[2] | S. Markfelder: A New Convex Integration Approach for the Compressible Euler Equations and Failure of the Local Maximal Dissipation Criterion. Nonlinearity 37(11), 1-60 (2024), Link |
[3] | D. W. Boutros, S. Markfelder, E. S. Titi: Nonuniqueness of generalised weak solutions to the primitive and Prandtl equations. J. Nonlinear Sci. 34(4), Article Number 68 (2024), Link |
[4] | D. W. Boutros, S. Markfelder, E. S. Titi: On Energy Conservation for the Hydrostatic Euler Equations: An Onsager Conjecture. Calc. Var. Partial Differential Equations 62(8), Article Number 219 (2023), Link |
[5] | E. Feireisl, C. Klingenberg, S. Markfelder: Euler system with a polytropic equation of state as a vanishing viscosity limit. J. Math. Fluid Mech. 24, Article Number 67 (2022), Link |
[6] | C. Klingenberg, O. Kreml, V. Mácha, S. Markfelder: Shocks make the Riemann problem for the full Euler system in multiple space dimensions ill-posed. Nonlinearity 33(12), 6517-6540 (2020), Link |
[7] | E. Feireisl, C. Klingenberg, S. Markfelder: On the density of wild initial data for the compressible Euler system. Calc. Var. Partial Differential Equations 59(5), Article Number 152 (2020), Link |
[8] | H. Al Baba, C. Klingenberg, O. Kreml, V. Macha, S. Markfelder: Nonuniqueness of admissible weak solution to the Riemann problem for the full Euler system in two dimensions. SIAM J. Math. Anal. 52(2), 1729-1760 (2020), Link |
[9] | E. Feireisl, C. Klingenberg, O. Kreml, S. Markfelder: On oscillatory solutions to the complete Euler system. J. Differential Equations 269(2), 1521-1543 (2020), Link |
[10] | E. Feireisl, C. Klingenberg, S. Markfelder: On the low Mach number limit for the compressible Euler system. SIAM J. Math. Anal. 51(2), 1496-1513 (2019), Link |
[11] | C. Klingenberg, S. Markfelder: Non-uniqueness of energy-conservative solutions to the isentropic compressible two-dimensional Euler equations. J. Hyperbolic Differ. Equ. 15(4), 721-730 (2018), Link |
[12] | C. Klingenberg, S. Markfelder: The Riemann problem for the multidimensional isentropic system of gas dynamics is ill-posed if it contains a shock. Arch. Ration. Mech. Anal. 227(3), 967-994 (2018), Link |