Literature

[BV19] S. Banholzer and S. Volkwein. Hierarchical convex multiobjec­tive optimization by the Euclidean reference point method. Technical Report, University of Konstanz, 2019. Available at http://nbn-resolving.de/urn:nbn:de:bsz:352-2-xd965ctqkqax3.
[Ban21] Stefan Banholzer. ROM-Based Multiobjective Optimization with PDE Constraints. PhD thesis, University of Konstanz, 2021. Available at http://nbn-resolving.de/urn:nbn:de:bsz:352-2-1g98y1ic7inp29.
[Ber99] D.P. Bertsekas. Nonlinear Programming. Athena scientific optimization and computation series. Athena Scientific, 1999. ISBN 9781886529007.
[DR06] Wolfgang Dahmen and Arnold Reusken. Numerik für Ingenieure und Naturwissenschaftler. Springer-Verlag, 2006.
[DD97] I. Das and J.E. Dennis. A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems. Structural Optimization, 14:63–69, 1997.
[Ehr05] Matthias Ehrgott. Multicriteria optimization. Volume 491. Springer Science & Business Media, 2005.
[Eic08] G. Eichfelder. Adaptive Scalarization Methods in Multiobjective Optimization. Springer, Berlin Heidelberg, 2008.
[J+11] Johannes Jahn and others. Vector Optimization. Springer, Berlin Heidelberg, second edition, 2011.
[Kel99] C.T. Kelley. Iterative Methods for Optimization. Society for Industrial and Applied Mathematics, Philadelphia, 1999.
[KSd15] K. Khaledian and M. Soleimani-damaneh. A new approach to approximate the bounded Pareto front. Mathematical Methods of Operations Research, 82(2):211–228, Oct 2015. URL: \url{https://doi.org/10.1007/s00186-015-0510-4}, doi:10.1007/s00186-015-0510-4.
[Lui10] Eberhard Luik. Numerik i. Skript zur Vorlesung Numerik I, Wintersemester, Universität Konstanz, 2010.
[Mie99] K.M. Miettinen. Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, AH Dordrecht, first edition, 1999.
[Mor78] Jorge J. Moré. The Levenberg-Marquardt algorithm: Implementation and theory. In G. A. Watson, editor, Numerical Analysis, number 630 in Numerical Analysis, 105–116. Springer, 1978. doi:10.1007/BFb0067700.
[MGGS09] D. Mueller-Gritschneder, H. Graeb, and U. Schlichtmann. A successive approach to compute the bounded Pareto front of practical multiobjective optimization problems. SIAM J. Optim., 20(2):915–934, 2009.
[NW06] Jorge Nocedal and Stephen J. Wright. Numerical optimization. Springer series in operations research. Springer, New York, 2nd ed edition, 2006. ISBN 978-0-387-30303-1. OCLC: ocm68629100.
[PS84] A. Pascoletti and P. Serafini. Scalarizing vector optimization problems. Journal of Optimization Theory and Applications, 42(4):499–524, 1984. URL: \url{https://doi.org/10.1007/BF00934564}, doi:10.1007/BF00934564.
[Sie01] Gerard Sierksma. Linear and Integer Programming: Theory and Practice, Second Edition. CRC Press, 2001.
[UU12] Michael Ulbrich and Stefan Ulbrich. Nichtlineare Optimierung. Mathematik Kompakt. Springer-Verlag, 2012.
[Van20] Robert J Vanderbei. Linear programming: foundations and extensions. Volume 285. Springer Nature, 2020.
[Wie80] A.P. Wierzbicki. The use of reference objectives in multiobjective optimi­za­tion. In Multiple Criteria Decision Making Theory and Application, 468–486. Springer Berlin Heidelberg, 1980.
[Wie86] A.P. Wierzbicki. On the completeness and constructiveness of parametric characterizations to vector optimization problems. Operations-Research-Spektrum, 8(2):73–87, Jun 1986.
[Wie98] A.P. Wierzbicki. Reference point methods in vector optimization and decision support. IIASA Interim Report, IIASA, Laxenburg, Austria, April 1998.
[Zad63] L. Zadeh. Optimality and non-scalar-valued performance criteria. IEEE Transactions on Automatic Control, 8(1):59–60, 1963.