Literature
[BV19] | S. Banholzer and S. Volkwein. Hierarchical convex multiobjective optimization by the Euclidean reference point method. Technical Report, University of Konstanz, 2019. Available at http://nbn-resolving.de/urn:nbn:de:bsz:352-2-xd965ctqkqax3. |
[Ban21] | Stefan Banholzer. ROM-Based Multiobjective Optimization with PDE Constraints. PhD thesis, University of Konstanz, 2021. Available at http://nbn-resolving.de/urn:nbn:de:bsz:352-2-1g98y1ic7inp29. |
[Ber99] | D.P. Bertsekas. Nonlinear Programming. Athena scientific optimization and computation series. Athena Scientific, 1999. ISBN 9781886529007. |
[DR06] | Wolfgang Dahmen and Arnold Reusken. Numerik für Ingenieure und Naturwissenschaftler. Springer-Verlag, 2006. |
[DD97] | I. Das and J.E. Dennis. A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems. Structural Optimization, 14:63–69, 1997. |
[Ehr05] | Matthias Ehrgott. Multicriteria optimization. Volume 491. Springer Science & Business Media, 2005. |
[Eic08] | G. Eichfelder. Adaptive Scalarization Methods in Multiobjective Optimization. Springer, Berlin Heidelberg, 2008. |
[J+11] | Johannes Jahn and others. Vector Optimization. Springer, Berlin Heidelberg, second edition, 2011. |
[Kel99] | C.T. Kelley. Iterative Methods for Optimization. Society for Industrial and Applied Mathematics, Philadelphia, 1999. |
[KSd15] | K. Khaledian and M. Soleimani-damaneh. A new approach to approximate the bounded Pareto front. Mathematical Methods of Operations Research, 82(2):211–228, Oct 2015. URL: \url{https://doi.org/10.1007/s00186-015-0510-4}, doi:10.1007/s00186-015-0510-4. |
[Lui10] | Eberhard Luik. Numerik i. Skript zur Vorlesung Numerik I, Wintersemester, Universität Konstanz, 2010. |
[Mie99] | K.M. Miettinen. Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, AH Dordrecht, first edition, 1999. |
[Mor78] | Jorge J. Moré. The Levenberg-Marquardt algorithm: Implementation and theory. In G. A. Watson, editor, Numerical Analysis, number 630 in Numerical Analysis, 105–116. Springer, 1978. doi:10.1007/BFb0067700. |
[MGGS09] | D. Mueller-Gritschneder, H. Graeb, and U. Schlichtmann. A successive approach to compute the bounded Pareto front of practical multiobjective optimization problems. SIAM J. Optim., 20(2):915–934, 2009. |
[NW06] | Jorge Nocedal and Stephen J. Wright. Numerical optimization. Springer series in operations research. Springer, New York, 2nd ed edition, 2006. ISBN 978-0-387-30303-1. OCLC: ocm68629100. |
[PS84] | A. Pascoletti and P. Serafini. Scalarizing vector optimization problems. Journal of Optimization Theory and Applications, 42(4):499–524, 1984. URL: \url{https://doi.org/10.1007/BF00934564}, doi:10.1007/BF00934564. |
[Sie01] | Gerard Sierksma. Linear and Integer Programming: Theory and Practice, Second Edition. CRC Press, 2001. |
[UU12] | Michael Ulbrich and Stefan Ulbrich. Nichtlineare Optimierung. Mathematik Kompakt. Springer-Verlag, 2012. |
[Van20] | Robert J Vanderbei. Linear programming: foundations and extensions. Volume 285. Springer Nature, 2020. |
[Wie80] | A.P. Wierzbicki. The use of reference objectives in multiobjective optimization. In Multiple Criteria Decision Making Theory and Application, 468–486. Springer Berlin Heidelberg, 1980. |
[Wie86] | A.P. Wierzbicki. On the completeness and constructiveness of parametric characterizations to vector optimization problems. Operations-Research-Spektrum, 8(2):73–87, Jun 1986. |
[Wie98] | A.P. Wierzbicki. Reference point methods in vector optimization and decision support. IIASA Interim Report, IIASA, Laxenburg, Austria, April 1998. |
[Zad63] | L. Zadeh. Optimality and non-scalar-valued performance criteria. IEEE Transactions on Automatic Control, 8(1):59–60, 1963. |