OS Partielle Differentialgleichungen: Inverse curvature flows in asymptotically Robertson Walker spaces
Wann
Donnerstag, 1. Februar 2018
15:15 bis 16:45 Uhr
Wo
F 426
Veranstaltet von
Vortragende Person/Vortragende Personen:
Dr. Heiko Kröner (Universität Freiburg)
Diese Veranstaltung ist Teil der Veranstaltungsreihe „Oberseminar Partielle Differentialgleichungen“.
Abstract: In this paper we consider inverse curvature flows in a Lorentzian manifold N which is the topological product of the real numbers with a closed Riemannian manifold and equipped with a Lorentzian metric having a future singularity so that N is asymptotically Robertson Walker. The flow speeds are future directed and given by 1/F where F is a homogeneous degree one curvature function of class (K) of the principal curvatures, e.g. the n-th root of the Gauss curvature. We prove longtime existence of these flows and that the flow hypersurfaces converge to smooth functions when they are rescaled with a proper factor which results from the asymptotics of the metric.