower semicontinuous risk measure ρ. More-
over, the class of continuously extensible risk measures is stable under lower semicontinuous increasing
transformation.

Proof, Appendix C.11.
The set of risk functions for which the uniqueness statement holds involves a stability with respect to a

closure operation. The Rmax-closure of a function R : K◦ × R→ [−∞,+∞] denoted by clRmax (R) is
the pointwise infimum of those functions inRmax which dominate R, that is

clRmax (R) (x∗, s) = inf
{
R̃(x∗, s) : R̃ ∈ Rmax and R̃ ≥ R

}
.

In fact, this closure is itself an element ofRmax as stated in the following proposition.

Proposition 2.16. TheRmax-closure of a functionR : K◦×R→ [−∞,∞] is itself an element ofRmax.

Proof, Appendix C.12.
By use of this closure operation, we now define the set of maximal risk functions on X .

Definition 2.17. ByRmax
X we denote the set of those risk functions R ∈ Rmax such that39

R (x∗, s) = clRmax

(
sup
y∗∈V∗

R
(
x∗ − y∗, s− δX (y∗)

))
(2.11)

where δX denotes the support function of the convex set −X given by

δX (y∗) := sup
y∈X
〈y∗,−y〉, y∗ ∈ V∗. (2.12)

Remark 2.18. Depending on the considered set X the definition of Rmax
X sometimes simplifies. For

instance for lotteries we prove in Section 3.2 thatRmax
M1,c

= Rmax. �

We can now state our main representation result for risk orders on convex sets.

Theorem 2.19. Let ρ be a lower semicontinuous risk measure corresponding to a continuously extensible
lower semicontinous risk order 4 on X . Then, ρ has the robust representation

ρ (x) := sup
x∗∈K◦

R (x∗, 〈x∗,−x〉) , x ∈ X , (2.13)

for a unique R ∈ Rmax
X . Moreover, there exists a unique maximal lower semicontinuous risk measure ρ̂

on V , which restricted to X coincides with ρ.
38Indeed, for X open it follows L(x) +K ∩ X = (L(x) +K) ∩ X ∩ X = L(x) ∩ X = L(x). If X is compact, L(x) is also

compact and thus L(x) +K ∩ X = (L(x) + K) ∩ X = L(x). Finally, if K ⊆ X then L(x) + K ⊆ L(x) and in turn
L(x) +K ∩ X = L(x) ∩ X = L(x). The same argumentation also holds for a lower semicontinous acceptance familyA.

39By convention R (x∗, ·) ≡ −∞ for all x∗ 6∈ K◦ and R (·,−∞) ≡ −∞.
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Proof, Appendix C.13.

Remark 2.20. To compute the risk function R ∈ Rmax
X of a risk measure ρ on X , the strategy is to

pick any extension ρ̃ of ρ and compute its maximal risk function R̃ ∈ Rmax. Then, the risk function
R ∈ Rmax

X is given by

R (x∗, s) = clRmax

(
sup
y∗∈V∗

R̃
(
x∗ − y∗, s− δX (y∗)

))
.

For instance, coming back to the Example 2.12, the maximal lower semicontinuous risk measure which
extends ρ is clearly ρ+∞. Furthermore, δR+ (y∗) = 0 for y∗ ∈ R+ and +∞ otherwise. Hence, a direct
computation yields for any c ∈ [0,+∞],

sup
y∗∈R

Rc

(
x∗ − y∗, s− δR+ (y∗)

)
=

{
0 if s ≤ 0

+∞ otherwise
= R+∞ (x∗, s) .

Since R+∞ ∈ Rmax, it follows clRmax (R+∞) = R+∞ and therefore R = R+∞. �

3 Illustrative Settings
In the following subsections, we will illustrate how the robust representation in each particular setting
introduced in Section 1 provides the key perspective for a context depending interpretation of risk per-
ception.

3.1 Random Variables
In this subsection, we consider the vector space of random variables X = L∞ with the preorder “≥
than P -almost surely”, which corresponds to K = L∞+ . If we endow L∞ with the ‖·‖∞-topology, the
normalized polar set K◦1 = M1,f (P ) consists of all finitely additive probability measures. However,
probability measures which are not σ-additive are not desirable as they do not have a density and can at
most be constructed implicitly by use of the axiom of choice. In order to work with the more tractable set
of probability measures K◦1 = M1 (P ), we endow L∞ with the σ

(
L∞,L1

)
-topology. Since this weak

topology is coarser than the norm topology, we need an extra condition called Fatou property, which
ensures a risk order to be σ

(
L∞,L1

)
-lower semicontinous.

Definition 3.1 (Fatou Property). A risk order4 has the Fatou property if and only if for anyX,Y ∈ L∞

and any ‖·‖∞-bounded sequence (Xn) converging P -almost surely to X holds

Xn 4 Y for all n implies X 4 Y. (3.1)

By means of [11] and under the assumption we take throughout this subsection that the σ-algebra F

is separable40, the Fatou property implies that the risk order is automatically separable. The following
theorem specializes Theorem 2.7 in the present context.

Theorem 3.2. Any risk order4 on L∞ which has the Fatou property can be represented by a σ
(
L∞,L1

)
-

lower semicontinuous risk measure ρ : L∞ → [−∞,+∞], with the robust representation

ρ (X) = sup
Q∈M1(P )

R (Q,EQ [−X]) , X ∈ L∞, (3.2)

40A σ-algebra is separable if it can be generated by a countable collection of sets.
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for a unique risk function R ∈ Rmax
1 .

Proof, Appendix C.14.
The robust representation (3.2) shows that risk perception in the context of random variables can be in-

terpreted in terms of model risk. Indeed, in face of model uncertainty, a prudent approach is adopted where
different probability models for the estimation of the expected losses are taken into account, weighted ac-
cording to their respective plausibility by means of the risk function R.

For the robust representation of the optimized certainty equivalent in Example 1.19 we refer to [7].
This example includes the average value at risk and the entropic risk measure also from Example 1.19.
As for the robust representation of the shortfall risk measure in Example 1.10 we refer to [30, Theorem
4.106]. We next address the robust representation of the certainty equivalent of an expected loss, see
Example 1.5.

Example 3.3. Given a proper lower semicontinuous convex nondecreasing loss function41 l : R →
]−∞,+∞], the certainty equivalent of an expected loss is given by

ρ (X) = l−1 (E [l (−X)]) , X ∈ L∞.

In the following, we assume for simplicity that l is differentiable on its domain. By use of (B.4), it follows
that for any Q ∈M1 (P ) and m ∈ R

αmin (Q,m) = sup
{X∈L∞ | E[l(−X)]≤l+(m)}

EQ [−X] = sup
X∈L∞

E

[
−dQ
dP

X − 1

β

(
l (−X)− l+ (m)

)]
,

(3.3)
for some Lagrange multiplier β := β (Q,m) > 0. The first order condition yields

−dQ
dP

+
1

β
l′
(
−X̂

)
= 0.

The derivative l′ is nondecreasing. We denote by h its right inverse. Assume then that X̂ = −h (βdQ/dP )

fulfills the previous equation42. Then, under integrability and positivity conditions, β is determined
through the equation

E

[
l

(
h

(
β
dQ

dP

))]
= l+(m). (3.4)

Plugging the optimizer X̂ in (3.3) yields

αmin (Q,m) = EQ

[
h

(
β
dQ

dP

)]
, (3.5)

the left inverse of which finally delivers R. We subsequently list closed form solutions for specific loss
functions.

• Quadratic Function: Let l (s) = s2/2 + s for s ≥ −1 and −1/2 otherwise for which E [l (−X)]

corresponds to a monotone version of the mean-variance risk measure Markowitz [45]. For m ≥
−1, since 1 ∈ Am holds αmin (Q,m) = −EQ [1] = −1. Otherwise, the first order condition

41In Example 1.5, l was increasing. Here, since l is nondecreasing, its left inverse l−1 is nondecreasing and lower semicontinuous,
see Appendix B.

42This is often the case, for instance if l′ is increasing.
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yields X̂ = βdQ/dP − 1 and therefore

αmin (Q,m) = (1 +m)E
[
(dQ/dP )

2
]1/2
− 1.

Hence,

R (Q, s) =
s+ 1

‖dQ/dP‖L2

− 1, Q ∈M1 (P ) ,

if s > −1 and −∞ otherwise.

• Exponential Function: For l (s) = es − 1, corresponding to the entropic risk measure, it follows

R (Q, s) = s− E
[
dQ

dP
log

(
dQ

dP

)]
, Q ∈M1 (P ) .

• Logarithm Function: If l (s) = − ln (−s) for s < 0 and l = +∞ elsewhere, then

R (Q, s) = s exp

(
−E

[
ln

(
dQ

dP

)])
, Q ∈M1 (P ) .

• Power Function: If l (s) = −(−s)1−γ/ (1− γ) for s ≤ 0 and l = +∞ elsewhere for 0 < γ < 1,
we obtain

R (Q, s) = sE
[
(dQ/dP )

γ−1
γ

] γ
1−γ

, Q ∈M1 (P ) . ♦

As for the economic index of riskiness, we use the same technique.

Example 3.4. For the definition and notations, we refer to Example 1.10. The risk acceptance family is
given for m > 0 by Am = {X ∈ L∞ : E [l (−X/m)] ≤ c0}, and for m ≤ 0 by Am = L∞+ . Applying
the same technique as for the certainty equivalent yields

αmin (Q,m) = sup
X∈L∞

E

[
−dQ
dP

X − 1

β

(
l

(
−X
m

)
− c0

)]
= EQ

[
mh

(
βm

dQ

dP

)]
, Q ∈M1 (P ) ,

where h is a pseudo inverse of l′ and the Lagrange multiplier is given by E [l (h (βmdQ/dP ))] = c0. In
the case of Aumann and Serrano [5] where l (s) = es and c0 > 1, holds

R (Q, s) =
s

EQ [ln (c0dQ/dP )]
, Q ∈M1 (P ) .

In the case of Foster and Hart [32] where l (s) = − ln (1− s) and c0 > 0 holds

R (Q, s) =
s

1− exp
(
E
[
ln
(
dQ
dP

)]
− c0

) , Q ∈M1 (P )

and due to Proposition 2.11, both are positive homogeneous. ♦

3.2 Lotteries
As for the risk perception in the setting of lotteries with compact support X =M1,c we consider the in-
duced σ (cac, C)-topology, where cac denotes the vector space of signed measures with compact support.
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Recall that the first stochastic order is determined by the polar cone

K◦ = {f ∈ C : f is nondecreasing} .

Even thoughM1,c is not a compact subset of cac, we obtain a robust representation from Theorem 2.19
with the remarkable facts that the separability of the risk order is a consequence of the lower semiconti-
nuity and thatRmax

M1,c
= Rmax.

Theorem 3.5. Any lower semicontinuous risk order 4 on M1,c which is monotone with respect to the
first stochastic order can be represented by a lower semicontinuous risk measure ρ :M1,c → [−∞,+∞],
which has the robust representation

ρ (µ) = sup
l∈K◦

R

(
l,

∫
l (−x) µ (dx)

)
, µ ∈M1,c, (3.6)

for a unique R ∈ Rmax = Rmax
M1,c

.

Proof, Appendix C.15.
A related representation on the level of simple lotteries has been studied independently by Cerreia-

Vioglio [13]. As a consequence of the monotonicity, we provide in Delbaen, Drapeau, and Kupper [27]
and Cheridito, Drapeau, and Kupper [17] automatic continuity results for affine and general risk orders
respectively, allowing to drop or weaken the lower semicontinuity assumption in Theorem 3.5.

In (3.6) the loss of a lottery µ is tested with respect to a nondecreasing continuous loss function l.
However, the risk induced by the uncertainty about the reliability of this loss function yields a precautious
approach by means of the risk functionR. Hence, risk perception on the level of lotteries might be viewed
as distributional risk.

Note that the certainty equivalent of the expected loss of a lottery introduced in Example 1.5 is already
in its robust representation form43.

Example 3.6. Following the prescriptions of Basel II, “Value at Risk” is the central instrument used by
banking institutions to assess their exposure to risk in a monetary way. Regardless of repeated critics,
starting with Artzner, Delbaen, Eber, and Heath [4], that it might penalize diversification since it is not
quasiconvex, this measure instrument remains astonishingly resilient in the practice. There are several
arguments for the defense of the “Value at Risk”44, but the most recurrent one is that many persons think
that it gives some indications about risk. It is this strong but erroneous belief we here want to study and
try to explain.

The “Value at Risk” is defined for q ∈ ]0, 1[ by

V@Rq (X) = sup {s ∈ R : P [X + s ≤ 0] > q} , X ∈ L∞. (3.7)

This functional is cash additive and monotone, but not quasiconvex. From its definition, V@Rq depends
only on the distribution of X , and can therefore be viewed45 onM1,c for I = R, that is

V@Rq (µ) := sup {s ∈ R : µ (]−∞,−s]) > q} = −F−1
µ (q) , µ ∈M1,c. (3.8)

where F−1
µ is the right inverse of the nondecreasing function s 7→ Fµ (s) := µ (]−∞, s]). In fact,

43Indeed for ρ (µ) = l−1
0

(∫
l0 (−x) µ (dx)

)
, is R (l, t) = l−1

0 (t), if l = l0, and infµ∈M1,c
ρ (µ) otherwise.

44For instance, restricted to Gaussian risky assets, the “Value at Risk” is a convex risk measure.
45This has been done in [54] for the case of monetary risk measures considered on the level of probability distributions.
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V@Rq (X) = V@Rq (µ) for µ = PX ∈ M1,c. On the level of probability distributions, V@Rq is
monotone with respect to the first stochastic order. Moreover, for any risk level m ∈ R, it follows from
relation (B.4) that

Am = {µ ∈M1,c : V@Rq (µ) ≤ m} =
{
µ ∈M1,c : F−1

µ (q) ≥ −m
}

=
{
µ ∈M1,c : q ≥ F−µ (−m)

}
= {µ ∈M1,c : q ≥ µ (]−∞,−m[)} , (3.9)

which is a convex set. Therefore, V@Rq is a risk measure onM1,c.
In Appendix C.16, we further show that V@Rq is lower semicontinuous and provide the following

robust representation

V@Rq (µ) = sup
l∈K◦

l−1

(∫
l (−x) µ (dx)− ql (+∞)

1− q

)
. (3.10)

♦

From this viewpoint, the strong belief of the finance industry in the “Value at Risk” as a risk measure,
is truly founded since it is indeed a risk measure on the level of probability distributions. Yet, it is a
fundamental error to consider it as a reliable instrument to assess the risk of financial positions which
are definitively random variables for which a scenario-wise diversification is needed. So, even if this
instrument is in principle a sound one, it is fundamentally misused in the wrong environment.

3.3 Consumption Patterns
Consumption patterns of a commodity reveal another form of uncertainty, namely the one driven by
the perception of different future points in time at which this consumption occurs. The risk perception
induced by this intertemporal dimension will be the subject of this subsection.

Recall that the commodity space X = CS is the set of nondecreasing right-continuous functions
c : [0, 1] → R. In a stimulating discussion, Hindy, Huang, and Kreps [37] gave several reasons why
the Orlicz topology induced by the Luxemburg norm ‖·‖η on the Orlicz heart46 V = Vη ⊃ CS is eco-
nomically and mathematically reasonable to address coherently both continuity and jumps issues for
preferences over consumption patterns. As for the preorder we consider K as the set of nondecreasing
elements47 in V with polar cone

K◦ =

f ∈ V∗η :

1∫
0

fscsds+ f1c1 ≥ 0 for all c ∈ K

 .

By use of integration by parts it follows that for any c ∈ CS and f ∈ V∗η the linear pairing is given by

〈f, c〉 =

1∫
0

fscsds+ f1c1 =

1∫
0−

βsdcs, (3.11)

where βt = βt(f) =
∫ 1

t
fsds + f1. We can therefore identify f ∈ V∗η with the respective β = β(f),

46The space CS is a subspace of the Orlicz heart Vη consisting of all measurable functions c : [0, 1] → R such that∫ 1
0 η (m |ct|) dt + η (m |c1|) < +∞ for all m > 0, where η : [0,+∞[ → [0,+∞[ is a convex function with
η (0) = 0 and limt→+∞ η (t) /t = +∞. Equipped with the topology induced by the Luxemburg norm ‖c‖η = inf{m >

0 :
∫ 1
0 η (|ct| /m) dt + η (|c1| /m) ≤ 1}, the dual space V∗η is the Orlicz space consisting of all measurable functions

f : [0, 1]→ R with finite Luxemburg norm ‖·‖ν , where ν is the convex conjugate of η.
47In which case K ∩ CS = CS, and thus corresponds to the preorder introduced in Section 1.
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for which the linear pairing modifies to
∫ 1

0− βsdcs. Since
∫ 1

0− βsdcs ≥ 0 for all c ∈ CS is equivalent to
βs ≥ 0, the polar cone K◦ can then be identified with

D =
{
β = β(f) : f ∈ V∗η , β ≥ 0

}
. (3.12)

Theorem 3.7. Any lower semicontinuous risk measure ρ of a lower semicontinuous risk order 4 on CS
monotone with respect to K = CS has the robust representation

ρ (c) = sup
β∈D

R

β,− 1∫
0−

βtdct

 , c ∈ CS, (3.13)

for a unique maximal risk function R ∈ Rmax
CS .

Proof, Appendix C.17.
Diversification on the level of consumption patterns typically avoids concentration effects of consump-

tion at particular times. The interpretation excerpted by the robust representation is that risk orders in
this context address a discounting estimation. The value

∫ 1

0− βsdcs represents the discounted value of
the consumption pattern c for the discounting factor β which gives different weights to different points
in time. The higher this discounted value the less risky the consumption pattern. The uncertainty arising
from the choice of an adequate discounting factor is then addressed in a precautionary way by means
of the risk function R and justifies here an interpretation of risk perception as a discounting risk. We
illustrate this intertemporal perspective in risk perception with a class of risk measure inspired by [37]

ρ (c) =

1∫
0

l

t,− t+k2(t)∫
t−k1(t)

θ (t, s) dcs

 dt, c ∈ CS, (3.14)

for some parameter function θ satisfying θ (t, s) = 0 whenever s 6∈ [0, 1] and which is jointly continuous
on R × [0, 1]. The functions k1 and k2 are continuous and l : R2 → R is a jointly measurable function
which is continuous in the first argument and lower semicontinuous nondecreasing and convex in the
second argument. The terminology intertemporal risk measure means that risk estimation of a commodity
pattern at time t is not the “instant” consumption dct but a weighted average in the time around t.

Proposition 3.8. The function ρ given by (3.14) is a lower semicontinuous risk measure which is mono-
tone with respect to K = CS .

For a Proof, see Appendix C.18.

Example 3.9. In the following we address the robust representation for the risk measure

ρ (c) =

1∫
0

l

− t∫
0−

e−γ(t−s)dcs

 dt, (3.15)

that is, θ (t, s) = e−γ(t−s) and l : R → ]−∞,+∞] is a lower semicontinuous convex function which is
increasing and continuously differentiable on ]−∞, 0[. After computations involving a relaxation tech-
nique to the whole vector space Vη given in the Appendix C.19, we obtain the following risk functions

• l(x) = ex yields R̃ (β, s) = exp

(
s+ln(

∫ 1
0

∆βtdt)
∫ 1
0

∆βtdt−
∫ 1
0

ln(∆βt)∆βtdt∫ 1
0

∆βtdt

)
and
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• l (x) = − ln (−x) yields R̃ (β, s) = − ln (−s) +
∫ 1

0
ln (∆βt) dt.

where β ∈ D with ∆βt ≥ 0 and β1 = 0, and otherwise holds R̃ = −∞. Even if R̃ represents also ρ, the
maximal risk function R corresponding to ρ in the sense of Theorem 2.19 is given by

R (β, s) := clRmax sup
β̄∈D

R̃
(
β − β̄, s

)
, (3.16)

since δCS
(
β̄
)

= 0 if β̄ ∈ D and +∞ otherwise. ♦

3.4 Stochastic Kernels
Due to their intrinsic mixed nature between random variables and lotteries, stochastic kernels illustrate the
interplay of risk perception between model risk and distributional risk. They typically corresponds to the
setting of Anscombe and Aumann [3] used in [34, 39, 43, 16, 31]. Recall that given a probability space48

(Ω,F , P ), the set of stochastic kernels denoted by SK is the set of measurable functions µ̃ : Ω→M1,c

for which there exists49 m > 0 such that µ̃ (·, [−m,m]) = 1 P -almost surely. As for the monotonicity,
µ̃ Q ν̃ if µ̃ (ω) dominates ν̃ (ω) in the second stochastic order for P -almost all ω ∈ Ω. The set of lotteries
with compact supportM1,c can be identified with the set of P -almost surely constant elements of SK.
Further, the P -almost surely bounded random variables are canonically embedded into SK by means of
the relation X 7→ µ̃ := δX where δX is defined as the stochastic kernel equal to the Dirac measure at
the point X (ω), that is, µ̃ (ω) = δX(ω) for almost all ω ∈ Ω. We henceforth say that a risk order 4 on
SK satisfies the Fatou property if for any ‖·‖∞-bounded sequence Xn of random variables converging
P -almost surely to a bounded random variable X and any bounded random variable Y holds

δXn 4 δY for all n implies δX 4 δY .

The adequate condition which separates a risk order 4 on SK in a model risk and a distributional risk
component is given by

µ̃ (ω) 4 ν̃ (ω) for P -almost all ω ∈ Ω implies µ̃ 4 ν̃. (3.17)

Theorem 3.10. Let 4 be risk order on SK such that

(i) 4 fulfills the Fatou property,

(ii) δs ≺ δt for any two reals s, t with s > t,

(iii) 4 restricted toM1,c is σ (M1,c, C)-lower semicontinuous and sensitive, that is

δc ≺ µ for some c ∈ R implies δc−ε 4 µ for some ε > 0, (3.18)

(iv) 4 satisfies condition (3.17).

Then, 4 can be represented by a risk measure ρ which factorizes into a model risk component and a
distributional risk component, that is

ρ (µ̃) = Φ

(
ω 7→ −g

(
µ̃ (ω)

))
, µ̃ ∈ SK, (3.19)

48In line with Subsection 3.1 we assume that the σ-algebra F is separable.
49The constant m > 0 depends on the choice of µ̃.
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where Φ : L∞ → R is a σ
(
L∞,L1

)
-lower semicontinuous risk measure and g : M1,c → R is a

σ (M1,c, C)-lower semicontinuous risk measure such that Φ(c) = g (δc) = −c for all c ∈ R.
Conversely, any risk order corresponding to a risk measure of the form (3.19) fulfills the conditions (i)

to (iv).

Proof, see Appendix C.20.
In contrast to the representations provided in [34, 39, 43, 16] the risk order in Theorem 3.10 restricted

to the set of lotteriesM1,c is not necessarily affine.

Remark 3.11. By means of Theorem 3.2 and Theorem 3.5, any risk measure of the form (3.19) has the
robust representation50

ρ (µ̃) = sup
Q∈M1(P ), l∈K1,◦

R

Q,EQ
r
l,∫ l (−s) µ̃ (·, ds)

 , µ̃ ∈ SK, (3.20)

where R and r are the maximal risk functions of Φ and g, respectively. �

A Notations and Basic Concepts
Throughout, the extended real line [−∞,+∞] := R ∪ {−∞,+∞} is considered with the canonical order and the
convention +∞+ (−∞) = +∞. The extended real line endowed with the metric d(x, y) := arctan(|x− y|) is a
compact Polish space51. A function f : X → [−∞,+∞], where X ⊆ V is a convex subset of a vector space V , is

• convex if f (λx+ (1− λ) y) ≤ λf (x) + (1− λ) f (y) for all x, y ∈ X and λ ∈ ]0, 1[, concave if −f is
convex, and affine if f is concave and convex,

• quasiconvex if f (λx+ (1− λ) y) ≤ max{f (x) , f (y)} for all x, y ∈ X and λ ∈ ]0, 1[, quasiconcave if
−f is quasiconvex, and quasiaffine if f is quasiconvex and quasiconcave.

A convex function f : X → [−∞,+∞] is proper if f > −∞ and f (x) ∈ R for some x ∈ X . A concave function
f : X → R is proper if −f is proper.

For a nondecreasing function f : [−∞,+∞]→ [−∞,+∞], we denote by f− and f+ the respective unique left-
and right-continuous versions of f , that is,

f− (s) = sup
t<s

f (t) and f+ (s) = inf
t>s

f (t) , s ∈ R, (A.1)

which satisfy f− ≤ f ≤ f+ with convention that f− (−∞) = −∞ and f+ (+∞) = +∞. Note that f− and f+

only differ on a countable subset of R.
If X is a topological space, a function f : X → [−∞,+∞] is called lower semicontinuous if {x ∈ X :

f (x) ≤ α} is closed for all α ∈ R and upper semicontinuous if−f is lower semicontinuous. The Fenchel-Legendre
conjugate f∗ of a function f is defined as

f∗ (x∗) := sup
x∈X
{〈x∗, x〉 − f (x)}, x∗ ∈ X ∗, (A.2)

whereby X ∗ is the topological dual of X and with the convention that sup ∅ = inf R = −∞ and supR = inf ∅ =

∞.
The infimal convolution of convex functions f1, f2 : X → [−∞,+∞] is defined as

f1�f2(x) := inf
x1+x2=x

{f1 (x1) + f2 (x2)} , x ∈ X .

50Since the risk measure g is monotone with respect to the second stochastic order, it is also monotone with respect to the first
stochastic order.

51Recall that a Polish space is a separable complete metrisable space.
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By first part of Theorem 16.4 in [Rockafellar], which carries over to the present context, holds

cl (f1�f2) = (f∗1 + f∗2 )
∗
. (A.3)

B Pseudo Inverse
We here present the notion of the pseudo, left and right inverse of a nondecreasing function.

Definition B.1. A function g : [−∞,+∞] → [−∞,+∞] is a pseudo inverse of a nondecreasing function f :

[−∞,∞]→ [−∞,+∞] if
f− (g (t)) ≤ t ≤ f+ (g (t)) , t ∈ [−∞,+∞] . (B.1)

The left inverse f (−1,l) and the right inverse f (−1,r) are defined as

f (−1,l) (t) := sup {s ∈ R : f (s) < t} = inf{s ∈ R : f (s) ≥ t}, t ∈ [−∞,+∞] , (B.2)

f (−1,r) (t) := sup {s ∈ R : f (s) ≤ t} = inf{s ∈ R : f (s) > t}, t ∈ [−∞,+∞] . (B.3)

The definition of the pseudo inverse carries over to nondecreasing functions f defined on some interval I ⊆
[−∞,+∞], by considering the extension also denoted by f given by f (x) = supy∈I f (y) for x > I and
f (x) = infy∈I f (y) for x < I . The following proposition summarises known results on pseudo inverses, see
also Penot and Volle [48], Föllmer and Schied [30].

Proposition B.2. Given a nondecreasing function f : [−∞,+∞] → [−∞,+∞], any pseudo inverse g of f is
nondecreasing, f (−1,l) = g− ≤ g ≤ g+ = f (−1,r) and all pseudo inverses of f differ at most on a countable subset
of [−∞,+∞]. Furthermore, f is itself a pseudo inverse of any of its pseudo inverses.

If f is moreover left-continuous, then g(−1,l) = f for any pseudo inverse g of f and

f (s) ≤ t if and only if s ≤ f (−1,r) (t) . (B.4)

Symmetrically, if f is right-continuous, then g(−1,r) = f for any pseudo inverse g of f and

f (s) ≥ t if and only if s ≥ f (−1,l) (t) . (B.5)

Finally, if f is right-continuous, then f is concave if and only if f (−1,l) is convex.

Proof. Consider a nondecreasing function f : [−∞,+∞]→ [−∞,+∞] and a pseudo inverse g of f . By definition,
f (−1,l) ≤ g− ≤ g ≤ g+ ≤ f (−1,r). Fix now a decreasing sequence tn ↘ t ∈ [−∞,+∞[. Then

{s ∈ R : f (s) > t} =
⋃
n∈N

{s ∈ R : f (s) > tn} ,

and therefore f (−1.r) (tn) ↘ f (−1,r) (t) for any t < +∞. Hence, since f (−1,r) (+∞) = +∞ by definition,
f (−1,r) is right-continuous. The fact that g+ = f (−1,r) is immediate as they only differ on the countable set of their
respective discontinuities and both are right-continuous. A similar argumentation yields f (−1,l) is left-continuous
and f (−1,l) = g−.

For any pseudo inverse g of f holds g (t) ≥ s whenever t > f (s) and therefore g+ (f (s)) ≥ s. Conversely,
g (t) ≤ s whenever t < f (s) and thus g− (f (s)) ≤ s, that is, f is a pseudo inverse of g. In particular, if f is left
continuous, respectively right continuous, then g(−1,l) = f , respectively g(−1,r) = f .

Further, the definition of f (−1,l) and f (−1,r) imply the implications “⇒” of relations (B.4) and (B.5). The reverse
implications “⇐” follow from (f (−1,r))(−1,l) = f in case that f is left-continuous and (f (−1,l))(−1,r) = f if f is
right-continuous.

Finally, if f is right-continuous, from (B.5) follows that the hypograph of f and the epigraph of f (−1,l) are related
to each other by means of the relation: (s, t) ∈ hypo (f) if and only if (t, s) ∈ epi

(
f (−1,l)

)
. Hence, the last

assertion follows. �
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C Technical Proofs
C.1 Proof of Theorem 1.7: It is straightforward to check that 4 is a risk order if and only if ρ4 is a risk measure,
that 4ρ4=4, and that ρ and ρ4ρ coincide up to an increasing transformation. It remains to show the one-to-one
relation between risk measures and risk acceptance families.

Step 1. Let ρ be a risk measure with corresponding level sets

Amρ := {x ∈ X : ρ (x) ≤ m} , m ∈ R.

Then, Amρ ⊆ Anρ for any m ≤ n which together with the monotonicity of ρ implies the monotonicity of Aρ. Since
level sets of quasiconvex functions are convex it follows that Aρ is convex. Obviously, Amρ ⊆

⋂
n>mA

n
ρ for all

m ∈ R, and conversely, if x ∈
⋂
n>mA

n
ρ , then ρ (x) ≤ n for all n > m implying ρ (x) ≤ m and therefore

x ∈ Amρ , showing the right-continuity. And so, Aρ is a risk acceptance family.
Step 2. Let A = (Am)m∈R be a risk acceptance family and let ρA be the function defined as

ρA (x) := inf {m ∈ R : x ∈ Am} , x ∈ X .

As for the monotonicity, consider x Q y and fix52 m ∈ R for which y ∈ Am. The monotonicity of A yields
x ∈ Am. Hence, m ≥ ρA (x) and therefore ρA (y) ≥ ρA (x). As for the quasiconvexity, let λ ∈ ]0, 1[, x, y ∈ X
with ρA (x) ≥ ρA (y), and fix53 m ∈ R for which x ∈ Am. The monotonicity implies that y ∈ Am and by the
convexity of Am it follows λx+ (1− λ) y ∈ Am. This implies that ρA (λx+ (1− λ) y) ≤ m and therefore

ρA (λx+ (1− λ) y) ≤ ρA (x) = max{ρA (x) , ρA (y)}.

Hence, ρA is a risk measure.
Step3. Let ρ be a risk measure. In view of the first and second step, ρAρ is also a risk measure. If x ∈ X is

such that ρ (x) = +∞, then it is unacceptable at any level of risk for Aρ, and therefore ρAρ (x) = +∞. The same
argumentation holds for those x ∈ X satisfying ρ (x) = −∞. If ρ (x) ∈ R, then x ∈ Aρ(x)ρ , hence ρAρ (x) ≤ ρ (x).
On the other hand, x 6∈ Anρ for all n < ρ (x), henceforth ρAρ (x) ≥ ρ (x) and so ρ = ρAρ .

Let A be a risk acceptance family. Due to the first and second step, AρA is also a risk acceptance family. If
x ∈ Am for some m ∈ R, it follows ρA (x) ≤ m yielding x ∈ AmρA . Conversely, x ∈ AmρA implies ρA (x) ≤ m,
which in view of (1.7) yields x ∈ An for all n > m. The right-continuity of A implies x ∈

⋂
n>mA

n = Am, and
so A = AρA .

C.2 Proof of Proposition 1.13: (i): Suppose that ρ is convex. Take λ ∈ ]0, 1[ and some reals m,m′. Any element

of λAm + (1− λ)Am
′

can be written as λx+ (1− λ) y for x ∈ Am and y ∈ Am
′
. The convexity implies

ρ (λx+ (1− λ) y) ≤ λρ (x) + (1− λ) ρ (y) ≤ λm+ (1− λ)m′,

showing that, λx+ (1− λ) y ∈ Aλm+(1−λ)m′ . Conversely, by Theorem 1.7, for m,m′ ∈ R such that x ∈ Am and
y ∈ Am

′
, it follows

ρ (λx+ (1− λ) y) = inf{n ∈ R : λx+ (1− λ) y ∈ An}

= inf
n,n′∈R

{λn+ (1− λ)n′ : λx+ (1− λ) y ∈ Aλn+(1−λ)n′}

≤ inf
n,n′∈R

{λn+ (1− λ)n′ : λx+ (1− λ) y ∈ λAn + (1− λ)An
′
} ≤ λm+ (1− λ)m′,

showing that ρ (λx+ (1− λ) y) ≤ λρ (x) + (1− λ) ρ (y). The cases ρ (x) = +∞ or ρ (y) = +∞ are obvious.
(ii): Suppose that ρ is positive homogeneous. Fix λ > 0 and some m ∈ R. Then, x ∈ Aλm if and only if

ρ (x) ≤ λm if and only if ρ (x/λ) ≤ m if and only if x ∈ λAm, that is, λAm = Aλm. Conversely, Theorem 1.7

52The case where there is no such m is trivial as ρA (y) = +∞.
53Here again, the case where there is no such m is obvious.
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yields

ρ (λx) = inf {m ∈ R : λx ∈ Am} = inf
{
m ∈ R : x ∈ Am/λ

}
= λ inf

{
m′ ∈ R : x ∈ Am

′}
= λρ (x) .

For the related risk order, since L (x) = Aρ(x), it follows

λL (x) = λAρ(x) = Aλρ(x) = Aρ(λx) = L (λx) .

(iii): It is straightforward that any risk measure corresponding to a risk order satisfying x ∼ λx for any λ > 0 is
scaling invariant. As for the following assertions, the proof is analogous to the proof of (ii).

C.3 Proof of Proposition 1.17: The cash additivity of a risk measure ρ corresponding to 4 obviously implies the
properties (i) and (ii).

Conversely, conditions (i) and (ii) implies that the mapping

ρ(x) :=


−∞ if x 4 y for any y ∈ X
−m if y ≺ x ≺ z for some y, z ∈ X and x ∼ mπ
+∞ if y 4 x for any y ∈ X

defines a cash additive risk measure corresponding to 4.

C.4 Proof of Proposition 1.18: Let ρ be a cash additive risk measure and fix some m ∈ R. The respective risk
acceptance family A satisfies

Am = {x ∈ X : ρ (x) ≤ m} = {x ∈ X : ρ (x+mπ) ≤ 0} = A0 −mπ,

and therefore fulfills the condition (1.12).
Conversely, let A be risk acceptance family satisfying relation (1.12). The cash additivity for the related risk

measure ρ follows from Theorem 1.7 since

ρ (x+mπ) = inf
{
m′ ∈ R : x ∈ Am

′}
= inf

{
m′ ∈ R : x+

(
m+m′

)
π ∈ A0} = ρ(x)−m

for any x ∈ X and m ∈ R.
As for the convexity, let ρ be a cash additive risk measure. Proposition 1.18 implies that its risk acceptance family

A fulfills the relation (1.12). Hence, for any m,m′ ∈ R and λ ∈]0, 1[ follows

λAm + (1− λ)Am
′

= λA0 − λmπ + (1− λ)A0 − (1− λ)m′π

= A0 −
(
λm+ (1− λ)m′

)
π = Aλm+(1−λ)m′ .

And so, by Proposition 1.13, ρ is convex.

C.5 Proof of Proposition 1.21: Let ρ be a cash subadditive risk measure with corresponding risk acceptance family
A. For any m > 0, n ∈ R, and x + mπ ∈ An follows n ≥ ρ (x+mπ) ≥ ρ(x) −m, showing that x ∈ Am+n.
Hence, An −mπ ⊆ Am+n.

Conversely, consider some risk acceptance family A fulfilling the relation (1.17) and with corresponding risk
measure ρ. Theorem 1.7 yields for any m > 0 that

ρ (x+mπ) = inf {n ∈ R : x+mπ ∈ An} ≥ inf
{
n ∈ R : x ∈ An+m

}
= ρ (x)−m,

showing that ρ is a cash subadditive risk measure.

C.6 Proof of Theorem 2.6: Throughout this subsection we assume the setup of Section 2.
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Definition C.1. By Pmin, we denote the set of minimal penalty functions, consisting of those mappings α : K◦ ×
R→ [−∞,+∞], which are nondecreasing and left-continuous in the second argument and such that:

(a) α is convex in the first argument,

(b) α is positive homogeneous in the first argument,

(c) if there exists x∗ ∈ K◦ such that α (x∗,m) = −∞, then α (·,m) ≡ −∞,

(d) α is lower semicontinuous in the first argument.

We need two lemmata the first of which states a one-to-one relation between Pmin andRmax.

Lemma C.2. The left inverse of any function α ∈ Pmin is inRmax, that is

α(−1,l)(x∗, s) := sup{m ∈ R : α(x∗,m) < s} ∈ Rmax. (C.1)

The left inverse of any function R ∈ Rmax is in Pmin, that is

R(−1,l)(x∗,m) := sup{s ∈ R : R(x∗, s) < m} ∈ Pmin. (C.2)

Moreover, (α(−1,l))(−1,l) = α, as well as (R(−1,l))(−1,l) = R for any α ∈ Pmin and R ∈ Rmax.

Proof. Note that both minimal penalty functions and maximal risk functions map K◦ × R to [−∞,+∞], and are
nondecreasing left-continuous in the second argument. In the following, α is such a mapping from K◦ × R to
[−∞,+∞]. By Proposition B.2, its left inverse denoted by R is again a left-continuous nondecreasing function and
in that case holds α = R(−1,l) = (α(−1,l))(−1,l), R = α(−1,l) = (R(−1,l))(−1,l) and R+ = α(−1,r). Relation
(B.5) in Proposition B.2 further implies that

R+ (x∗, s) ≥ m if and only if s ≥ α (x∗,m) , (C.3)

for all m, s ∈ R, and x∗ ∈ K◦.
We now show that α = R(−1,l) is in Pmin if and only if R = α(−1,l) is inRmax.

• Equivalence between condition (a) for Pmin and condition (i) forRmax. Firstly, sinceR is the left-continuous
version of R+ which itself is the right-continuous version of R holds by definition{

(x∗, s) ∈ K◦ × R : R+ (x∗, s) ≥ m
}

=
⋂
δ>0

{(x∗, s) ∈ K◦ × R : R (x∗, s+ δ) ≥ m} ,

{(x∗, s) ∈ K◦ × R : R (x∗, s) ≥ m} =
⋂
ε>0

⋃
δ>0

{
(x∗, s) ∈ K◦ × R : R+ (x∗, s− δ) > m− ε

}
,

showing the equivalence between the joint quasiconcavity ofR and the joint quasiconcavity ofR+. Secondly,
relation (C.3) yields{

(x∗, s) ∈ K◦ × R : R+ (x∗, s) ≥ m
}

= {(x∗, s) ∈ K◦ × R : s ≥ α (x∗,m)} = epi (α (·,m)) ,

for any m ∈ R. Finally, a function is convex if and only its epigraph is convex.

• Equivalence between condition (b) for Pmin and condition (ii) forRmax. If α is positive homogeneous in the
first argument, then for any λ > 0 holds

R(λx∗, s) = sup {m ∈ R : α(λx∗,m) < s} = sup {m ∈ R : α(x∗,m) < s/λ} = R(x∗, s/λ).

Conversely, under the assumption that R(λx∗, s) = R(x∗, s/λ) for all λ > 0, it follows

α(λx∗,m) = sup {s ∈ R : R(λx∗, s) < m} = λ sup {s/λ ∈ R : R(x∗, s/λ) < m} = λα(x∗,m).
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• Equivalence between condition (c) for Pmin and condition (iii) forRmax. Define

C := {(x∗,m) ∈ K◦ × R : α (x∗,m) = −∞} ,

D :=

{
(x∗,m) ∈ K◦ × R : lim

s→−∞
R (x∗, s) ≥ m

}
.

It is clear that if α ∈ Pmin, condition (c) for Pmin is equivalent toC = K◦×J for the interval J =]−∞, c0],
where c0 ∈ [−∞,+∞]. On the other hand, condition (iii) forRmax holds if and only ifD = K◦×J for J as
before. Indeed,D = K◦×∅ if and only if lims→−∞R (x∗, s) = −∞ for any x∗ ∈ K◦. Further,D = K◦×R
if and only if R ≡ +∞. Finally, D = K◦ × ]−∞, c0] for c0 ∈ R if and only if lims→−∞R (x∗, s) = c0 for
all x∗ ∈ K◦.
It remains to show that C = D. Indeed, relation (C.3) states that

C = {(x∗,m) ∈ K◦ × R : α (x∗,m) ≤ s for all s ∈ R}
=
{

(x∗,m) ∈ K◦ × R : m ≤ R+ (x∗, s) for all s ∈ R
}

= {(x∗,m) ∈ K◦ × R : m ≤ R (x∗, s) for all s ∈ R} = D.

• Equivalence between condition (d) for Pmin and condition (iv) forRmax. Again by relation (C.3) holds{
x∗ ∈ K◦ : R+ (x∗, s) ≥ m

}
= {x∗ ∈ K◦ : s ≥ α (x∗,m)}

for any m, s ∈ R. This states the equivalence between the lower semicontinuity of α and the upper semicon-
tinuity of R+. �

Let Pmin
0 denote the set of positive homogeneous, lower semicontinuous and convex functions α : K◦ →

[−∞,+∞] such that if there exists x∗ ∈ K◦ with α (x∗) = −∞, then α ≡ −∞. In particular, if α ∈ Pmin

then α (·,m) ∈ Pmin
0 for any m ∈ R.

Lemma C.3. LetA ⊆ X be a σ (X ,X ∗)-closed, convex and monotone54 set. Then, there exists a unique α ∈ Pmin
0

such that
x ∈ A if and only if 〈x∗,−x〉 ≤ α(x∗) for all x∗ ∈ K◦. (C.4)

In this case, α is given as the support function of −A, that is, the minimal55 penalty function

α(x∗) = αmin (x∗) := sup
x∈A
〈x∗,−x〉, x∗ ∈ K◦. (C.5)

If in addition K is regular then for any fixed π ∈ K̃ holds

x ∈ A if and only if 〈x∗,−x〉 ≤ α(x∗) for all x∗ ∈ K◦π, (C.6)

and α is unique in the set of all lower semicontinuous convex functions from K◦π to [−∞,+∞] such that if there
exists x∗ ∈ K◦π with α (x∗) = −∞, then α ≡ −∞.

Proof. Let αmin denote the support function of −A given by relation (C.5). By definition, αmin ∈ Pmin
0 . We next

show that αmin fulfills relation (C.4). The cases A = ∅ and A = X are obvious. If A 6= ∅, the implication

x ∈ A implies 〈x∗,−x〉 ≤ sup
y∈A
〈x∗,−y〉 = αmin(x∗), for all x∗ ∈ K◦, (C.7)

54That is y Q x with x ∈ A implies y ∈ A.
55The minimality of the penalty function follows from the arguments given in [30, Theorem 4.15].
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is straightforward. Conversely, for any x ∈ X \ A, the hyperplane separation theorem yields

〈x∗0,−x〉 > sup
y∈A
〈x∗0,−y〉 (C.8)

for some x∗0 ∈ X ∗. By the monotonicity of A holds 〈x∗0,−x〉 > 〈x∗0,−y〉 + 〈x∗0,−k〉 for some y ∈ A and all
k ∈ K. Hence, 0 ≥ 〈x∗0,−k〉 for all k ∈ K, implying that x∗0 ∈ K◦ and therefore, the right-hand side of (C.8) is
equal to αmin (x∗0) showing the reverse implication in (C.4).

As for the uniqueness, suppose there exist α1, α2 ∈ Pmin
0 which representA in the sense of (C.4). In case that α1

is identically +∞ or−∞, the same obviously holds for α2 and vice versa. By definition of Pmin
0 , it remains to show

the case where both α1 and α2 are proper. Define α̃i = αi on K◦ and α̃i = +∞ on K◦c which remains proper,
convex and lower semicontinuous. For the conjugates α̃∗i (x) = supx∗∈K◦ {〈x∗, x〉 − αi(x∗)} which are positive
homogeneous follow α̃∗i (x) = 0 if and only if −x ∈ A. Thus, α̃∗1 = α̃∗2 and the Fenchel-Moreau theorem yields
α̃1 = (α̃∗1)∗ = (α̃∗2)∗ = α̃2, that is, α1 = α2 on K◦.

Finally, in case that π ∈ K̃ 6= ∅, it follows that 〈x∗, π〉 > 0 for any x∗ ∈ K◦ \ {0} so that x∗/〈x∗, π〉 ∈ K◦π .
Hence, K◦ = R+K◦π and (C.4) is equivalent to

x ∈ A if and only if
〈

x∗

〈x∗, π〉 ,−x
〉
≤ α

(
x∗

〈x∗, π〉

)
for all x∗ ∈ K◦ \ {0}.

�

Proof (Theorem 2.6). Step 1. Let ρ be a lower semicontinuous risk measure. Theorem 1.7 yields

ρ (x) = inf {m ∈ R : x ∈ Am} , x ∈ X . (C.9)

Since any Am is σ(X ,X ∗)-closed, convex and monotone, it follows from Lemma C.3 that

x ∈ Am if and only if 〈x∗,−x〉 ≤ αmin(x∗,m) for all x∗ ∈ K◦, (C.10)

whereby αmin (·,m) is the support function of −Am as given by relation (C.5). Combining (C.9) and (C.10) yields

ρ (x) = inf {m ∈ R : 〈x∗,−x〉 ≤ αmin (x∗,m) for all x∗ ∈ K◦}
= inf

{
m ∈ R : 〈x∗,−x〉 ≤ α−min (x∗,m) for all x∗ ∈ K◦

}
,

(C.11)

for the left-continuous version α−min of αmin. The goal is to show that

ρ (x) = sup
x∗∈K◦

inf
m∈R

{
m : 〈x∗,−x〉 ≤ α−min (x∗,m)

}
. (C.12)

To begin with, equation (C.11) implies:

ρ (x) ≥ sup
x∗∈K◦

inf
m∈R

{
m : 〈x∗,−x〉 ≤ α−min (x∗,m)

}
.

As for the reverse inequality, suppose that ρ (x) > −∞, otherwise (C.12) is trivial, and fix m0 < ρ(x). Define
C = {y ∈ X : ρ(y) ≤ m0}, which is σ(X ,X ∗)-closed, convex, and such that x 6∈ C. By the hyperplane separation
theorem, there exists x∗0 ∈ X ∗ \ {0} such that

〈x∗0, x〉 < inf
y∈C
〈x∗0, y〉. (C.13)

By monotonicity of ρ we have C = C + K, hence (C.13) yields 〈x∗0, x〉 < 〈x∗0, y〉 + 〈x∗0, k〉 for all k ∈ K and
y ∈ C. It follows that56 x∗0 ∈ K◦ \ {0}. Since Am ⊆ C for all m ≤ m0, (C.13) yields

〈x∗0,−x〉 − αmin (x∗0,m) ≥ 〈x∗0,−x〉 − sup
y∈C
〈x∗0,−y〉 > 0. (C.14)

56In case that C = ∅, x∗0 can arbitrarily be chosen in K◦ \ {0}.
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Hence, since m 7→ αmin (x∗0,m) is nondecreasing,

m0 ≤ sup
x∗∈K◦

inf
m∈R
{m : 〈x∗,−x〉 ≤ αmin (x∗,m)} = sup

x∗∈K◦
inf
m∈R

{
m : 〈x∗,−x〉 ≤ α−min (x∗,m)

}
. (C.15)

Since the last relation holds for any m0 < ρ(x) we derive

ρ (x) ≤ sup
x∗∈K◦

inf
m∈R

{
m : 〈x∗,−x〉 ≤ α−min (x∗,m)

}
,

and (C.12) is established.
Step 2. Since

α−min (x∗,m) = sup
m′<m

sup
x∈Am′

〈x∗,−x〉 = sup
x∈Am−

〈x∗,−x〉,

where Am− =
⋃
m′<mA

m′ is closed, a direct inspection shows that α−min ∈ P
min. According to Lemma C.2, the

left inverse of α−min, denoted by R is a maximal risk function, that is R ∈ Rmax and therefore relation (C.12) yields

ρ(x) = sup
x∗∈K◦

R(x∗, 〈x∗,−x〉), x ∈ X . (C.16)

As for the uniqueness, according to Lemma C.2 it is sufficient to show the uniqueness of α−min in (C.12) as α−min ∈
Pmin. Consider α1, α2 ∈ Pmin satisfying

ρ(x) = sup
x∗∈K◦

inf
m∈R
{m : 〈x∗,−x〉 ≤ αi(x∗,m)} , x ∈ X ,

for i = 1, 2. For any m ∈ R holds

{x ∈ X : ρ (x) < m} =
⋃

m′<m

{x ∈ X : sup
x∗∈K◦

inf
n∈R
{n : 〈x∗,−x〉 ≤ αi (x∗, n)} ≤ m′}

=
⋃

m′<m

{x ∈ X : inf
n∈R
{n : 〈x∗,−x〉 ≤ αi (x∗, n)} ≤ m′ for all x∗ ∈ K◦}

=
⋃

m′<m

{
x ∈ X : 〈x∗,−x〉 ≤ αi

(
x∗,m′ +

(
m−m′

)
/2
)

for all x∗ ∈ K◦
}

=
⋃

m′<m

{
x ∈ X : 〈x∗,−x〉 ≤ αi

(
x∗,m′

)
for all x∗ ∈ K◦

}
=

⋃
m′<m

Am
′

i , (C.17)

for the σ(X ,X ∗)-closed convex setsAm
′

i := {x : 〈x∗,−x〉 ≤ αi (x∗,m′) for all x∗ ∈ K◦}. The uniqueness result
in Lemma C.3 yields

αi
(
x∗,m′

)
= sup
x∈Am′i

〈x∗,−x〉. (C.18)

Thus, from relations (C.17), (C.18) and the left-continuity of αi(x∗, ·) it follows

αi (x∗,m) = sup
m′<m

αi (x∗, n) = sup
m′<m

sup
x∈Am′i

〈x∗,−x〉 = sup⋃
m′<mA

m′
i

〈x∗,−x〉 = sup
{x:ρ(x)<m}

〈x∗,−x〉,

and therefore α1 = α2.
Step 3. Conversely, let ρ(x) := supx∗∈K◦ R(x∗, 〈x∗,−x〉) for a risk function R ∈ R. Since s 7→ R (x∗, s)

is nondecreasing, it follows that ρ is monotone. Further, s 7→ R (x∗, s) is left-continuous, nondecreasing and
x 7→ 〈x∗,−x〉 is linear and continuous for all x∗ ∈ K◦. In view of relation (C.3) it holds

{x ∈ X : R (x∗, 〈x∗,−x〉) ≤ m} =
{
x ∈ X : 〈x∗,−x〉 ≤ R(−1,r) (x∗,m)

}
,
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and therefore x 7→ R (x∗, 〈x∗,−x〉) is a lower semicontinuous quasiconvex function. This implies that the level sets

{x ∈ X : ρ(x) ≤ m} =

{
x ∈ X : sup

x∗∈K◦
R (x∗, 〈x∗,−x〉) ≤ m

}
=

⋂
x∗∈K◦

{x ∈ X : R (x∗, 〈x∗,−x〉) ≤ m}

are closed and convex for all m ∈ R. Hence, ρ is a lower semicontinuous risk measure. �

C.7 Proof of Theorem 2.7: Let ρ be a lower semicontinuous risk measure. By Theorem 2.6 there exists a unique
R ∈ Rmax whose restriction to K◦π × R is inRmax

π and such that

ρ(x) = sup
x∗∈K◦π, λ>0

R (λx∗, 〈λx∗,−x〉) = sup
x∗∈K◦π

R (x∗, 〈x∗,−x〉) .

Due to the condition (ii) for Rmax, there is a one-to-one relation between Rmax and Rmax
π , from which the

uniqueness follows.

C.8 Proof of Proposition 2.9: Let R, R̃ be two risk functions such that

ρ (x) = sup
x∗∈K◦

R (x∗, 〈x∗,−x〉) = sup
x∗∈K◦

R̃ (x∗, 〈x∗,−x〉) ,

where R ∈ Rmax. According to Theorem 2.6, R is the left inverse of αmin. Further, R̃ (x∗, 〈x∗,−x〉) ≤ m for
all x∗ ∈ K◦, m ∈ R and x ∈ Am. Hence, relation (B.4) yields 〈x∗,−x〉 ≤ R̃(−1,r) (x∗,m) for all x∗ ∈ K◦,
m ∈ R and x ∈ Am. Due to Lemma C.3, αmin is the smallest function having this property, that is, αmin (x∗,m) ≤
R̃(−1,r) (x∗,m) for all x∗ ∈ X ∗ and m ∈ R. Since by Theorem 2.6 the maximal risk function R is the left inverse
of αmin, it follows R̃ (x∗, s) ≤ R (x∗, s) for all x∗ ∈ X ∗ and s ∈ R.

C.9 Technical examples referring to Remark 2.10:

Example C.4 (Importance of property (iv) in Definition 2.5). Let X = R2, K = R2
+, and π = (1, 1) in which

case K◦π = {(p, 1 − p) : p ∈ [0, 1]}. As for the first example, consider the risk function R(p, s) = 1{s>p} which
is in Rmax. However, R(·, 1/2) is not upper semicontinuous, since {p ∈ [0, 1] : R(p, 1/2) ≥ 1/2} = [0, 1/2)

is not closed. In the second example, we show that maximal risk functions are in general not lower semicontinuous
in the first argument. Indeed, within the setup of the previous example, we consider the maximal risk function
R(p, s) = 1{p≥1/2} for which R = R+, but R(·, s) is for any s ∈ R not lower semicontinuous. ♦

Example C.5 (Importance of the regularity assumption for Theorem 2.7). Indeed, let X = R, K = {0} so that
K◦ = X ∗ = R and consider the lower semicontinuous quasiconvex function ρ(x) := x2, which is monotone with
respect to the non-regular preorder K = {0}. However, there does not exist any π ∈ R \ {0} such that

ρ(x) = sup
x∗∈K◦π

R (x∗,−x∗ · x) , for all x ∈ R,

as K◦π = {x∗ ∈ R : x∗π = 1} reduces to the singleton 1/π and ρ(x) = x2 is different from any function
x 7→ R (1/π,−x/π) for some R ∈ R, which by definition is either nondecreasing or nonincreasing depending on
the sign of π. ♦

C.10 Proof of Proposition 2.11: The proof is built on the respective properties of the acceptance family, which have
been established in Propositions 1.13, 1.18, and 1.21.

In case that R is convex, positive homogeneous or scaling invariant in the second argument, it follows that ρ is
convex, positive homogeneous or scaling invariant as the supremum of convex, positive homogeneous or scaling
invariant functions is convex, positive homogeneous or scaling invariant, respectively.
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Conversely, suppose that ρ is convex. By Proposition 1.13, for any m,m′ ∈ R, λ ∈ ]0, 1[ and x∗ ∈ K◦ holds

αmin

(
x∗, λm+ (1− λ)m′

)
= sup
x∈Aλm+(1−λ)m′

〈x∗,−x〉 ≥ sup
x∈λAm+(1−λ)Am′

〈x∗,−x〉

= λ sup
x∈Am

〈x∗,−x〉+ (1− λ) sup
x∈Am′

〈x∗,−x〉 = λαmin (x∗,m) + (1− λ)αmin

(
x∗,m′

)
.

Hence, m 7→ α+
min (x∗,m) is concave. The function R (x∗, ·) as the left inverse of α+

min (x∗, ·) is therefore convex
by Proposition B.2. Analoguously, if ρ is positive homogeneous or scaling invariant, it follows from Proposition
1.13 that αmin(x∗, λm) = λαmin(x∗,m) or αmin(x∗, λm) = αmin(x∗,m) and thus R is positive homogeneous or
scaling invariant in the second argument, respectively.

For the cash additive and cash subadditive case, the sufficency is obvious. Conversly, if ρ is cash additive, Propo-
sition 1.18 implies αmin (x∗,m) = αmin (x∗, 0) + m from which we deduce R (x∗, s) = s − αmin (x∗, 0), and
therefore R (x∗, s+m) = R (x∗, s) + m for all m, s ∈ R and x∗ ∈ K◦π . If ρ is cash subadditive, it follows from
Proposition 1.18 that αmin (x∗, n+m) ≥ αmin (x∗, n) + m for all x∗ ∈ K◦π , n ∈ R and m > 0. Hence, for any
x∗ ∈ K◦π , s ∈ R and m > 0 holds

R (x∗, s−m) = sup
n∈R
{n : αmin (x∗, n) < s−m}

≥ sup
n∈R
{n : αmin (x∗, n+m) < s} = R (x∗, s)−m.

C.11 Proof of Propositions 2.2 and 2.15: The sufficiency in both propositions is immediate. As for the necessity,
the separability implies the existence of a risk measure ρ. By Debreu [24, 25]’s gap theorem, we can assume, up to
a strictly increasing transformation, that Im (ρ)c consists of intervals of either the form [a, b] or ]a, b[ for a, b ∈ R.
The lower semicontinuity and continuously extensible properties of 4 imply the same properties for ρ respectively.
Indeed, let A be the corresponding risk acceptance family and m ∈ R.

• If m ∈ Im (ρ) or m in a gap ]a, b[ ⊆ Im (ρ)c, then Am = L (x) for ρ (x) = m or Am = Aa = L (x)

for ρ (x) = a. In both cases, Am is closed if 4 is lower semicontinuous. For the same choice of x, the
continuously extensible assumption on 4 yields Am +K ∩ X = L (x) +K ∩ X = L (x) = Am.

• If m is in a gap [a, b] ⊆ Im (ρ)c, the right-continuity of A implies the existence of a sequence of (xl) with
ρ (xl) ↘ b such that Am =

⋂
l∈N L (xl). Hence Am is closed if 4 is lower semicontinuous. For the same

sequence (xl), the continuously extensible assumption implies Am +K ∩ X ⊆ L (xl) +K ∩ X = L (xl)

for any l ∈ N, and therefore

Am ⊆ Am +K ∩ X ⊆
⋂
l∈N

L (xl) +K ∩ X =
⋂
l∈N

L (xl) = Am.

Let now ρ̂ = h ◦ ρ for a continuously extensible lower semicontinuous risk measure ρ : X → [−∞,∞] and a lower
semicontinuous increasing function h : Im (ρ)→ R. By relation (B.4),

Âm = {x ∈ X : ρ̂ (x) = h ◦ ρ (x) ≤ m} =
{
x ∈ X : ρ (x) ≤ h(−1,r) (m)

}
= Ah

(−1,r)(m),

and so the lower semicontinuity of ρ implies the lower semicontinuity of ρ̂. Furthermore, the continuously extensible
assumption on ρ yields

Âm +K ∩ X = Ah(−1,r)(m) +K ∩ X = Ah
(−1,r)(m) = Âm.

C.12 Proof of Proposition 2.16: Fix R : K◦ × R → [−∞,∞] and define H := {R̃ ∈ Rmax : R̃ ≥ R}. We
have to show that the function R̄ := infR̃∈H R̃ ∈ R

max. To this end, we first notice that R̄ as an infimum of jointly

37



quasiconcave functions is jointly quasiconcave. Secondly, for any x∗ ∈ K◦, s ∈ R and λ > 0 holds

R̄ (λx∗, s) = inf
R̃∈H

R̃ (λx∗, s) = inf
R̃∈H

R̃ (x∗, s/λ) = R̄ (x∗, s/λ) .

Thirdly, R̄ has a uniform asymptotic minimum as for any x∗, y∗ ∈ K◦

lim
s→−∞

R̄ (x∗, s) = inf
s∈R

inf
R̃∈H

R̃ (x∗, s) = inf
R̃∈H

inf
s∈R

R̃ (x∗, s) = inf
R̃∈H

inf
s∈R

R̃ (y∗, s) = lim
s→−∞

R̄ (y∗, s) .

Finally, R̄+ is upper semicontinuous in the second argument as for any s,m ∈ R, the set{
x∗ : R̄+ (x∗, s) ≥ m

}
=

⋂
R̃∈H, t>s

{
x∗ : R̃ (x∗, t) ≥ m

}
=
⋂
R̃∈H

{
x∗ : R̃+ (x∗, s) ≥ m

}
is closed.

C.13 Proof of Theorem 2.19: For the proof, we use other notions of closures. For a function h : K◦ × R →
[−∞,+∞] and a function g : V∗ → [−∞,+∞],

• recall that the closure inRmax of h denoted by clRmax (h) is given by

clRmax (h) (x∗, s) := inf
{
R̃ (x∗, s) : R̃ ≥ h and R̃ ∈ Rmax

}
, (x∗, s) ∈ K◦ × R.

• the closure in Pmin of h denoted by clPmin (h) is given by

clPmin (h) (x∗, s) := sup
{
α̃ (x∗, s) : α̃ ≤ h and α̃ ∈ Pmin

}
, (x∗, s) ∈ K◦ × R.

• the convex closure of g denoted by cl (g) : V∗ → [−∞,+∞] is either uniformly equal to −∞ if g (x∗) =

−∞ for some x∗ ∈ V∗, or is the greatest lower semicontinuous convex function majorized by g.

A similar argumentation as for the proof of Proposition 2.16 shows that for clPmin (h) ∈ Pmin.

Lemma C.6. Let α : K◦ × R→ [−∞,∞] be nondecreasing in the second argument, then57

clPmin (α) = [cl (α)]− and clRmax

(
α(−1,l)

)
= [clPmin (α)](−1,l) .

Proof. Fix β ∈ Pmin with [cl (α)]− ≤ β ≤ α. Since [cl (α)]− ∈ Pmin and [cl (β)]− = [β]− = β it follows
[cl (α)]− ≤ β ≤ [cl (α)]− and thus β = [cl(α)]−, that is, clPmin(α) = [cl(α)]−. As for the second equal-
ity, by Lemma C.2 holds α(−1,l) ≤ [clPmin(α)](−1,l) ∈ Rmax. Fix R̃ ∈ Rmax satisfying α(−1,l) ≤ R̃ ≤
[clPmin(α)](−1,l). Then, clPmin(α) ≤ R̃(−1,l) ≤ α and since by Lemma C.2 R̃(−1,l) ∈ Pmin, we deduce that
R̃(−1,l) = clPmin(α), which in turn implies R̃ = [clPmin(α)](−1,l). This shows that the clRmax -closure of α(−1,l)

is [clPmin(α)](−1,l). �

Proof (of Theorem 2.19). Given a continuously extensible lower semicontinuous risk measure ρ with corresponding
acceptance family A, define the family Â by Âm =

⋂
n>m (An +K) for m ∈ R. By means of relation (2.10),

it is straightforward to check that Â is the smallest closed acceptance family in V , for which Âm ∩ X = Am

for all m ∈ R. Hence, the corresponding risk measure ρ̂ on V is lower semicontinuous and coincides with ρ on
X . Furthermore, since Â is the smallest closed risk acceptance family containing A, it follows that ρ̂ is the unique
maximal lower semicontinuous risk measure extension of ρ on V . According to Theorem 2.6, denote by R̂ the unique
element inRmax, such that

ρ̂ (x) = sup
x∗∈K◦

R̂ (x∗, 〈x∗,−x〉) , x ∈ V.

We next show that any lower semicontinuous risk measure ρ̃ (x) = supx∗∈K◦ R̃ (x∗, 〈x∗,−x〉) on V with R̃ ∈
Rmax is a maximal extension of the lower semicontinuous risk measure ρ on X if and only if R̃ ∈ Rmax

X . Indeed,

57Here, cl (α) is the convex closure with respect to the first argument and [·]− is the left-continuous version in the second argument.
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since Ãm ∩ X = Am and Âm ⊆ Ãm for all m ∈ R, it follows

ρ̃ is a maximal extension ⇐⇒ Ã = Â ⇐⇒ Ãm =
⋂
n>m

(
Ãn ∩ X

)
+K for all m ∈ R.

Due to Lemma C.3 holds

Ã = Â ⇐⇒ sup
x∈

⋂
n>m (Ãn∩X)+K

〈x∗,−x〉 = sup
x∈Ãm

〈x∗,−x〉 , for all x∗ ∈ K◦ and m ∈ R.

Denoting α̃min (x∗,m) := supx∈Ãm〈x
∗,−x〉 for x∗ ∈ V∗, we deduce from (A.3) that

cl (α̃min�δX ) (x∗,m) + δK (x∗) = sup
x∈(Ãm∩X)+K

〈x∗,−x〉 ≤ sup
x∈

⋂
n>m (Ãn∩X)+K

〈x∗,−x〉

≤ inf
n>m

sup
x∈(Ãn∩X)+K

〈x∗,−x〉

= [cl (α̃min�δX )]+ (x∗,m) + δK (x∗) , for all x∗ ∈ K◦ and m ∈ R.

Thus, by the second step in the proof of Theorem 2.6 and Proposition C.6 holds

Ã = Â ⇐⇒ α̃−min = [cl (α̃min�δX )]− + δK = clPmin (α̃min�δX + δK) .

Since R̃ is uniquely determined as the left inverse of α̃−min, Proposition C.6 yields

Ã = Â ⇐⇒ R̃ = clRmax

(
[(α̃min�δX ) + δK]−1,l

)
on K◦ × R.

We are left to show that

[(α̃min�δX ) + δK]−1,l (x∗, s) = sup
y∗∈V∗

R (x∗ − y∗, s− δX (y∗)) for all x∗ ∈ K◦ and s ∈ R.

For any x∗ ∈ K◦ and s ∈ R holds

[(α̃min�δX ) + δK]−1,l (x∗, s) = inf {m ∈ R : s ≤ (α̃min�δX ) (x∗,m) + δK (x∗)}

= inf

{
m ∈ R : s ≤ inf

y∗∈V∗
α̃min (x∗ − y∗,m) + δX (y∗)

}
= inf {m ∈ R : s ≤ α̃min (x∗ − y∗,m) + δX (y∗) for all y∗ ∈ V∗}
= inf

{
m ∈ R : s ≤ α̃+

min (x∗ − y∗,m) + δX (y∗) for all y∗ ∈ V∗
}
.

Finally, since
[
α̃+
min (x∗ − y∗, ·) + δX (y∗)

](−1,l)
= R̃ (x∗ − y∗, · − δX (y∗)), by use of relation (B.5) follows

[(α̃min�δX ) + δK]−1,l (x∗, s) = inf {m ∈ R : R (x∗ − y∗, s− δX (y∗)) ≤ m for all y∗ ∈ V∗}
= sup
y∗∈V∗

R (x∗ − y∗, s− δX (y∗)) . �

C.14 Proof of Theorem 3.2: We first show that4 is σ
(
L∞,L1

)
-lower semicontinuous. Indeed, the Fatou property

and the dominated convergence theorem imply that L (Y ) ∩ BN is ‖·‖1-closed for all Y ∈ L∞ and any ball BN =

{X : ‖X‖∞ ≤ N} of radiusN > 0. By convexityL (Y )∩BN is σ(L1,L∞)-closed and consequently σ
(
L∞,L1

)
-

closed. The Krein-Šmulian theorem then implies that L (Y ) is σ
(
L∞,L1

)
-closed. Moreover, since L1 is separable

by means of the separability of F , it follows from Corollary 3.2 and its subsequent remark in [11], that4 is separable.
By Proposition 2.2 it can be represented by a σ

(
L∞,L1

)
-lower semicontinuous risk measure ρ : L∞ → [−∞,+∞].

Finally, the robust representation (3.2) follows from Theorem 2.7.
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C.15 Proof of Proposition 3.5: Let (Kn) be an increasing sequence of compact intervals such that
⋃
nKn = R

and denote by 4n, M1(Kn), ca(Kn), C(Kn) the respective restrictions of 4, M1,c, cac, C to Kn. Due to
Corollary 3.2 and its subsequent remark in Campion, Candeal, and Indurain [11], the risk order 4n is separable and
consequently so is4. By Proposition 2.2, the risk order4 can be represented by a lower semicontinuous risk measure
ρ :M1,c → [−∞,+∞]. Denote by ρn the restriction of ρ toM1 (Kn) which is again a lower semicontinuous risk
measure. Recall that ca(Kn) is the dual space of C(Kn) andM1(Kn) is σ(ca(Kn), C(Kn))-compact in ca(Kn).
The σ(ca(Kn), C(Kn))-lower semicontinuous risk order 4n is therefore continuously extensible as well as ρn.
Then, Theorem 2.19 yields a unique Rn ∈ Rmax

M1(Kn)
such that

ρn(µ) = sup
f∈K◦(Kn)

Rn

(
f,−

∫
f(x)µ(dx)

)
for all µ ∈M1(Kn). (C.19)

Since ρn′ coincides with ρn onM1 (Kn) for all n′ ≥ n, for the respective risk functions holds

Rn′ (f, ·) ≤ Rn (f, ·) for all f ∈ K◦,

where Rn(f, ·) := Rn(f|Kn , ·) for all f ∈ K◦, since αn
′

min(f, ·) ≥ αnmin(f, ·). We next show that ρ and 4
are continuously extensible. To this end, we define R̃(f, ·) as the left-continuous version of infn∈NRn(f, ·). For
f ∈ K◦(Kn) denote by f̄ ∈ K◦ the extension f which is constant outside ofKn. For any µ ∈M1,c holds by partial
integration∫

f̄(x)µ(dx) = sup
x∈Kn

f(x)−
∫
Fµ(x)df̄(x) = sup

x∈Kn
f(x)−

∫
Kn

Fµ(x)df(x) =

∫
Kn

f(x)µ(dx),

showing that R̃(f̄ , ·) = Rn(f, ·). Fix µ ∈M1,c and n ∈ N such that µ ∈M1,c(Kn). By (C.19) holds

ρ (µ) = ρn (µ) = sup
f∈K◦(Kn)

Rn

(
f,−

∫
f(x)µ(dx)

)
= sup
f∈K◦

R̃

(
f,−

∫
f(x)µ(dx)

)
,

for any µ ∈ M1,c. Due to the previous representation, it follows that ρ and in turn 4 are σ(cac, C)-lower semi-
continuous and continuously extensible to cac. In view of Theorem 2.19 there exists a unique R ∈ Rmax

M1,c
such

that

ρ(µ) = sup
f∈K◦

R

(
f,−

∫
f(x)µ(dx)

)
= sup
l∈K◦

R

(
l,

∫
l(−x)µ(dx)

)
for all µ ∈M1,c,

since f ∈ K◦ if and only if l(x) = −f(−x) ∈ K◦.
It remains to prove thatRmax

M1,c
= Rmax. Indeed, for f, g ∈ C with f ≤ g and c,m, s ∈ R holds αmin(f,m) ≥

αmin(g,m) and αmin(f + c,m) = αmin(f,m)− c and in turn R(f, s) ≤ R(g, s) and R(f + c, s) = R(f, s+ c).
Moreover, δM1,c(g) = supµ∈M1,c

−
∫
g(x)µ(dx) = − inf g. Hence,

sup
g∈C

R
(
f − g, s− δM1,c(g)

)
= sup
g∈C

R

(
f − g, s+ inf

x∈I
g(x)

)
= sup

c∈R
R (f − c, s+ c) = R(f,m).

The claim then follows from Definition 2.17 and the proof is completed.

C.16 Proof of Robust Representation in Example 3.6: According to [2, Corollary 15.6], the set

Am = {µ ∈M1,c : q ≥ µ (]−∞,−m[)},

is σ (cac, C)-closed inM1,c, implying that V@R is a lower semicontinuous risk measure onM1,c. Due to Theo-
rem 3.5, it admits then a robust representation. To compute the penalty function

αmin (l,m) = sup
µ∈Am

∫
l (−x) µ (dx) ,
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we define µt := qδt + (1 − q)δ−m which is in Am since F−µt (−m) ≤ q for all t ∈ R. Then for any loss function
l ∈ K1,◦

αmin (l,m) = sup
µ∈Am

∫
l (−x) dµ = lim

t→−∞

∫
l (−x) µt (dx) = ql(+∞) + (1− q)l (m) .

Thus, for any l ∈ K◦ holds

R (l, s) = l−1

(
s− ql (+∞)

1− q

)
,

where l−1 is the left inverse of l.

C.17 Proof of the Theorem 3.7: Since K = CS and 4 is monotone and lower semicontinuous holds L (c) +K =

L (c) = L (c) for all c ∈ CS. Therefore, 4 is continuously extensible to Vη and we can apply Theorem 2.19.

C.18 Proof of Proposition 3.8: From the assumptions on l, inspection shows that ρ is a risk measure. Consider now

a sequence (cn) in CS converging to c ∈ CS and define yn =
∫ ·+k2(·)
·−k1(·)

θ (·, s) dcns . From the assumptions on θ, it
follows

|ynt | ≤
1∫

0−

|θ (t, s)| dcns ≤ Ccn1 ≤M sup
n∈N
‖cn‖η < +∞,

for some constantsC,M > 0. Hence (yn) is uniformly bounded and converges pointwise to y =
∫ ·+k2(·)
·−k1(·)

θ (·, s) dcs.
Since l is lower semicontinuous, lim infn l (t,−ynt ) ≥ l (t,−yt). Furthermore, since l is continuous in the first ar-
gument and nondecreasing in the second it follows l (t, ynt ) ≥ l (t,− sup yn) ≥ M ∈ R. Applying Fatou’s lemma
yields

lim inf
n

1∫
0

l (t,−ynt ) dt ≥
1∫

0

lim inf
n

l (t,−ynt ) dt ≥
1∫

0

l (t,−yt) dt

and so, ρ is lower semicontinuous.

C.19 Computations for Example 3.9: In order to simplify the computation of αmin, we first relax the risk measure
from CS to Vη . Integration by parts yields

ρ̃ (c) :=

1∫
0

l

−ct + γ

t∫
0

e−γ(t−s)csds

 dt =

1∫
0

l (−yt) dt, c ∈ Vη, (C.20)

where yt = ct − γ
∫ t
0
e−γ(t−s)csds. In the line with the proof of Proposition 3.8 shows that ρ̃ is a lower semi-

continous risk measure on Vη which is an extension of ρ that is however not maximal. Further, for any c ∈ Vη the
respective y given by

yt = ct − γ
t∫

0

e−γ(t−s)csds (C.21)

is in Vη . Conversely, for any y ∈ Vη the Volterra equation (C.21) of the second kind has the unique solution
ct = yt + γ

∫ t
0
ysds, which is in Vη . By use of this one-to-one relation, c ∈ Ãm exactly when

∫ 1

0
l(−yt)dt ≤ m

and using (3.11) the minimal penalty function α̃min for β ∈ D can be computed as

α̃min (β,m) = sup
c∈Ãm

−
1∫

0−

βtdct = sup
{y∈Vη :

∫ 1
0 l(−yt)dt≤m}

−β1y1 −
1∫

0

yt∆βtdt, (C.22)

where ∆βt := γβt − β′t, since dct = dyt + γytdt. Fix m > inf l, since otherwise, for m ≤ inf l holds
α̃min (β,m) = −∞ as Am = ∅.

• If β1 > 0 then α̃min(β,m) = +∞. Indeed, take some c ∈ Ãm. By (C.20) we have ck = c+ kδ1 ∈ Ãm for

41



all k ∈ R, so that

α̃min (β,m) ≥ −kβ1 +

1∫
0

csβ
′
sds −−−−−→

k→−∞
+∞.

• If ∆β = γβ − β′ < 0 over a set of positive measure then α̃min(β,m) = +∞. Indeed, there is ε > 0 such
that A := {∆β ≤ −ε} has positive measure and define yMt = −M/ (∆βt) 1A(t) for M ≥ 0. It follows
ρ̃
(
cM
)

=
∫ 1

0
l (−yt) dt ≤ m and in turn cM ∈ Ãm for all M sufficiently large, showing that

α̃min (β,m) ≥ −
1∫

0

yt∆βtdt = M

1∫
0

1A(t)dt −−−−−→
M→+∞

+∞.

We suppose now that β is such that ∆β ≥ 0, β1 = 0 and m > 0. For some Lagrange multiplier δ := δ (β,m) >

0, define the function

χ (y) := χ (y, β, δ,m) =

1∫
0

[
− yt∆βt −

1

δ
(l (−yt)−m)

]
dt,

for which clearly holds α̃min (β,m) ≤ sup{y:
∫ 1
0 l(−yt)dt≤m}

χ (y). The first order condition yields

l′ (−ŷt) = δ∆βt ⇐⇒ ŷt = −(l′)−1 (δ∆βt) .

As for δ, under positivity and integrability conditions, it is determined by the equation
∫ 1

0
l
(
(l′)−1 (δ∆βt)

)
dt = m.

For such a choice of δ, holds c ∈ Ãm and therefore

χ (ŷ) =

1∫
0

−ŷt∆βtdt ≥ sup
{y:

∫ 1
0 l(−yt)dt≤m}

χ (y) ≥ α̃min (β,m) ≥
1∫

0

−ŷt∆βtdt.

In the case where

• l(x) = ex holds (l′)−1 (x) = ln(x), δ = m/
∫ 1

0
∆βtdt and

α̃min (β,m) = ln (δ)

1∫
0

∆βtdt+

1∫
0

ln (∆βt) ∆βtdt = ln (m)

1∫
0

∆βtdt+ g (β) ,

where

g (β) :=

1∫
0

ln (∆βt) ∆βtdt− ln

 1∫
0

∆βtdt

 1∫
0

∆βtdt,

and thus

R̃ (β, s) = exp

(
s− g (β)∫ 1

0
∆βtdt

)
.

• l (x) = − ln (−x) holds (l′)−1 (x) = −1/x, δ = exp
(
m−

∫ 1

0
ln (∆βt) dt

)
and

α̃min (β,m) = −
1∫

0

ŷt∆βtdt = −1

δ
= −

exp
(∫ 1

0
ln (∆βt) dt

)
em

,

and thus

R̃ (β, s) = − ln (−s) +

1∫
0

ln (∆βt) dt.

42



C.20 Proof of Theorem 3.10: The restriction of 4 toM1,c is σ (M1,c, C)-lower semicontinuous and monotone
with respect to the first stochastic order. In view of Theorem 3.5 the restriction of 4 toM1,c is separable and can
be represented by a lower semicontinuous risk measure g : M1,c → R. The function h (c) = g (δc) for c ∈ R is
decreasing and lower semicontinuous. Due to (ii) and (iii) holds Im (g) = Im (h). Indeed, take some µ ∈ M1,c

and suppose that g (µ) 6∈ Im (h). Consider the smallest t ∈ R such that δt 4 µ which exists due to the lower
semicontinuity. From the sensitivity, µ ∼ δt in contradiction to g (µ) 6∈ Im (h). This shows that up to an increasing
lower semicontinuous transformation, we can suppose that Im(g) = R and g (δc) = −c. The lower semicontinuity
implies moreover that ω 7→ G(µ̃) (ω) := g (µ̃ (ω)) is measurable. The condition (3.17) and the monotonicity imply
that for any k > 0 such that the support of µ̃ lies uniformly in [−k, k] holds k = g (δ−k) ≥ G(µ̃) ≥ g (δk) = −k,
showing that G maps SK to L∞. Moreover, the fact that58 G(δX) = −X for any X ∈ L∞ yields Im (G) = L∞.

We now define the binary relation 4G on L∞ by

X 4G Y ⇐⇒ µ̃ 4 ν̃ for µ̃ ∈ G−1 (−X) and ν̃ ∈ G−1 (−Y ) .

In order to be well defined, we have to show that for anyX ∈ L∞, the stochastic kernels inG−1 (−X) are equivalent
to each other. To do so, consider two stochastic kernels µ̃, ν̃ ∈ SK such that G(µ̃) = G(ν̃) P -almost surely. Then
g (µ̃ (ω)) = g (ν̃ (ω)) for P -almost all ω ∈ Ω and so µ̃ (ω) ∼ ν̃ (ω). In view of condition (3.17), it follows that
µ̃ ∼ ν̃ and therefore, for any X ∈ L∞, the elements of G−1 (−X) are equivalent. Moreover, 4 is transitive and
complete, and therefore a total preorder. It is furthermore a risk order. Indeed, concerning the monotonicity, for
X,Y ∈ L∞ with X = −G(µ̃) ≥ −G(ν̃) = Y , the condition (3.17) implies µ̃ 4 ν̃ and therefore X 4G Y .
As for the quasi-convexity, consider some X,Y ∈ L∞ with X 4G Y and set µ̃ := δX , ν̃ := δY such that
µ̃ ∈ G−1 (−X) and ν̃ ∈ G−1 (−Y ), showing that µ̃ 4 ν̃. The P -almost sure second stochastic order yields
δλX+(1−λ)Y Q λδX + (1− λ) δY = λµ̃+ (1− λ) ν̃, since P -almost surely holds∫

f dδλX+(1−λ)Y = f (λX + (1− λ)Y ) ≥ λf (X) + (1− λ) f (Y )

= λ

∫
f dδX + (1− λ)

∫
f dδY = λ

∫
f dµ̃+ (1− λ)

∫
f dν̃,

for any nondecreasing concave function f . Since4 is a risk order, it follows that δλX+(1−λ)Y 4 λµ̃+(1− λ) ν̃ 4 ν̃.
Hence λX + (1− λ)Y 4G Y . Finally, the risk order 4G satisfies the Fatou property. Indeed, let Xn be a ‖·‖∞-
bounded sequence in L∞ converging P -almost surely to some X ∈ L∞. Due to condition (i) holds that δXn 4 δY
for all n implies δX 4 δY . From the definition of 4G follows that Xn 4G Y for all n implies X 4G Y , and
therefore, by means of Theorem 3.2, the risk order 4G is a separable and σ

(
L∞,L1

)
-lower semicontinuous. Let

Φ : L∞ :→ [−∞,+∞] be a σ
(
L∞,L1

)
-lower semicontinuous risk measure representing 4G. Then

ρ (µ̃) := Φ
(
ω 7→ −g

(
µ̃ (ω)

))
, µ̃ ∈ SK,

is a risk measure corresponding to 4. Indeed, for µ̃ ∈ SK holds µ̃ ∼ δ−G(µ̃), and therefore µ̃ 4 ν̃ is equivalent
to δ−G(µ̃) 4 δ−G(ν̃) which by definition is equivalent to −G (µ̃) 4G −G (ν̃). Hence µ̃ 4 ν̃ is equivalent to
Φ (−G (µ̃)) ≤ Φ (−G (ν̃)).

Conversely, it is plain to check that any risk order corresponding to a risk measure of the form (3.19) fulfills the
conditions (i) to (iv).
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