Publikationen

Monographien

[1] S. Markfelder: Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations. Springer Lecture Notes in Mathematics 2294, Springer (2021), Link

Zeitschriftenartikel mit Peer-Review

[2] S. Markfelder: A New Convex Integration Approach for the Compressible Euler Equations and Failure of the Local Maximal Dissipation Criterion. Nonlinearity 37(11), 1-60 (2024), Link
[3] D. W. Boutros, S. Markfelder, E. S. Titi: Nonuniqueness of generalised weak solutions to the primitive and Prandtl equations. J. Nonlinear Sci. 34(4), Article Number 68 (2024), Link
[4] D. W. Boutros, S. Markfelder, E. S. Titi: On Energy Conservation for the Hydrostatic Euler Equations: An Onsager Conjecture. Calc. Var. Partial Differential Equations 62(8), Article Number 219 (2023), Link
[5] E. Feireisl, C. Klingenberg, S. Markfelder: Euler system with a polytropic equation of state as a vanishing viscosity limit. J. Math. Fluid Mech. 24, Article Number 67 (2022), Link
[6] C. Klingenberg, O. Kreml, V. Mácha, S. Markfelder: Shocks make the Riemann problem for the full Euler system in multiple space dimensions ill-posed. Nonlinearity 33(12), 6517-6540 (2020), Link
[7] E. Feireisl, C. Klingenberg, S. Markfelder: On the density of wild initial data for the compressible Euler system. Calc. Var. Partial Differential Equations 59(5), Article Number 152 (2020), Link
[8] H. Al Baba, C. Klingenberg, O. Kreml, V. Macha, S. Markfelder: Nonuniqueness of admissible weak solution to the Riemann problem for the full Euler system in two dimensions. SIAM J. Math. Anal. 52(2), 1729-1760 (2020), Link
[9] E. Feireisl, C. Klingenberg, O. Kreml, S. Markfelder: On oscillatory solutions to the complete Euler system. J. Differential Equations 269(2), 1521-1543 (2020), Link
[10] E. Feireisl, C. Klingenberg, S. Markfelder: On the low Mach number limit for the compressible Euler system. SIAM J. Math. Anal. 51(2), 1496-1513 (2019), Link
[11] C. Klingenberg, S. Markfelder: Non-uniqueness of energy-conservative solutions to the isentropic compressible two-dimensional Euler equations. J. Hyperbolic Differ. Equ. 15(4), 721-730 (2018), Link
[12] C. Klingenberg, S. Markfelder: The Riemann problem for the multidimensional isentropic system of gas dynamics is ill-posed if it contains a shock. Arch. Ration. Mech. Anal. 227(3), 967-994 (2018), Link

Artikel in Konferenzberichten mit Peer-Review

[13] C. Klingenberg, S. Markfelder: Non-uniqueness of entropy-conserving solutions to the ideal compressible MHD equations. In: "Hyperbolic Problems: Theory, Numerics, Applications", AIMS Series on Applied Mathematics Vol. 10, 491-498 (2020), Link